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Abstract: Smart lighting systems in low energy commercial buildings can be expensive to implement and 
commission. Studies have also shown that only 50% of these systems are used after installation, and those 
used are not operated at full capacity due to inadequate commissioning and lack of personalization.  
Wireless sensor networks (WSN) have great potential to enable personalized smart lighting systems for real-
time model predictive control of integrated smart building systems. In this paper we present a framework for 
using a WSN to develop a real-time indoor lighting inverse model as a piecewise linear function of window 
and artificial light levels, discretized by sub-hourly sun angles. Applied on two days of daylight and ten 
days of artificial light data, this model was able to predict the light level at seven monitored workstations 
with accuracy sufficient for daylight harvesting and lighting control around fixed work surfaces. The 
reduced order model was also designed to be used for long term evaluation of energy and comfort 
performance of the predictive control algorithms. This paper describes a WSN experiment from an 
implementation at the Sustainability Base at NASA Ames, a living laboratory that offers opportunities to 
test and validate information-centric smart building control systems. 

1 INTRODUCTION 

According to the U.S. DOE’s Energy yearbook in 
2010, the maximum electricity consumption in 
commercial buildings (13.6%) is attributed to 
lighting (Department of Energy, 2010). Intelligent 
daylight and occupancy-based lighting control is 
becoming increasingly important for future net zero 
energy buildings, for lighting as well as heating and 
cooling energy savings. Fortunately, there have been 
significant improvements in lighting controls and 
associated hardware (Philips, 2011), in addition to 
interoperability with building energy management 
systems (Walton et al., 2007) and advances in 
daylight harvesting systems such as smart windows 
(Lee and Tavil, 2007); (Lu and Whitehouse, 2012). 

Our prior work has demonstrated 50% savings 
from individually dimmable and user preference-
based luminaire control in absence of daylight. An 
additional 20% energy savings could be achieved 
with daylight harvesting according to our simulation 
results (Wen and Agogino, 2011a; 2011b); (Wen et 
al., 2011); (Wen, 2008). 

In spite of the growing impetus in lighting 
control research and some successful pilot projects 
(Lee and Tavil, 2007), the actual adoption of 
intelligent lighting control systems in commercial 
buildings has been very limited. Singhvi, Krause, 
Guestrin, Garrett, and Matthews (2005) developed a 
centralized lighting system to increase user comfort 
and reduce energy costs by using a WSN. Suet Fei 
Li (2006) developed wireless sensing and actuation 
networks (WSAN) for lighting control in the home 
environment. Lin and Megerian (2005) proposed a 
decentralized algorithm for WSANs for optimal 
lighting control. Yet, as of 2010 70% of the US 
national stock of commercial buildings had no 
lighting controls for energy efficiency (Ashe et al., 
2012). Some of the reasons include general lack of 
encouraging results of lighting retrofit in terms of 
energy savings and system usability. Rude found 
that 50% of the intelligent lighting control systems 
they studied had been deactivated by the users and 
the remaining 50% operated at 50% of target 
performance (2006).  

However, the drive to move to low energy and
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 even net zero energy usage has led to more 
buildings being retrofitted or commissioned with 
automated control capabilities. A major challenge is 
to control the coupled sub-systems of a complex 
building system or even a cluster of buildings. 
Moving beyond the capabilities of heuristic control 
approaches, new systems seek to incorporate 
predictive models of occupancy, renewable energy 
availability and price signals (Ma et al., 2012); (Liu 
and Henze, 2006) to account for interdependencies 
between energy performance of these subsystems 
(Mukherjee et al., 2010).  The sub-system 
interdependencies and their influences on the overall 
building energy performance could be captured by 
massive deployment of wireless sensor networks 
(Brambley et al., 2005); (Lin and Megerian, 2005); 
(Li, 2006) and real-time modelling.  

