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Abstract: Defining a robust shape descriptor is an enormous challenge in the 3D model retrieval domain. Therefore, 
great deals of research have been conducted to propose new shape descriptors which meet the retrieving 
criteria.  This paper proposes a new shape descriptor based on the distribution of electrical charge which 
holds valuable characteristics such as insensitivity to translation, sale and rotation, robustness to noise as 
well as simplification operation. After extracting the canonical form representation of the models, they are 
treated as surfaces placed in a free space and charge Q is distributed over them. Following to calculating the 
amount of charge on each face of the model, a set of concentric spheres enclose the model and the total 
amount of distributed charge between the adjacent spheres on the model’s surface generates the Charge 
Distribution Descriptor (CDD). A beneficial two-phase description using the number of Charged-Dense 
Patches for each model is utilized to boost the discrimination power of the system.  The strength of our 
approach is verified using experiments on the McGill dataset. The results demonstrate higher ability of our 
system compared to other well-known approaches. 

1 INTRODUCTION 

Recent growth in the computer technology has 
resulted in an increasing number of 3D models. 3D 
scanners and cameras, 3D modelling software, 
mobile phones and etc. are among the new 
technologies which speed up the creation of these 
models. Nowadays, thousands of models are 
available in the domain-specific datasets. In 
addition, the rapid developments of the internet have 
hooked more attractions for retrieving 3D models 
based on their contents. On the other hand, due to 
the higher complexity of the models, annotating and 
retrieving these models using text-based retrieving 
systems is a non-trivial task. Consequently, 
researches have drawn a particular attention to the 
proposing new shape descriptors by which the 
models can be searched, indexed and retrieved in a 
beneficial manner.  

During last decade, several shape descriptors for 
model retrieval have been introduced and some of 
them have a good retrieval quality (Kazhdan et al., 
2003); (Chen et al., 2003); (Lian et al., 2010). But 
defining a robust shape descriptor to enhance the 
retrieval quality especially for non-rigid objects and 
partial matching is still a challenging area. A typical 

constructive shape descriptor should be invariant to 
the linear transformations such as the translation, 
scale and rotation. Moreover, robustness to noise, 
model deformations and simplifications are some 
other characteristics which result in boosting the 
retrieval ability. 

In this paper, we propose a histogram-based 
shape descriptor based on the distribution of 
electrical charge which describes non-rigid objects 
effectively. It is insensitive to the linear 
transformations and some other modifications such 
as noise and simplification. A two-phase describing 
framework is utilized in order to defining models in 
a more distinguishable manner.   

We organize the rest of the paper as follows: 
section 2 mainly dedicated to give a brief summary 
of the related works. The proposed approach is 
mainly discussed in the chapter 3. Experimental 
results are presented in section 4 and finally in 
section 5 we discuss our conclusion and the future 
works. 

2 RELATED WORKS 

Research on the 3D model retrieval started less than 
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2 decades ago. Since then, dozens of techniques 
have been proposed most of which use shape 
descriptors to represent the models in an informative 
way. Based on the information used, they can be 
classified into 4 main categories namely statistic-
based (Histogram-Based), Transform-based, Graph 
based and view-based approaches. A beneficial 
survey about the aforementioned approaches can be 
found in the works by Bustos et al and Tangelder 
and Veltkamp (Bustos et al., 2005); (Tangelder et 
al., 2008). 
Since our proposed descriptor lies in the first 
category, in the sequel we provide a brief review of 
available methods of statistic-base category. 

2.1 Histogram-based Descriptors 

In these approaches, a histogram which accumulates 
the numerical values of a specific property is used to 
represent the model features. Shape Distribution, 
Shape Histogram, Extended Gaussian Images (EGI) 
and Electrostatic Fields are only to name a few of 
these techniques. 

The Shape Distribution descriptor (Osada et al., 
2001) contains a set of functions based on geometric 
measurements (e.g., angles, distances, areas, and 
volumes) using some random points on the surface 
of the 3D model. The accuracy of the appropriate 
histograms could be altered by changing the number 
of random points. Even though D2, one of their 
functions, had better retrieval quality than the other 
functions, generally speaking, none of the functions 
have enough ability for describing 3D models. This 
work was extended later by Ohbuchi et al (Ohbuchi 
et al., 2003) by using quasi-random sequence of 
numbers instead of pseudo-random sequences.  

