A Code Merger to Support Reverse Engineering Towards Model-driven
Software Development

Oliver Haase, Nikolaus Moll and Paul Zerr

HTWG Konstanz, University of Applied Sciences, Computer Science Department,
Braunegger Str. 55, 78464 Konstanz, Germany

Keywords:

Abstract:

Iterative Model-driven Migration, Reverse Engineering, Code Merging.

Model-driven engineering is a promising approach whose feasibility for commercial development is currently

being validated. While most approaches discuss forward-engineering steps, only little research has been done
on model-driven software migration. More precisely, it is unclear how to transform — or reverse engineer
— existing code into generated and hand-crafted artifacts. We present an iterative approach to this problem.
Assuming some evolving high-level representations of a software legacy system, code generators may produce
a second version of the system to an extend where hand-crafted code is still necessary for completion. In this
report we present a code merger that completes the generated code by reusing the implementation of the

software legacy system.

1 INTRODUCTION

Model-Driven Software Development (MDSD) is a
promising engineering approach, in particular when
multiple variants of a product family have to be de-
veloped and maintained. Various papers describe how
MDSD can improve software maintenance but also
software flexibility, productivity and reliability, see,
e.g., (van Deursen and Klint, 1998; Kieburtz et al.,
1996; Ladd and Ramming, 1994; Krueger, 1992).
With MDSD, a software system is described by meta-
models, models, generators, as well as hand-crafted
code, i.e. those parts of the code that cannot or make
little sense to be expressed on the model level. While
most MDSD approaches focus on forward engineer-
ing, i.e. the development of new software, only lit-
tle research has been done on how to transform — or
reverse engineer — existing code into the aforemen-
tioned MDSD artifacts.

Reverse engineering existing code towards MDSD
is not always the prudent thing to do. Many pro-
ductive software systems, and in particular those that
are comparably stable, well-designed and hence well
maintainable and extensible, are better left untouched.
Our main goal, in contrast, is to aid the reverse engi-
neering of software that is used for product families
and thus is adapted, configured, and user tailored in
various ways. Often, companies use reference sys-
tems that are adapted and configured for new cus-
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tomers; just as often, this configuration process has
grown over time and has become highly complicated.
Expressing the reference system in appropriate mod-
els and meta-models can substantially improve the
production of new variants; moreover, MDSD pro-
vides a significantly higher degree of platform inde-
pendence for these product families. This is espe-
cially true if the high-level representation is expressed
in one or several domain-specific languages (DSLS).

The process of reverse engineering towards
MDSD must be iterative. A typical, complex soft-
ware system cannot be transformed into a combina-
tion of DSLs (meta-models), models, and generators
in a single step. Instead, the reverse engineer will
start small, extract individual features from only a few
classes, have only part of the code generated, and have
that generated code combined with the hand-crafted
legacy code. Step by step, the DSLs, models, and gen-
erators will grow, and the percentage of hand-crafted
code will decrease.

Please note that we focus our considerations on
Java as the currently most widely spread program-
ming language. The underlying principles are, how-
ever, applicable to other object-oriented or modular
languages as well. Please also note that this paper
is not about DSL design and features extraction, but
about the iterative merging of hand-crafted and gen-
erated code such that the resulting software provides
the same functionality as the legacy code base. In a
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productive environment, operability of the system at
any time in the iterative process is absolutely instru-
mental.

The merging process is far from trivial. This
is partly owing to the iterative nature of the ap-
proach that leaves us with incomplete, generated ar-
tifacts, and partly because of the very nature of most
legacy systems that simply are not as regular and
well-behaved as a strictly forward engineered system
would be. Our approach provides solutions to both
of these problems, as we will show in the subsequent
sections.

2 |ITERATIVE REVERSE
ENGINEERING

As described in the introduction, we consider reverse
engineering towards MDSD an iterative process. This
process uses, creates, and modifies several artifacts,
which exist in different versions, each of which cor-
responds to the respective iteration in the overall pro-
Cess:

S; represents the initial source code for iteration i.
This source code comprises both manual and gen-
erated code. The original legacy code Sg can be
considered a special case that contains only man-
ual code.