Assuming an energy cost of 16.8 cents/kWh 
(California Public Utilities Commission, 2011) and 
an annual energy intensity of 131.0 to 177 kWh/m2 
(California Energy Commission [CEC], 2006), the 
average annual energy cost of small and medium 
commercial buildings in California is $30/m2; 29% 
of this energy is used in commercial lighting (CEC, 
2006). 50-60% lighting energy savings from daylight 
harvesting and feedback lighting control would 
therefore mean an energy cost savings of $5.20/m2 

per year. A scenario of 2 to 3 wireless sensor 
platforms per workstation (Deru et al., 2011) 
including daylight sensors, amounts to 1 
platform/6.2 - 9.3 m2, the standard occupancy being 
18.6m2/person, according to the standards for 
ventilation set by the American Society of Heating, 
Refrigerating, and Air-Conditioning Engineers 
(ASHRAE) (ASHRAE, 2010). The current price of 
most commercially available wireless sensor 
platforms is approximately $100. Hence, the initial 
investment for a WSAN-based closed loop lighting 
control system is approximately $10.70-$16.00/m2 
(just for the sensor platform), which is 2-3 times 
higher than the annual lighting energy cost per unit 
area of a building.  

Thus one major challenge is the development of 
inexpensive and easy to commission WSANs, along 
with computationally inexpensive lighting models 
and intelligent control systems. The question is how 
minimal sensor deployment could suffice for desired 
energy and comfort performance of these	 systems. 
One strategy is to repeatedly redeploy the same 
wireless sensor platform in different locations at 
desktop levels to create parameterized lighting 
models. This redeployment promises to cut down 
costs in comparison to sensors permanently fitted in 
luminaires. This strategy also can increase accuracy, 

as the overhead sensors tend to over-estimate the 
light level compared to the human eye at desktop 
levels. Sensor platform reuse can be facilitated by 
inclusion of a predictive mathematical model of the 
indoor light level at key locations (such as desktops) 
within the intelligent lighting control loop, as a 
function of the minimum required sensed data 
points.  

In this paper we present a framework for the 
development of an indoor lighting inverse model as 
a piecewise linear function of the minimum number 
of sensed parameters: window light levels and 
adjoining dimmable lights’ statuses, discretized by 
sub-hourly sun angles at a given time of the day. As 
part of our on-going research on information-centric 
smart building control systems, we deployed low 
power wireless light sensor network for system 
identification at the Sustainability Base at the NASA 
Ames Research Center. The training and validation 
data for the predictive inverse lighting model were 
obtained after three months of data acquisition at this 
test bed. 

2 ANALYSIS 

2.1 Inverse Problem Theory 

Inverse problem theory describes methods by which 
a model of a system is developed by: (1) 
parameterizing the system in terms of a set of model 
parameters that adequately characterize the system 
in the desired point of view, (2) making predictions 
on the actual values based on physical laws and 
given values of the model parameters, and (3) using 
actual results from measurements to determine the 
model parameters (Tarantola, 2005). 

A physics-based lighting model is the best choice 
for accuracy, requiring the input of accurate building 
and furniture dimensions. These models estimate the 
lighting as a summation of the luminaries and 
daylight at every position in the room. These 
systems can be difficult to develop and require 
technicians and professional staff to deploy. 

An inverse model, in contrast, does not require 
complete location information to function. Instead, 
the system measures lighting data at workstations 
about the room. The data are mapped to the luminary 
levels and to the daylight illuminance measured at 
the windows via a regression model. An inverse 
model trades some accuracy and extensibility for 
rapid deployment capabilities and can be set up 
within a few hours. Moreover, these reduced order 
models can be computationally inexpensive to 
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perform simulations within a control loop. For these 
reasons, an inverse model is a promising choice for a 
predictive lighting control system designed for ease-
of-use. 

2.2 Multiple Linear Regression 

Multiple linear regression is an efficient and 
relatively simple procedure that can find a linear 
relationship between multiple regressors and a 
regressand. The ordinary least squares (OLS) 
method functions to create a best linear fit to a given 
data set by minimizing the sum of the squared 
residuals (Hayashi, 2000). 