The shape histogram proposed by Ankerst et al 
(Ankerst et al., 1999) has been evaluated in the 
context of molecular biology and reached good 
accuracy and performance. They decomposed the 
3D models using one of these three techniques: Shell 
model, Bin model and spider-web or combined 
model. Their technique is not invariant to rigid 
transforms and so they had to do pose-normalization 
as a pre-processing step. Also, since the approach 
proceeds with voxel data, 3D objects represented by 
polygonal meshes need to be voxelised prior to 
descriptor extraction. 

The Extended Gaussian Image (EGI) is a 
spherical histogram in which bins accumulate the 
count of the spherical angles of the surface normal 
per triangle, usually weighted by triangle area 
(Zhang, et al., 2006). It is a histogram that records 
the variation of surface area with surface orientation. 

Later some extensions of the original EGI; 
Complex-EGI and Volumetric-EGI were introduced 
to enhance the original EGI especially for 
differentiate between convex and non-convex shapes 
without any pose normalization (Kang and Ikeuchi, 
1997); (Horn, 1984). 

Paquet et al (Paquet and Rioux, 1997); (Paquet et 
al., 2000) exploited both the geometric features and 
photometric properties such as cord, angle, colour, 
reflection and texture. Their techniques are easy to 
implement but since they only consider the global 
property of the model, their proposed approach is 
not very discriminative about objects details.  

Recently, Mademlis et al employed electrostatic 
fields to 3D model retrieval (Mademlis et al., 2008). 
They considered the complete voxelised 3D model 
as a distribution of electric charge. Changing control 
parameters of descriptors enabled them to extract 24 
histograms for each 3D model. Despite of robustness 
with respect to object’s degeneracies and native 
invariance under rotation and translation, their 
descriptor is sensitive to non-rigid transforms. 

Some other techniques have been proposed to 
use histograms for 3D model retrieval such as 
utilizing the Probability Distance Function (Akgul et 
al., 2009) and distance function by the 3D Poisson 
equation (Pan et al., 2011) which in addition to good 
retrieval ability, they are robust to shape 
perturbation and noise.   

The main advantage of histogram-based 
approach is their simplicity of implementation. 
Almost all of the aforementioned methods are very 
straightforward to implement and understand. And if 
they are combined with the other methods as a pre-
processing step or active filter they can improve 
their retrieval performance. 

3 PROPOSED APPROACH 

Our motivation for proposing the Charge 
Distribution Descriptor (CDD) comes from a famous 
fact in physics-electricity which says: “the electric 
charges on the surface of conductor tend to 
accumulate at the sharp convex areas and disappear 
at the sharp concavity areas”.  

We treat the 3D model as a conductor placed in a 
free space (the space with no electric charge). Then, 
a predefined electrical charge Q is distributed on the 
surface of the 3D models. The amount of distributed 
charges over each face of the model becomes the 
descriptor of that face. Figure 1 illustrates the 6 steps 
of our proposed approach. 
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Figure 1: The proposed retrieval system. 

To computing the charge distribution on the 
triangular faces of 3D models we employed the 
Finite Element Method (FEM) technique proposed 
by Wu and Levin (Wu and Levin, 1997). Using the 
Gauss’s law and conservation-of-charge fact, they 
were able to calculate the charge distribution density 
on the any arbitrary surface. 

Since the charge distribution is calculated 
regardless of coordinate systems, it is invariant to 
the translation and rotation transformations but it is 
not constant during resizing the models. So, we use 
the amount of distributed charge (instead of charge 
density) on the surface of each triangle. It is 
insensitive to scale transformation and simply is 
calculated via the underneath formula: 
 

Chrgamnti=chrgDnsi*TriAreai  , i=1,...,m (1)
 

where TriAreai and ChrgDnsi are  the area and 
charge density of face i respectively and m is the 
number of faces on the surface of each model. 

Figure 2 shows four different coloured models 
based on their charge distribution; the redder areas 
indicate the surfaces holding more electrical charge. 
As displayed in this figure, the sharper points 
located in the convex areas have more electrical 
charge than the other parts and vice versa. 
 