DSL; is a domain specific language that covers
those features that are generable in iteration i.

M; is the model that describes those features of
the software system that have been extracted onto
the model level up until the i-th iteration of the
process; of course, M; must conform to DSL;.

GEN,; is the generator that accompanies DSL; and
that transforms M; into generated code.

G; is the code generated by GEN,;.

In the following, we use the terms S; and G; to
denote the code of a software system in its entirety,
or only an individual class, depending on the context.
We do this in order not to unnecessarily complicate
out terminology. Each iterative cycle i consists of
two phases that are described below and graphically
shown in figure 1.

During this iterative process, the model level arti-
facts DSL;, M;, and GEN;, as well as the proportion of
generated code G; will grow successively. Comple-
mentarily, the amount of manual code will decrease
with each step.

Phase 1: Feature Extraction
In each iteration cycle, the reverse engineer aims

84

|
s instance of

_replaces \S/\I
i+1]

Figure 1: The two phases of the iterative reverse engineer-
ing process towards MDSD.

to advance the generated code by extracting ad-
ditional features. Technically speaking, the engi-
neer replaces a DSL, a generator, or a model by
a newer version. Often, advancing one of these
components also requires changes in the other
ones, e.g. adding a new meta-model entity to a
DSL requires the code generator to cover this new
entity as well. The feature extraction is indicated
by the dotted arrows in figure 1.

Phase 2: Code Generation and Merging

The second phase is indicated by the solid arrows
in figure 1. First, the generator, GEN;, transforms
the model, M;, into code, G;. Roughly speaking,
G; will be a subset of the software system S;. In
order to obtain a new version, Sj+1, of the soft-
ware, a merger combines the generated code Gj
with the existing codebase Sj. For that purpose,
the merger complements the generated code with
those manual code pieces from S; that have (not
yet) been generated. This new code version, Sj+1,
then replaces S; in the next iteration cycle. Typi-
cally, the proportion of generated code in Sj+1 will
be greater than in S;.

The merging process is far from trivial, because in
real world systems, manually crafted code hardly
ever is as well-structured and regular as gener-
ated code. As a simple example consider the get
and set methods in a fairly large codebase: They
might follow the usual naming conventions for
90% of all attributes, but might be named differ-
ently for the remaining 10% (e.g. readX() in-
stead of getX()). With a naive reverse engineer-
ing and merging process, the generation of get-
ters and setters would not be possible at all due
to the rather few exceptions, because the genera-
tor would not be able to distinguish between the
two categories. Our merger, in contrast, can deal
with irregularities like these, as will be explained
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in detail in section 4.

Executing the above described iterative process al-
lows the reverse engineer to pull more and more fea-
tures of the software system onto the model level. As
more and more generated code replaces manual code,
each new revision of S; simplifies the maintainability
of the software system, and eases the generation of
new code variants.

As with any kind of code refactoring, it is im-
portant to support the reverse engineering process to-
wards MDSD by continuous unit testing. The reason
for this is that generated method implementations can
vary from the original code, as long as the methods
provide the same functionality. See section 4 for fur-
ther information.

It should have become obvious that the generated
code will almost by definition be incomplete. To be
able to adequately deal with this incompleteness in
the merging step, we assume that for a given method
in Sj, the generator either (i) does not generate the
method at all, or (ii) generates only the declaration of
the method using its method header?, or (iii) gener-
ates the complete method definition, i.e. both header
and body. There is no generation of partial method
bodies. This assumption is, however, not a serious
restriction, because each method that could be gen-
erated partly can be refactored and decomposed in a
preparatory step. For fields, either only the declara-
tion or the declaration together with an initializer is
generated. Finally, inner classes are generated recur-
sively within their containing classes.