For this project, a linear relationship between the 
illuminance measured at artificial and natural light 
sources and the illuminance measured at a 
workstation was found suitable, taking the form: 

௪ܧ ൌ ଵܧଵߙ  ⋯ ଵܧଵߚ  ⋯ (1) ߝ

Where ܧ௪, ܧ, and ܧ are illuminance readings 
at the workstation, an artificial light source, and a 
natural light source, respectively, while ߙ and ߚ are 
constants defined by the model and ߝ is random 
error. If we have ݉ samples, the equation becomes: 
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To solve this equation, the method of ordinary 
least-squares leads us to find the values of ߙ and ߚ 
that minimize the sum of the squared residuals. A 
simple way to do this is to first arrange the data into 
the form: 
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(3)

Simplifying Equation 3 for clarity: 

ܻ ൌ ܾܺ  (4) ߝ

From there we assume strict exogeneity, or that 
the error has a mean of zero and is not correlated to 
the regressors. We also assume linear independence. 
This assumption is valid because, while there is 
some risk of multicollinearity if there is only one 
light source and the sensor platforms are positioned 
very close together, this risk is mediated simply by 
ensuring the sensor platforms are spaced well apart 
at varying distances from the light source.  

Solving for ܾ, the equation can be rearranged to 
form: 

ܾ ൌ ൭
1
݊
ݔ



ୀଵ

ᇱ൱ݔ

ିଵ
1
݊
	ݔݕ



ୀଵ

 (5)

This equation is the Ordinary Least Squares 
Estimator, and gives us the best fit linear model for 
the data. 

2.3 Piecewise Linear Regression 

The complexity of daylight poses challenges to 
simple linear regression. Daylight is diffused 
through the atmosphere and is reflected by and 
diffused through many surfaces within the built 
environment. The angle of the sun and the spatial 
geometry, in particular, play significant roles in the 
distribution of the direct and diffuse light within a 
space. Direct sunlight falling on a sensor is primarily 
responsible for the non-linear relationship between 
the sensed façade light and the sunlight distributed 
indoors. Because of this, a piecewise linear function 
discretized by sun angle is better suited to daylight 
approximation than a single linear model. The angle 
of the sun can be used as the bounds for the pieces, 
so that several linear functions now represent small 
fractions of the entire range of solar angles 
throughout the day. 

2.4 Related Work 

There has been prior research in approximating 
linear functions to daylight illuminances. A. 
Guillemin (2003) and D. Lindelhöf (2007) have 
tested a predictive model that assumed a linear 
relationship between vertical façade illuminance and 
indoor horizontal illuminance. In his work, his 
predictive model resulted in standard deviations of 
416 lux, roughly double that of the standard 
deviation of the piecewise linear regression model.  

Previous tests for inverse model generation 
network were performed by the authors in a 
residential environment in the Spring of 2012. The 
tests were conducted in a 450 sq. ft. rectangular 
studio apartment in San Francisco with a west-facing 
floor-to-ceiling window. The controllable light 
sources were: a kitchen ceiling fixture and a small 
bedside lamp. Throughout the test, the space was 
occupied by two residents on a daily basis. An 
inverse model was created for each of two 
workstations. The resulting predictions had an 
average error of approximately 100 lux with a 
standard deviation of 250 lux (Paulson, 2012), an 
improvement over previous studies, but a reduction 
of the range in error still desirable. This motivated 
an experiment in an open space commercial office 
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buildings with less interference from walls and other 
structures. 

3 DESIGN AND 
IMPLEMENTATION 

3.1 Hardware 

A wireless light sensor network was utilized for 
inverse modeling. The network was comprised of 
TelosB mote platforms running on AA-batteries 
(MEMSIC Inc., 2012). The motes were configured 
with an ambient illuminance sensor that was 
sampled at regular intervals. The motes 
communicated each sample reading over the 
802.15.4 layer to another mote connected to a base 
computer. 

3.2 System Architecture 

The wireless sensor network was programmed in 
TinyOS, an open-source platform developed at UC 
Berkeley (Levis et al., 2005). A flowchart for the 
software structure can be seen in Figure 1. The 
motes, each with their own unique ID’s, 
communicate data packages to a base station mote 
which forwards the data via a serial connection to a 
computer which saves the data locally and forwards 
it to an online database following a Simple 
Measurement and Actuation Protocol (sMAP). 
sMAP is being developed by UC Berkeley as a 
single web based platform for accessing large 
volumes of data from all possible sensor points from 
a multitude of disparate and distributed data sources 
such as building management systems of large 
commercial buildings, ad-hoc sensor networks, grid 
data from Intelligrid, building models from 
GreenXML source, pricing data from OpenADR, 
(Automated Demand Response) and monitoring by 
Smart Energy Profile applications (Dawson-
Haggerty, 2011); (Dawson-Haggerty et al., 2012). 