 

Figure 2: Four coloured models from the McGill dataset; 
the redder parts specify the denser faces. 

 

3.1 Concentric CDD 

In order to describe each model j, the Ns concentric 
spheres are drawn on the centre-of-mass of the 
model. The radii of the spheres monotonically 
increase to enclose the model entirely. The range of 
radii should meet the following criteria: 
 
 

min(dj) < Rk < max(dj)  , j=1,2,...,m (2)
 

 

Here dj is the distance of face from center-of-mass 
and m is the number of faces on each model. The 
sum of charge amount in each layer between two 
adjacent spheres is assigned to each layer and the 
Ns-1 dimensional feature vector describes the whole 
3D model. Figure 3 shows three different sample 
models and their corresponding concentric spheres. 
(Here Ns=4). 
 

 

Figure 3: Three different models and their corresponding 
concentric spheres. 

It is important to note that the deformation of models 
has significant effect on the amount of charge 
distributed on the model surface located between 
two adjacent spheres. To overcome this problem, we 
use the canonical form1 representation by which 
non-rigid shape similarity problem can be mapped 
into an easier problem of rigid similarity. To this 
end, we utilize the Least-Square technique with the 
CAMCOF algorithm. Since both of SAMCOF 
algorithm and the geodesic distance extraction are 
time consuming tasks, we first simplify all of the 
models so that they have 2000 faces using the 
MeshLab (MeshLab1.1.0, 2008). Later on in this 
paper we show that the proposed descriptor is robust 
to model simplification (see figure 6). 

After simplification, geodesic distance extraction 
and canonical form computation, the amount of 
charge on each face of the simplified models is 
computed. Figure 4 displays the results for three 
different poses of a spectacles model; although the 
poses are deferent but their canonical form 
presentations and distribution of charge are quite 
similar. 
                                                            
1 The canonical form is a bending-invariant representation in 
which the geodesic distances are approximated by the Euclidian 
ones (Elad-Elbaz and Kimmel, 2003). 
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Figure 4: (a): Three different poses of a spectacle models, 
(b): corresponding canonical forms and (c): distribution of 
electrical charge. 

3.2 Two-Phase Descriptor 

In order to boost the retrieval quality, a two-phase 
shape description framework is leveraged. To this 
end, we extract the number of High-Density-Patches 
(HDP) on the surface of each charged model and 
utilize them to calculate the final dissimilarity 
between the pairs of models. Each HDP includes a 
local maxima point (a surface with higher electrical 
charge than its neighbours) and a set of adjacent 
faces on the model surface which have the charge 
density more than a pre-defined threshold τ. The 
threshold τ is experimentally selected as shown in 
Equation (3). Figure 5 shows some extracted dense 
patches on the models based on the density 
distribution: 
 

τ = 0.3*max(ChrgDnsi) , i=1,2,…,m (3)
 

Here m is the number of faces for each model and 
chrgDnsi is the charge density for face i. 
 

 

Figure 5: Extracted dense patches on the surface of three 
different models. 

Testing our retrieval ability using the effect of the 
HDP numbers for each model, we concluded that, 
since the numbers of HDPs for most of the 
articulated models are not constant, retrieving the 
similar models based on the number of HDPs leads 
to the lower ability of finding the similar models. To 
solve this problem and balance the effect of HDP 
numbers during the matching phase we assigned a 
weight λ to each HDP which is defined using the 

formula (4): 
 

max( ) min( )

max(# ) min(# )

ChrgDis ChrgDis

HDP HDP
 



 (4)

 

After calculating the dissimilarity measure between 
each pair of models using the original CDD 
descriptor, the weight factor λ is applied to extract 
the final dissimilarity between two models i and j as 
follows: 
 

( , ) ( , )

# # *i j

Dis i j chrgDis i j

HDP HDP 

 


 (5)

 

Where ChrgDis(.,.) is the dissimilarity measure 
based on original CDD and #HDPi is the number of 
High-Density-Patches on the model i. 

4 EXPERIMENTAL RESULTS 

We have tested our approach on the McGill dataset, 
which is publicly available on the internet.  It 
consists of 458 models classified into 19 different 
classes. (256 articulated models in 10 classes and 
202 non-articulated models in 9 classes). Beside of 
the retrieval quality of our descriptor, the robustness 
to the simplification and noise are studied. 