3 SEPARATING GENERATED
AND MANUAL CODE

When forward engineering a software system with
MDSD, the partly generated code needs to be com-
pleted with hand-crafted code. One approach is to
manually add code directly into the generated source
code. However, this technique is widely consid-
ered problematic, mainly for two reasons: (1) The
hand-crafted regions of the source file must not be
overwritten when the artifact is regenerated, and (2)
putting generated code under version control is gen-
erally avoided. Therefore, most authors (e.g., (\Volter,
2009)) recommend the strict separation of hand-
crafted and generated code into different source files.
In the following, we briefly discuss the two separa-
tion techniques that are commonly propagated, and

1The method header consists of modifiers, generic type
parameters, result type, method identifier, parameters and
the thrown exceptions.(Gosling et al., 2005, Page 210)

evaluate their applicability for model-driven reverse

engineering.

1. Inheritance is probably the most widely-used
technique to separate generated and manual code.
The idea is to generate a base class which can be
extended by a concrete subclass implementation
that contains the manual code. For reverse engi-
neering, this would mean to decompose an exist-
ing legacy class A into a generated base class, A,
and a hand-crafted subclass A”. This decomposi-
tion, however, leads to a variety of technical prob-
lems, one of which has to do with access rights:
Assume a private field in a legacy class A that
after reverse engineering can be generated into
the new base class A’. To give subclass A" ac-
cess to this field, its-access right must be modified
from private to protected. This modification,
however, might have undesired side-effects some-
where downstreams the potentially complex pre-
existing type hierarchy.

2. Composition and delegation is another approach
where a composed object uses an associated del-
egate object to delegate its tasks to. With model
driven engineering, the composed object contains
the generated code, whereas the delegate object
contains the hand-crafted code. In (Walter and
Haase, 2008), this technique is used to transform
existing legacy code into a model-driven struc-
ture. This approach, however, leads to even more
serious problems with access rights than inheri-
tance, owing to the fact that object identity gets
lost with composition and delegation, because
each object in the legacy system gets split across
two separate objects. As a consequence, each for-
merly private field must be made not only pro-
tected but at least package-private if the other ob-
ject needs access to it, too.

In summary, these separation techniques are not
adequate for reverse engineering, because decompos-
ing existing legacy classes into new classes, be it by
subclassing or by composition, is a very disruptive
technique that can have unexpected and undesired ef-
fects on the correctness of the overall system. In
addition, on a semantic level, both approaches are
meant for other purposes than separating generated
from manual code which makes their application for
code separation questionable: (1) Inheritance is meant
to model is-a relationships; however, there is no such
relationship between the generated and the manual
code portion of a class. (2) Composition is meant to
model part-of relationships, which is also not the ap-
propriate relationship between the two code portions.
In contrast, manual and generated code are two equal
parts that together form the functionality of a class.
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As a result, we do not consider code separation
neither by inheritance nor by composition appropri-
ate for reverse engineering. These techniques might
rather be suitable for model-driven forward engineer-
ing, if at all. In fact, there seems to be a recent trend
not to split classes for code separation even for for-
ward engineering, for the reasons discussed above.
For reverse engineering, in any instance, we have de-
cided for the co-existence of generated and manual
code in single source files, and to mitigate the poten-
tial drawbacks through a set of supporting techniques
and tools:

From a software developer’s point of view, the
distinction between generated and hand-crafted
code must be explicit. We use the standard anno-
tation javax.annotations.Generated to mark
the generated portions of the code.

In each iteration, our code merger makes sure the
manual code is not overwritten unintentionally.

We have developed an Eclipse editor that can gray
out and fold in generated code automatically, in
order to draw the developer’s attention to the man-
ual portions of the source code.

The same editor protects the generated code
against modification by making it read-only.
Of course, a developer can always remove a
@Generated annotation and then modify the for-
merly protected code portion. We find it, however,
acceptable to protect developers against uninten-
tional modifications of generated code while leav-
ing open a back door for intentional changes.

One issue that remains open with mixed source
files is versioning control, because putting gener-
ated code under versioning control is generally to be
avoided. We believe, however, that (1) the associated
effects, such as new versions that are only due to the
(changed) generated part of a source file, are often
overrated, and that (2) developing a versioning control
system that understands the standard @Generated an-
notation and acts accordingly would be an interesting
and worthwhile task for model driven development in
general.