A Java-based program performs several tasks. 
First, the data are parsed to fill in any gap caused by 
lost packages. Second, the data from each mote are 
then divided, depending on the angle of the sun at 
each time step, which is computed using the 
Astronomer Almanac’s sun positioning algorithm 
(Michalsky, 1988). A daylight model is generated 
through linear regression on a data set with no 
artificial light (such as data taken over the weekend) 
to create a piecewise linear function for each 
workstation, divided by angle of inclination of the 

sun. A linear function is estimated for every 1.0° sun 
elevation. The daylight model is then extended to 
create a full model using data sets with artificial 
light. 

 

Figure 1: Software flowchart. 

3.3 Deployment 

Sensors were deployed at the Sustainability Base at 
NASA Ames Research Center across two cubicles in 
an open-plan office space. Seven sensors were 
deployed at or near the workplane and two sensors 
were placed on the walls near the windows. Sensors 
1, 2 and 3 were located at incremental distances 
from the window mote 8, covering the workplane 
across the entire cubicle and sensors 5, 6 and 7 were 
replicated in the adjoining cubicle with 9 being the 
window mote. Sensor 4 was located on top of a low 
height partition between the two cubicles. The 
sensors collected data for several weeks, reporting 
the data to a local server, which forwarded the data 
to an online data visualization page for remote 
access. 

Power level data from the controllable luminaries 
were collected from the luminary system data logs 
after the tests, to avoid invasive procedures that may 
void the luminary warranty. The light level data 
were then input into the inverse model generation 
package. 

Daylight model training data were sampled every 
five minutes from May 25 – May 27, 2012, a 
weekend during which no luminaries were turned 
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on. The full model training data were sampled from 
May 25 – June 5, 2012. 

4 RESULTS 

The full model was tested from June 11 – June 20, 
2012. During this time, the building was occupied 
and experiencing normal operations. The graphs for 
the predicted values and measured sensor readings 
are shown for workstations 1 – 7 in Figures 2 – 8, 
respectively. The standard deviation of the residuals 
and the root-mean-square error for each workstation 
can be found in Table 1.  

From Figures 2-8, it is apparent that our model’s 
prediction errors are consistently higher for 
workstations 1-3 compared to workstations 4-7.  

 

Figure 2: Measured and predicted values of illuminance 
for Workstation 1. 

 

Figure 3: Measured and predicted values of illuminance 
for Workstation 2. 

 

Figure 4: Measured and predicted values of illuminance 
for Workstation 3. 

 

Figure 5: Measured and predicted values of illuminance 
for Workstation 4. 

 

Figure 6: Measured and predicted values of illuminance 
for Workstation 5. 
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Figure 7: Measured and predicted values of illuminance 
for Workstation 6. 

 

Figure 8: Measured and predicted values of illuminance 
for Workstation 7. 

Table 1: Standard deviation of residuals and root mean-
square error for predicted values for workstations 1-7. 

Workstation SD (lux) RMSE (lux) 
1 204.32 257.76 
2 108.65 142.715 
3 211.61 213.06 
4 86.90 91.44 
5 58.78 61.56 
6 55.66 62.17 
7 92.51 101.93 

5 DISCUSSION 

The inverse model implemented from the dataset 
obtained from our second test bed at NASA Ames 
appears to predict the workstation light level with 
higher accuracy than the previous tests on an 
average. The root mean square error of the models 
tended toward 100 lux or less on an average across 

the monitored workstations except for a few of 
workstations (1, 2 and 3), probably due to various 
disturbances such as installed position and varying 
traffic levels. The recommended lux level for 
standard office work is 500 lux (IESNA, 2000) and, 
assuming a logarithmic sensitivity of the human eye, 
an average error of 100 lux is hardly perceivable. 
While the standard deviation of the residuals for 
some workstations is still very high, the majority of 
the models exhibited standard deviations below half 
of those reported in previous tests. Note that 
accuracy and predictive capability of physically 
based models of lighting, which use sophisticated 
and computationally expensive ray tracing 
algorithms, vary widely depending on the expertise 
and the experience of the modellers, the average 
being 20% (Ibarra and Reinhart, 2009). 