4.1 Robustness against Simplification 
and Noise 

As mentioned before, the introduced shape 
descriptor is invariant to the linear transformations. 
But we verify the robustness of it against some 
geometry operations. We use the pictorial 
presentation of models to show the effect of 
transformations in the distribution of electrical 
charge on the surface of the models. Figure 6 
illustrates that the CDD descriptor proposed in this 
paper is remains stable after the simplification and 
noise; The original models in figure 6-(a) are 
simplified from 20K faces into 3K in 6-(b). In 
addition, a random noise is applied to the boundary 
of original models in figures 6-(c). 

Comparing the distribution of the electrical 
charge for all of these modified models in figures 6 
and 7 supports our claim that the CDD descriptor is 
invariant to the aforementioned transformations; the 
CDD descriptor’s histogram of these modified 
models has small variations but they are still quite 
similar. The reason for insensitivity to noise and 
simplification  can be explained  as follows:  as Wu  

a) 

b) 

c) 
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Figure 6: The original models and some modifications. 
(a): original models, (b): simplified models, and (c): noisy 
models. 

and Levin charge on each face is contributed to by 
all other faces. So, the small boundary changes 
which are caused by noise and simplification have 
almost no meaningful effects on the density. It is a 
great advantage of our approach compared to the 
curvature-based approaches (e.g. mean-curvature 
and curvature-index); they are considerably affected 
by any surface perturbations. 

4.2 Algorithm Parameters 

We tested several different options for number of 
concentric spheres to enclose and describe the 
models and observed some evaluation factors for 
each one. The evaluation factors such as Nearest 
Neighbour (NN), First Tier (FT), Second Tier (ST), 
E-Measure, and Discounted Cumulative Gain 
(DCG) in the following table shows that 20 spheres 
is the best choice for the sphere counts. 

4.3 Retrieval Ability 

In order to verify the ability of our shape  descriptor  
the Precision-Recall  plot is employed to compare 
our system with 6 other well-known approaches. 
These approaches are MDS-CM-BOF (Lian et al., 
2010), D2 (Osada et al., 2001), G2 (Mahmoudi and 
Sapiro 2009), GSMD (Papadakis et al., 2007), SHD 
(Kazhdan et al., 2003) and LFD (Chen et al. 2003). 
As mentioned in (Lian et al., 2011), the MDS-CM-
BOF descriptor is one the state-of-the-art approaches 
which showed the great ability in the SHREC’11 
contest. Furthermore, The LFD had the best quality 
comparing to the other 12 descriptors in (Shilane et 
al., 2004).  

As depicted in figure 8, thanks to specific 
matching scheme (the Clock Matching scheme), the 
MDS-CM-BOF descriptor is the best one, and our 

approach ranked second. The figure shows that our 
approach provides the higher retrieving quality than 
other 5 approaches by far. 
 

 

Figure 7: The CDD histograms of models in figure 6. 

Figure 8: The Precision-Recall plot for our and 6 different 
other methods. 

Table 1: Evaluation factors for different number of 
concentric spheres in the Concentric-CDD method. 

Sphere 
Count 

NN FT ST E DCG 

5 0.7212 0.3414 0.4710 0.4012 0.6337 
10 0.8563 0.4940 0.6359 0.4719 0.8172 
20 0.8812 0.6052 0.7744 0.5019 0.8461 
50 0.7375 0.4803 0.6433 0.4735 0.7968 
200 0.4063 0.2641 0.3805 0.2879 0.5868 

5 CONCLUSIONS 

A robust shape descriptor introduced in this paper 
describes the 3D models based on the distributions 
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of electrical charge over the triangular faces of each 
model. In addition to the distribution of charge, a 
beneficial two-phase description mechanism is also 
utilized in order to describe models in a more 
distinguishing manner; the number of High-Density-
Patches on each model enabled us to boost the 
retrieval quality. Experimental results show that the 
proposed descriptor is invariant to the linear 
transformations as well as some geometry 
operations. In the next step of our work, we try to 
adjust our descriptor to support partial matching. 
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