4 MERGING PROCESS

As we have discussed so far, in each step of our iter-
ative approach the partly generated code G;j has to be
combined with the current version of the source code
Si. In this section, we describe this merging process.
Methods in G; can be generated either completely
or incompletely. An incomplete method consists of a

86

method header only and is generated without a body?.
A common example for incomplete methods are hook
methods. The source code Sj, in contrast, contains
complete members only. These members can be (1)
hand-crafted, (2) completely generated or (3) partly
generated and partly hand-crafted.

A method in Sj+1, i.e. in the result of the merging of
Si and G;j, is

completely generated, if the generated method in
G; is complete (consists of both a method header
and body).

partly generated and partly handcrafted, if the
generated method in G; is incomplete (has only a
method header, but does not have a method body).

A field in Sj+q1 is

completely generated, if the field is initialized in
G;, or the field is neither initialized in Sj nor in G;j.

partly generated and partly handcrafted, if the
field is initialized in S;, but not initialized in G;.

Completely generated elements are marked by the
following annotation:

@Generated(*'de.htwgkn.mdre.gen'™)

Incompletely generated elements, on the other
hand, are marked by the following annotation:

@Generated(*'de.htwgkn.mdre.gen",
value="declaration™)

Bringing Sj and G; together is in fact a merge oper-
ation, which leads to a new source code Sj+1. Ideally,
Si+1 contains more generated members than S;.

The merging process is done per class, so all
classes from G; will be merged with their counterparts
in S;. Classes, in turn, are merged per member. For
each class member in G;j, a corresponding member in
S;j is searched. A corresponding member has the same
name and - if it is a method - the same signature, too.
There are, however, situations where no correspond-
ing member in S; can be found. Typical reasons are:

The Semantically Corresponding Member in S;
has a Different Name. Such a misnamed member
can occur because legacy code is typically not as
regular as generated code. As a simple example,
consider a legacy system where most getters fol-
low the usual naming convention, getX(). How-
ever, for a specific field, y, the getter has been
named readY(). For this attribute, the generated
getter, getY(), is misnamed (with respect to the
legacy code).

2The method private void generated(); is an ex-
ample for an incompletely generated method. Obviously,
the code for such a method is syntactically incorrect, be-
cause non-abstract methods must have a body.
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To avoid misnamed members in G;, renaming the
corresponding members in S; before reverse engi-
neering may be a solution. This works, however,
only for internal APIs; in these cases a modern
IDE can automatically refactor the method as well
as all its users. For a method that is part of a public
API, renaming is generally not an option.

There is no Corresponding Member in S;. The
member that has been generated into G; does not
exist in S;. Such a superfluous member can oc-
cur due to inconsistencies in the models and gen-
erators — caused by mistakes or oversimplifica-
tions during the reverse engineering step. As a
very simple example, consider a class where most
private fields have getters. With an oversimpli-
fied model, meta-model or generator, getters for
all attributes will be generated. Such a superflu-
ous member can, however, become useful when it
comes to the forward engineering of future vari-
ants of the reference system.

The merger is not able to classify such a situa-
tion on its own, so the engineer has to decide how
to proceed with the current member from Gj. If itisa
misnamed member, the engineer indicates the corre-
sponding member in S;. If the member is superfluous,
the engineer has the option to copy it to Sj+1 anyway,
or ignore it.

A special situation arises when a whole class that
does not exist in S; is generated. This happens, e.g.,
when an evolved version of a generator generates a
new utility class to factor out common tasks. Again,
the engineer decides whether to copy the completely
generated class, or to ignore it.

41 Rules

These rules explain how S; and G; are merged to ob-
tain the next iteration, Sj+1:

1. Methods:

(@) Equal Signature, Completely Generated. G;
becomes Sij+1, and is marked as completely
generated.

(b) Equal Signature, Partly Generated. Sj+1 is
a combination of Gj’s method header and S;’s
body. It is annotated as partly generated.

(c) Misnamed. On one hand, the legacy method
name must not be changed automatically®, and
on the other hand, it’s generally not possible for
a merger to adjust the generated code to use
the legacy method. As a result, there will be

3Methods might be part of an API, on which other
projects depend.

two methods for the same task in Sj+1, one us-
ing the legacy name, the other using the gener-
ated name. To avoid code redundancy, the for-
mer legacy method will be a completely gener-
ated delegation method, which calls the newly
added generated method.