The linear daylight regression model discretized 
by solar tilt appears to be more accurate than single 
linear regression models, with standard deviations of 
residuals being up to 87.6% lower than those 
reported in previous related work depending on the 
sensor position (Guillemin, 2003). 

5.1 Error Sources and Corrections 

The possible major errors were expected to stem 
from sensor accuracy and precision followed by the 
complex nature of daylight spatial geometry like 
distance from the windows, solar shading, 
distribution of indoor reflective surface and 
miscellaneous disturbances like occupant traffic, 
change in sensor position and so on. The complex 
nature of daylight is attributed to unpredictability of 
weather parameters such as sudden cloud cover and 
relationship of the building geometry to solar 
geometry. Fluctuating weather patterns could affect 
the correlation of illuminance values between the 
motes at the workstations and those at the windows. 
One solution to the first error would be to use 
multiple motes and take advantage of data 
redundancy, facilitated by temporary sensor platform 
deployment for model identification (Wen, 2008).  

Alternatively, an adaptive modelling algorithm 
could be designed to appropriately deploy means of 
data validation and fusion iteratively until a shared 
performance goal is reached. For example, in our 
study, a preliminary comparison of window sensor 8 
readings with three on-site roof-mounted radiometer 
data showed a good correlation between the two, but 
not for sensor 9. Results of further comparison with 
other reliable explanatory variables could eventually 
be used to weigh the sensor 9 readings based on data 
validity. We expect that sampling over a set of 
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cloudy and sunny days can indicate the possible 
reasons for high standard deviations of the residuals 
at workstations 3 and 4. This methodology calls for 
interoperability with various information sources in 
the building such as shading systems, BMS etc. – an 
opportunity offered by sMAP.  sMAP comes with 
drivers written in Python for various data sources 
found in standard building applications.  

In places where both mean and standard 
deviations of the errors are large, longer sampling 
will allow disaggregating the effect of weather and 
sun position from those of local disturbances on the 
measured data at a given workstation. After sensor 
placement, it was discovered that workstation 1 was 
placed on a table that was raised and lowered by 
nearly a foot and a half on a fairly regular basis, 
likely contributing to the higher residuals and 
standard deviation for that workstation. This 
highlights a drawback to inverse modelling, in that if 
the sensors are moved after initial placement, the 
model becomes much less accurate. However, 
occasional data exchange between motes and 
comparison between the spatially distributed sensor 
readings could again be used here to detect such 
disturbances.  

Sensor blockage due to occupant traffic could be 
another potential source of error, which can be 
addressed partly through sensor processing. Our 
initial investigation of weekend and weekday data, 
however, did not indicate any sharp change in data 
pattern due to occupant presence.  

Sun tilt cannot adequately explain the 
relationship between solar geometry and building 
geometry. The effect of 10° sun tilt might be 
completely different in the morning and evening 
depending on the building orientation. In our next 
model we are trying to account for this factor by 
dividing the data further by morning and afternoon.  

From the above analysis, it is apparent that our 
model should be capable of using several 
explanatory variables when required, customized to 
individual lighting scenarios with nodes that 
exchange readings for time to time comparison. 
Such a feature would be increasingly important for 
the platform reuse model. Sandhu, Agogino A.M., 
and Agogino A.K. (2004) had proposed an Multi-
agent system (MAS) for distributed data processing 
and Influence Diagram (Bayes’ net)-based decision 
making in closed loop lighting control, the main goal 
was to achieve flexibility of distributed computation. 
We could formulate our case in a MAS framework, 
in which individual workplane sensor may have its 
own set of explanatory variables, while the common 
goal of the supervisory algorithm would be to 

minimize the average prediction error across the 
spatially distributed agents.  

