
MDE for Enterprise Application Systems

Alfonso Díez1, Nga Nguyen, Fernando Díez2 and Enrique Chavarriaga1
1B2T Concept, Fuentes 10, Madrid, Spain

2Computer Science Dept., Universidad Autónoma de Madrid, Madrid, Spain

Keywords: Model Driven Engineering, Domain Specific Languages, MDE Integrated Development Environment,
Model Execution.

Abstract: Model Driven Engineering (MDE) has been widely researched as a solution for the complexity of software
development over last decades. However, it is not widely adopted efficiently in industry. In this paper, we
identify two main challenges prevent MDE from industrial adoption: the first one is capturing dynamic
behaviours from real problems in human organization into formal models; the second one is the lack of an
integrated development environment (IDE) which can have a fast and reliable model execution. In order to
address these two challenges, we have worked during the last ten years in the area of Enterprise Application
Systems based on Business Models formalisms. We have combined different technologies from the MDE
context such as multilevel meta-modelling, domain specific model languages (DSML), state machines and
model interpreters. The result is that we have created a large set of commercial products based on a common
model based platform, which we are currently applying in many business areas. This paper describes the
most representative concepts and contributions of our work to the development of MDE.

1 INTRODUCTION

This paper shows our experience in the development
of Enterprise Application Systems since 2002. There
are many open issues in the area of modelling
business solutions, which are hot topics in the
production of research papers and in scientific and
business conferences. We have a wide experience
owned during the last decade, and we addressed
some of the most challenging problems, being
allowed to suggest solutions for them.

One of the main challenges of MDE to be
adopted by the industry is dealing with the software
complexity (Straeten et al.,Baelen, 2009). There
have been many solutions which try to solve this
problem but very often they introduce more
complexity to software. For instance, one way to
reduce the complexity in describing problems is to
raise the abstraction level. UML, which based on a
two meta-level setting (Lara and Guerra, 2012), is
widely used to describe systems. However, soon
later people realized that it is not sufficient enough
to represent complex multi-level meta-models.
Therefore, number of research has produced many
ad-hoc ways to overcome this problem such as
clabjects (Atkinson and Kühne, 2000),

METADEPTH (Lara and Guerra, 2010), deep
instantiation and model to meta-to-metamodel
transformation (Kainz et al., 2011), etc. but those
approaches, similarly to the Ptolemaic epicycles,
seem to introduce more complexity than producing
practical solutions. In addition to the difficulties in
representing the complexity of problem themselves
are those ones arising from capturing evolution and
dynamic behaviours from real problems in human
organization within formal model representations.
The current models are often only able to capture the
static aspect of reality although the reality is the
combination of both static and dynamic facets. Some
approaches have been introduced but also often are
very complicated, such as a transformation engine
C-Saw to manipulate models based on the
combination of model transformation and aspect
weaving (Gray et al., 2006), or higher order model
transformation (Cicchetti et al., 2008). A quite
interesting approach by (Trojer et al., 2010)use state
machines on model elements to support change-
driven model evolution. However, as stated in the
paper, this approach is still just a prototype and not
yet reflects the effects of changes in model elements
of meta-model.

Another challenge in MDE is the lack of simple

253Diez A., Nguyen N., Díez F. and Chavarriaga E..
MDE for Enterprise Application Systems.
DOI: 10.5220/0004311502530256
In Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2013), pages 253-256
ISBN: 978-989-8565-42-6
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

ways to transform models into executable solutions
of any functional or technical complexity without
further programming. There have been a number of
approaches to solve this problem, however most of
the tools only support a subset of a family
languages, for instance code-generator generator
which only supports a family of modelling notation
(Prout et al., 2010). In addition, for defining domain
specific meta-modelling, no general framework
languages have been developed within integrated
MDE (Lara and Guerra, 2012). Therefore, a way to
generate models into business solutions, applicable
in every domain, is still an open issue.

2 SCOOP - A MODEL
TO DESCRIBE ENTERPRISE
PROBLEMS

The problem we face daily is how to create formal
models of human organizations (i.e. governments,
enterprises, etc.). Any organization has to be
described in three main layers: resources, processes
and knowledge, each of one having static and
dynamic components. In Figure 1, we describe our
proposal for a theory on Enterprise Application
Model Driven Solutions. In this sense, we consider a
theory as the set of hypotheses whose consequences
are applied to the problems we are dealing with. In
the following we are going to define the components
being part of the solution proposed.

Figure 1: SCooP model.

By R we mean the reality space, which contains a
set of problems ݌p. For the sake of clarity, let
restrict ܴR to describe the specific domain D of
problems that can be expressed in written form.
Therefore, problems in D can be as large as an
Enterprise, or can be narrowed to more specific ones
such as Procurement, Document Management,
Systems Orchestration, or even more narrower as

Management of Diabetes, to name a few.
We define a meta-model S as a mental scheme

or abstraction about the selected domain D. Because
of the selection of D, any such conception will be a
construct created by human beings and wrapped into
semantic structures that allow them to communicate
and represent it verbally or in written form. These
semantic structures can be formalized by schemas of
classes-c and relations-r. We call this meta-model
SCooP (Standard for Cooperative Processes) which
describes human organizations, both in their static
and dynamic aspects.