Whether the other method is partly or com-
pletely generated, depends on whether the gen-
erated method has a body or not. If it has no
method body, the former body of the legacy
method will be used and the method will be
partly generated.

(d) Copied. A superfluous method, which is
copied from Gj to Sj+1, will be annotated as
completely generated.

2. Fields:

(a) Equal Name, Completely Generated. G; be-
comes Sj+1, and is marked as completely gen-
erated.

(b) Equal Name, Partly Generated. Sj+1 is a
combination of Gj’s declaration and S;’s initial-
ization. It is annotated as partly generated.

(c) Misnamed. The names of legacy fields are
mapped to the generated fields. The legacy
names will be kept, and the names of the gener-
ated fields will be replaced by the legacy names
in every completely generated method in Sj+;.

(d) Copied. A superfluous field, which is copied
from Gj to Sj+1, will be annotated as com-
pletely generated.

3. Types:

(@) Inner Types. are merged recursively

(b) Copied Types. All members of a superfluous
class, which is copied from G;j to Sj+1, will be
annotated as completely generated.

Legacy elements which correspond to misnamed
generated elements will be marked by the following
annotation:

@Generated(*'de.htwgkn.mdre.gen™,
value="mappedTo:qualified.element.name')

4.2 Implementation

The reverse engineering tools are implemented as an
Eclipse bundle, MDRECclipse. The plugin contains the
merger, an editor extension and supports auto folding.
The merger requires two source directories that con-
tain the legacy code S; and the generated code G;. In
addition, the target directory for the merged code Sj+1
has to be specified. If the target is not empty, the engi-
neer is asked whether it should be cleared first. At the
beginning of the merging process, all files from the
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source S; are copied to the target. Then, the generated
files are merged into S;4+1. If the merger does not find
a corresponding member for a generated member, the
engineer will be asked how to proceed by a dialog.
The merging progress is shown in a text console. The
code parsing is based on the Java Development Tools
(JDT) provided by Eclipse. JDT (Eclipse Foundation,
2010) allows to create abstract syntax trees (ASTS)
from Java sources. These trees are traversed using the
visitor pattern (Gamma et al., 1995).

The editor extension highlights generated code by
changing its background color. This color can be con-
figured in the plugin’s preferences. Also, the exten-
sion protects the generated code from most manual
changes. Typing, overwriting and deleting parts of
generated code will be prevented. All of these fea-
tures can be disabled in the preferences.

The last component of MDREclipse is the auto
folding of generated methods. To use this feature,
Eclipse’s default folding has to be disabled and the
MDREclipse folding activated. Generated methods
will then automatically be folded in when a Java
source file is opened.

5 CONCLUSIONS AND FUTURE
WORK

This paper presents an iterative approach to transform
reference systems into MDSD artifacts. We outlined
our basic ideas in Section 2 and argued subsequently
why separating manual and generated code into dif-
ferent files is problematic for our approach. In Sec-
tion 4 we presented a code merger. We explained var-
ious merging situations and discussed under what cir-
cumstances merging cannot be done completely auto-
matically.

We do not claim that our approach solves all
problems in the field of reverse engineering towards
MDSD. Code separation and code merging during an
iterative process is a rather technical aspect; feature
extraction, on the other hand, is a semantical chal-
lenge that is very hard or impractical to solve at a
generic level.

Please note, that even though in each iteration
step we perform only equivalence preserving modi-
fications, the approach can very well be interspersed
with forward engineering steps, as long as the reverse
and forward engineering steps are performed sepa-
rately one after the other. During a forward engineer-
ing iteration, the engineer can modify the model level
artifacts, i.e. DSLs, models, and generators, as well
as the manually crafted code. The modified software
can then, in a next step, again be reverse engineered
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towards a greater MDSD proportion.

Finally, it should be noted that the success of the
reverse engineering process strongly depends on the
quality of the code base. If the reference system
is well structured and coded, feature extraction be-
comes easier and the model level artifacts become
better structured as well.
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