6 FUTURE WORK 

6.1 Extending Inverse Model for 
Annual Energy Performance 
Prediction 

Some of the challenges of data driven-models are the 
number of samples and perturbations required in 
each of the model parameters to achieve a fairly 
robust inverse model of a process. Developing a 
calibrated physically-based model of the process can 
address some of these challenges by obviating long 
term data acquisition. We are creating and 
calibrating a physically-based lighting model of the 
monitored workspace at the Sustainability Base 
using the RADIANCE lighting simulation software. 
Outputs from the annual simulations of this model 
will be used to extend and validate the reduced order 
light model, which in turn will then predict the 
energy and comfort performance of the control 
algorithm. 

6.2 Extending Inverse Model for Model 
Predictive Control 

The inverse light model of workstation lighting was 
developed for the purpose of controlling individually 
addressable luminaires. However, control of the sub-
systems of a complex system such as a building, or 
even a cluster of buildings, must be more coupled as 
engineers move beyond heuristic control approaches 
and seek to incorporate predictive models of 
occupancy, renewable energy availability and price 
signals (Ma et al., 2012); (Liu and Henze, 2006), 
accounting for interdependencies between energy 
performance of these subsystems (Mukherjee et al., 
2010). This invites the challenge of controlling a 
multi-input multi-output system where the response 
time of the sub-systems varies from a few seconds to 
several hours. Keeping in mind this challenge of 
future smart building energy and comfort 
management, we are using a modular approach to 
augment our system identification platform. We are 
extending the inverse lighting model for predictive 
control of multiple smart shading systems, the 
setpoints being instantaneously desired light level at 
multiple workstations and desired zone temperature, 
several time steps in the future.  
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7 CONCLUSIONS 

Current market intelligent lighting control systems 
seldom include a predictive light model within the 
control loop and the implementations of these 
systems have proven to be ineffective in the majority 
of installations. The light sensors are mostly 
overhead and tend to over-estimate the light level at 
the workplane due to a different field of view than 
the human eye at the workplane. Predictive models 
of indoor lighting could also be integrated within the 
framework of model predictive control of building 
systems, an emerging strategy in the realm of smart 
buildings on the smart grid. 

As part of our research endeavour with the 
Sustainability Base at the NASA Ames Research 
Center we are developing a computationally 
inexpensive predictive model of indoor lighting. To 
this end we have deployed a low power wireless 
sensor network at this test bed and developed a 
piecewise linear regression model of workstation 
illuminance, built on a month of data at seven 
workstations, that was capable of predicting the light 
levels within 36%-60% on average across the 
workstations. We found that linear models 
discretized by sun angles were able to explain and 
predict the influence of daylight on workplane 
illuminance better than previous related work that 
considered only a single linear model as function of 
vertical façade illuminance. However, in spite of a 
low spatially averaged error we still noted higher 
fluctuations of errors in the proximity of the 
windows, in cubicles with higher occupant traffic or 
when window motes receive more direct solar. In 
order to address these error fluctuations we are 
planning to develop an adaptive model that can 
adjust the model coefficients based on system state. 
Further using data from annual simulations of a 
calibrated physically based model of the monitored 
space, the current inverse model will be extended for 
annual control algorithm generation and energy 
performance evaluation.  In addition we are 
incorporating future daylight prediction capability 
within the current model for better integration into a 
model predictive control framework, including 
systems of multiple response times. 

ACKNOWLEDGEMENTS 

This research has been supported by a grant from 
National Aeronautics and Space Administration, 
under the University Affiliated Research Centre 
(URAC) award #NAS2-03144.  The authors also 

wish to thank and acknowledge the expertise and 
valuable input from our NASA Ames colleagues 
Adrian Agogino and Corey Ippolito, as well as intern 
Edward Sullivan. 

REFERENCES 

American Society of Heating, Refrigerating, and Air-
Conditioning Engineers, Inc. (ASHRAE). (2010). 
ASHRAE Standard Ventilation for Acceptable Air 
Quality, Standard 62.1-2010. Atlanta: ASHRAE. 

Ashe, M., Chwastyk, D., de Monasterio, C., Gupta, M., 
Pegors, M. (2012). 2010 U.S. Lighting Market 
Characterization. Retrieved September 20, 2012, from 
apps1.eere.energy.gov/buildings/publications/pdfs/ssl/
2010-lmc-final-jan-2012.pdf. 