The abstractions of the reality can be structured
in layers. For example we can create a first high-
level abstraction about general business concepts,
and later a more specific one, such as workflow
concepts. Workflow is a meta-model about
sequences of tasks and decisions for human
individuals or groups. Given that meta-models are
described with classes and relations, the inheritance
of classes produces a partial order, which gives S a
structure of a partial ordered set (a poset).

Models based on SCooP have three central sets
of definitions: a static description of the domain
involving the model (the conceptual domain model),
a procedural manipulation of the domain concepts,
and a description of the dynamics (life cycle) of the
model. A concept is a class in the conceptual domain
model. For each concept c in the domain we define a
state model that represents the life cycle of the
concept. The life cycle is described by means of a
finite state list, together with the transition and
evaluation rules. The first ones govern state changes,
and the last ones trigger the consequences of those
changes. To manage state lists and rules SCooP
defines state machines to formalize the way life
cycles are understood. A consequence of the usage
of state machines is the propagation of state changes
along the model. This is a very powerful method for
representing the dynamic aspects of the reality and
managing systems with high inner complexity.

For each problem ݌ ∈ ܴ there exists a model,
݉ ∈ being M is the space of models. A model,ܯ
 is an instance of a meta-model S. A model is	࢓
created by inheriting the basic semantic structure of
the meta-model, and by extending it with new
properties. The inheritance between classes creates
also a partial order in the set of all o objects defined
in 	݋ ∈ ݉.	Every object o in m has to inherit from a
concept c in S, because no concept can be defined
without a language of reference.

Back again to the elements being part of the
meta-model SCooP in Figure 1, we define now the
Space of Domain Languages L. We have

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

254

mentioned earlier that semantic structures arise from
meta-models. To these semantic structures we add
syntax in order to create different languages specific
for the domain (DSML). Using these specific
languages, we can describe models in terms of them.
Different syntaxes can be used for specific purposes:
verbose class descriptions, XML structured schemas,
JavaScript procedural descriptions, OCL, JSON or
comma separated lists of properties, mathematical
expressions, etc. For instance, we have languages to
regulate state transitions, to specify the composition
of an interface dialog, to bind databases, to compose
diagrams, etc. This capability allows us to represent
models in terms of DSMLs and, therefore, can
transform Models into Languages (M2T) to create
Information Systems. In this way, each model ݉ can
be transformed to a set of DSMLs that fully
represent it. The opposite cannot be true, because
correct syntactical expressions in language could not
be allowed by meta-model rules, so cannot be
reverse engineered from the Text to the Model.

A System m* is an instance of a model m (or the
union of models) plus an execution architecture and
the time dimension. m* will be composed of
instances o*in the sense that for all o* in m*,o* is an
instance of an object o in m. Additionally, every
instance o* has a unique state, selected from the o
states list, in a given instant of time. The changes of
an object state are defined by applying the state
transition rules. The combination of time, states and
object instances creates a different global state of m*
for each t.

The system M*. Let consider the problem of
describing the meta-model S as an object of Reality.
A meta-model can be seen as a model by itself,
given that it is a description of the reality by means
of a predefined semantic. So we can take S and
generate models that describe S and use S as the
meta-model of reference, namely	݉௦. Given that
݉௦ is a model itself, it can be generated as a
solution	݉௦

∗, i.e. ݏሺ݌ሻ ൌ ݉௦
∗. This solution is able to

represent any model that has been declared under the
S meta-model, so it is a collection of models, and
can manage the transformation of M in M* in the
corresponding DSMLs. All this procedure drives us
to a very interesting situation: for each S there exists
a ݉௦

∗, that can contain any model which conforms S
and ݉௦

∗ is able to generate itself.

2.1 Execution Architecture

The Execution Architecture is the set of programs
that are able to interpret and execute the DSMLs
generated from models. Such architecture can run

any model that has been serialized in L, avoiding the
codification of any ad-hoc program. Therefore, we
build models of the reality we want to codify; then
we convert these models to different DSMLs, which
can be executed without neither any additional
technical effort nor development. We will call
Model Engines to the components of the
Architecture.

In our common practice we use three Model
Engines: E3 for core structures, SABLE for web
user interfaces, and an SQL engine (different
providers) for relational database management.
Other components can be used as needed, depending
on the characteristics of the model.

In summary, only one computer system (the set
of Model Engines) will solve any Enterprise
Information System, composing a binary Solution:
the Model Engine plus the DSMLs. The benefits of
this architecture are huge: (1) all the of system’s
development processes are truncated, eliminating
technical designs, programming and unit testing and
redesigns; (2) scalability, reliability and performance
of the Solution is guaranteed by the Engine, not by
the Model; (3) Flexibility of the Solution, as the
adaptation to new requirements, is guaranteed by the
Model, not by the Engine and (4), Model definition
is a problem in the scope of Knowledge
Management and Representation Techniques, and no
in the domain of the technologies. Therefore, any
Model that can be defined can be executed, which
eliminates the systemic risk in systems development.

2.2 The Scoop Meta-Model
and Modelling Technique

The SCooP metamodel has been developed by our
company in order to produce Enterprise Application
Systems from any business sectors and functional
areas. At present, SCooP is able to represent
business realities in many different areas such as
Banking, Insurance, Health Care, Manufacturing,
Services, Utilities, etc. and in functions such as
Finances, Customers Management, Operations,
Resources Management, Materials Management,
Project Management, Procurement, Disease
Management, etc. SCooP is divided in a number of
subdomains, namely: Conceptual Model, States
Model, User Interface Model, Technical Interface
Model, Execution Model, Security Model and Data
Model. Other meta-models are under analysis.

We call Models of Reference to those models
that are used in a common way in most of the
Solutions we build, for instance, management of
technical functions such as command line operators,

MDE�for�Enterprise�Application�Systems

255

protocols and messaging (email, ftp, etc.), audit
model, etc.

As previously stated, a meta-model is an
abstraction of the reality. There is a natural
knowledge engineering process that will turn models
into meta-models, that is based on the experience of
the domain analysts. It is interesting to understand
how a model can be promoted into a meta-model.
This progression is done as we get more and more
information and experience about a given domain.
The more we learn about a domain, the more able
we are to create a theory about that domain.

3 CONCLUSIONS AND FUTURE
WORK

The problem that we have considered in the last ten
years is how to create a new generation of Enterprise
Application Systems with four characteristics: a
wide domain on its application, minimum costs in
their specification, highest execution reliability and
absolute flexibility to adapt to new conditions.
Besides this overall set of desirable characteristics,
the adoption of part or all of them are not widely
efficiently adopted at industry due to a couple of
main challenges: the first one is capturing dynamic
behaviours from real problems in human
organization into formal models; the second one is
the lack of an integrated development environment
(IDE) and an execution environment which provide
a fast and reliable model description and execution.
The result of our work is that we have created a
conceptual background and a technical architecture
that is able to generate any kind of Enterprise
Application Systems based on models: the behaviour
of the solution is described as a formal Business
Model. The transition between models and solutions
is seamless, using SCooP to specify models and
generate solutions. Solutions are based in two
components: a number of DSMLs that describe the
model, and a number of standardized systems that
interpret and execute those languages.

For the near future, we are in conditions to
address, based on the SCooP model and on the tools
already developed, to the development of new
higher-level meta-models, more powerful IDEs,
better interpreters and flexible DSMLs, and inter-
model interoperability. In summary, we resolutely
step forward a new paradigm of MDE effectively
applied to Information Systems applications.

REFERENCES

Atkinson, C. and Kühne, T., 2000. Meta-level independent
modelling. In International Workshop on Model
Engineering at 14th European Conference on Object-
Oriented Programming. Cannes, France.

Cicchetti, A., Di Ruscio, D., Eramo, R, Pierantonio, A.
2008. Automating Co-evolution in Model-Driven
Engineering, Proceedings of the 2008 12th
International IEEE Enterprise Distributed Object
Computing Conference, p.222-231. Munich, Germany.

Gray, J., Lin, Y., Zhang, J. 2006. Automating Change
Evolution in Model-Driven Engineering, Computer,
v.39 n.2, p.51.

Kainz, G. Buckl, C. Knoll, A., 2011. Automated model-to-
metamodel transformations based on the concepts of
deep instantiation. In Proceedings of the 14th
international conference on Model driven engineering
languages and systems, p. 17-31. Wellington, New-
Zealand.

Lara, J., Guerra, E. 2012. Domain-specific textual meta-
modelling languages for model-driven engineering.
LNCS 7349, pp.: 259--274, Springer.

Lara, J., Guerra, E. 2010. Deep meta-modelling with
METADEPTH. In Proceedings of the 48th
international conference on Objects, models,
components, patterns, p.1-20. Málaga, Spain.

Mohagheghi, P., Fernandez, M. A., Martell, J. A.,
Fritzsche, M., Gilani, W. 2009. MDE Adoption in
Industry: Challenges and Success Criteria. In Models
in Software Engineering, pages 54–59.

Prout, A., Atlee, J. M., Day, N., Shaker, P. 2010. Code
generation for a family of executable modeling
notations. Software & Systems Modeling, 11(2).

Straeten, R,, Mens, T., Baelen, S. 2009. Challenges in
Model-Driven Software Engineering. In Models in
Software Engineering. LNCS 5421. Springer.

Trojer, T., Breu, M., Sarah, L. 2010. Change–driven
Model Evolution for Living Models. In Proceedings of
the 3rd Workshop on Model-Driven Tool & Process
Integration. p. 73-84. Paris, France.

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

256