Brambley, M. R., Haves, P., McDonald, S. C., Torcellini, 
P., Hansen, D., Holmberg, D. R., Roth, K. W. (2005). 
Advanced Sensors and Controls for Building 
Applications: Market Assessment and Potential R&D 
Pathways. Oak Ridge: Pacific Northwest National 
Laboratory. 

California Energy Commission (CEC) and Itron Inc. 
(2006). California Commercial End-Use Survey. 
Retrieved November 14, 2012, from 
http://www.energy.ca.gov/2006publications/CEC-400-
2006-005/CEC-400-2006-005.PDF. 

California Public Utilities Commission. 2011. Average 
Rate by Customer Class Years 2000-2011. Retrieved 
November 14, 2012, from 
http://www.cpuc.ca.gov/PUC/energy/Electric+Rates/E
NGRD/ratesNCharts_elect.htm. 

Dawson-Haggerty, S. (2011). Introduction to sMAP. 
Retrieved September 20, 2012 from 
http://www.eecs.berkeley.edu/~stevedh/smap2/intro.ht
ml. 

Dawson-Haggerty, S., Krioukov, A., Culler, D. (2012). 
Experiences integrating building data with sMAP. 
Retrieved September 20, 2012, from 
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EE
CS-2012-21.pdf. 

Department of Energy, (2010).  Buildings Energy Data 
Book.  Washington D. C.: Department of Energy. 
Retrieved August 26, 2012, from 
http://buildingsdatabook.eren.doe.gov/TableView.aspx
?table=3.1.4. 

Deru et al. U.S. Department of Energy Commercial 
Reference Building Models of the National Building 
Stock. (2011). National Renewable Energy 
Laboratories. 

Guillemin, A., (2003).  Using Genetic Algorithms to Take 
into Account User Wishes in an Advanced Building 
Control System. Ph.D.. École Polytechnique Fédérale 
de Lausanne.  

Hayashi, F., (2000). Econometrics. Princeton: Princeton 
University Press. 

Ibarra, D. I., Reinhart, C. F., (2009). Daylight Factor 
simulation, How close do simulation beginners 

SENSORNETS�2013�-�2nd�International�Conference�on�Sensor�Networks

220



 

“really” get?. In: Building Simulation, 11th 
International IBPSA Conference. Glasgow, Scotland. 
27-30 July 2009. 

Illuminating Engineering Society of North America 
(IESNA). (2000). The Lighting Handbook, distributed 
through the Illuminating Engineering Society of North 
America, 9th edition. 

Lee, E. S., Tavil, A., (2007). Energy and visual comfort 
performance of electrochromic windows with 
overhangs. Building and Environment, 42(6), pp.2439-
2449. 

Levis, P., Madden, S., Polastre, J., Szewczyk, R., Woo, A., 
Gay, D., Hill, J., Welsh, M., Brewer, E., Culler, D., 
(2005). Tinyos: An operating system for sensor 
networks. Ambient Intelligence, W. Weber, J. M. 
Rabaey, and E. Aarts, (Ed.). New York: Springer 
Berlin Heidelberg, 2005,  115-148. 

Lindelhöf, D., (2007). Bayesian Optimization of Visual 
Comfort. Ph.D. École Polytechnique Fédérale de 
Lausanne. 

Li, S. (2006). Wireless Sensor Actuator Network for Light 
Monitoring and Control Application. In: Proceedings 
of Consumer Communications and Networking 
Conference, Las Vegas, NV, USA, January 8-10, 
2006; 974-978. 

Lin, Y., Megerian, S. (2005). Low Cost Distributed 
Actuation in Large-scale Ad Hoc Sensor-actuator 
Networks. In: Proceedings of 2005 International 
Conference on Wireless Networks, Communications 
and Mobile Computing, Maui, HI, USA, 2005; 975-
980. 

Liu, S., and Henze, G., (2006). Experimental analysis of 
simulated reinforcement learning control for active 
and passive building thermal storage inventory, Part 1: 
Theoretical foundation, Energy and Buildings, 38(2), 
142–147. 

Lu, J. and Whitehouse, K., (2012). SunCast: Fine-grained 
Prediction of Natural Sunlight Levels for Improved 
Daylight Harvesting. In: IPSN, 11th ACM Conference 
on Information Processing in Sensor Networks. 
Beijing, China. 16–20 April 2012.  

Ma, Y., Kelman, A., Daly, A., Borrelli, F., (2012). 
Predictive Control of Energy Efficient Buildings with 
Thermal Storage: Modeling, Simulation and 
Experiments, IEEE Control Systems Magazine, 44-64. 

MEMSIC, Inc. (2012). TelosB_datasheet. Retrieved July 
19, 2011, from 
http://www.memsic.com/products/wireless-sensor-
networks/wireless-modules.html.  

Michalsky J. J., (1988). The Astronomical Almanac’s 
algorithm for approximate solar position (1950-2050). 
Solar Energy, 40(3), 227-235. 

Mukherjee, S., Birru, D., Cavalcanti, D., Das, S., Patel, 
M., Shen, E., and Wen Y.-J., (2010). Closed loop 
integrated lighting and daylighting control for low 
energy buildings. Proceedings of the 2010 ACEEE 
Summer Study on Energy Efficiency in Buildings, 
Pacific Grove, CA, 2010. 

Paulson, R. (2012). Personalized Illuminance Modeling 
Using Inverse Modeling and Piecewise Linear 
Regression. M.S. University of California, Berkeley. 

Philips, (2011). Rapid-Prototyping Control 
Implementation using the Building Controls Virtual 
Test Bed. Philips Technical Report. Briarcliff Manor, 
NY. 

Rude, D. (2006). Why do daylight harvesting projects 
succeed or fail? Construction Specifier, 59(9), 108. 

Sandhu, J. S., Agogino, A. M., Agogino, A. K. (2004). 
Wireless Sensor Networks for Commercial Lighting 
Control: Decision Making with Multi-agent Systems. 
In: Proceedings of Working Notes of the AAAI-04 
Sensor Networks Workshop, San Jose, CA, USA, July 
26, 2004; 88-92. 

Singhvi, V., Krause, A., Guestrin, C., Garrett, J. H. Jr., 
Matthews, H. S. (2005). Intelligent Light Control 
using Sensor Networks. In: Proceedings of SenSys'05, 
San Diego, CA, USA, November 2-4, 2005; 218-229. 

Tarantola, A., (2005). Inverse model theory and methods 
for model parameter estimation. United States of 
America: Society of Industrial and Applied 
Mathematics. 

Walton, M., Lee, E. S., Clear, R. D., Fernandes, L. L., 
Kiliccote, S., Piette, M. A., Rubinstein, F. M., 
Selkowitz, S. E., (2007). Daylighting the New York 
Times Headquarters Building, Final Report:  
Commissioning Daylighting Systems and Estimation 
of Demand Response. Retrieved August 26, 2012, 
from windows.lbl.gov/comm_perf/pdf/daylighting-
nyt-final-III.pdf. 

Wen, Y.-J. (2008). Wireless Sensor and Actuator 
Networks for Lighting Energy Efficiency and User 
Satisfaction. Ph.D. University of California, Berkeley. 

Wen, Y.-J., Agogino, A. M., (2011a). Control of Wireless-
Networked Lighting in an Open-plan Office. Journal 
of Lighting Research and Technology, 43(2), 235-248. 

Wen, Y.-J., Agogino, A. M., (2011b). Personalized 
Dynamic Design of Networked Lighting for Energy-
Efficiency in Open-Plan Offices. Energy and 
Buildings, 43(8), 1919-1924. 

Wen, Y.-J., Bartolomeo, D. D., and Rubinstein, F, (2011). 
Co-simulation Based Building Controls 
Implementation with Networked Sensors and 
Actuators. In: BuildSys, 3rd ACM Workshop on 
Embedded Sensing Systems for Energy-Efficiency In 
Buildings. Seattle, WA, USA. 1 November 2011. 

Inverse�Modeling�using�a�Wireless�Sensor�Network�(WSN)�for�Personalized�Daylight�Harvesting

221


