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Abstract:

We present a “curious” active vision system for a humanoid robot that autonomously explores its environment

and learns object representations without any human assistance. Similar to an infant, who is intrinsically
motivated to seek out new information, our system is endowed with an attention and learning mechanism
designed to search for new information that has not been learned yet. Our method can deal with dynamic
changes of object appearance which are incorporated into the object models. Our experiments demonstrate
improved learning speed and accuracy through curiosity-driven learning.

1 INTRODUCTION

One of the hallmarks of biological organisms is their
ability to learn about their environment in a com-
pletely autonomous fashion. Future generations of
robots assisting humans in their homes should simi-
larly be able to autonomously acquire models of their
working environment and any objects in it. While
computer vision has made much progress in devel-
oping object recognition systems that can deal with
many object classes, these systems need to be trained
with supervised learning techniques, where a large
number of hand-labeled training examples is required.
Only recently, researchers have started addressing
how a robot can learn to recognize objects in a largely
autonomous fashion, e.g., (Kim et al., 2006), how
learning can be made fully online (Wersing et al.,
2007; Figueira et al., 2009) and how the need for
a human teacher can be minimized (Gatsoulis et al.,
2011). To this end, current attention systems of robots
(Begum and Karray, 2011) have to be extended such
that they support an efficient autonomous learning
process.

The central inspiration of our approach is the con-
cept of intrinsic motivation (Baranes and Oudeyer,
2009; Schmidhuber, 2010; Baldassarre, 2011). Chil-
dren learn and build internal representations of the
world without much external assistance. Instead, they
are intrinsically motivated to explore and play and
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thereby acquire knowledge and competence. In short,
they are curious. It has been proposed that infants’
interest in a stimulus may be related to their current
learning progress, i.e., the improvement of an inter-
nal model of the stimulus (Wang et al., 2011). We
adopt the same idea to build a “curious” vision system
whose attention is drawn towards those locations and
objects in the scene that provide the highest potential
for learning. Specifically, our system pays attention
to salient image regions likely to contain objects, it
continues looking at objects and updating their mod-
els as long as it can learn something new about them,
it avoids looking at objects whose models are already
accurate, and it avoids searching for objects in loca-
tions that have been visited recently. We show that our
system learns more efficiently than alternative ver-
sions whose attention is not coupled to their learning
progress.

2 OBJECT LEARNING

Our system is implemented on the iCub robot head
(Metta et al., 2008), Fig. 1. Its basic mode of oper-
ation is as follows. An attention mechanism gener-
ates eye movements to different locations. Any ob-
ject present at the current location is segmented and
tracked while learning proceeds. If the object is un-
familiar then a new object model is created. If the
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Figure 1: The iCub robot (a) and its learning environment

(b).

object is already familiar, then its model is updated if
necessary. Learning proceeds for as long as the model
can be improved. Then a new focus of attention is se-
lected. Figure 2 shows the system architecture, which
is explained in detail in the following sections.

We describe objects as spatial arrangements of lo-
cal image features, an approach that is robust to oc-
clusions, local deformations, variation in illumina-
tion conditions, and background clutter, e.g., (Agar-
wal and Roth, 2002). To this end, image features are
extracted at interest points detected with the Harris
corner detector (Harris and Stephens, 1988). We use
Gabor wavelet features, which have the shape of plane
waves restricted by a Gaussian envelope function. At
each interest point we extract a 40-dimensional fea-
ture vector, which we refer to as a Gabor-jet, result-
ing from filtering the image with Gabor wavelets of 5
scales and 8 orientations, e.g., (Wiskott et al., 1997).
The choice of the features is motivated by the fact
that they have a similar shapes as the receptive fields
of simple cells found in the primary visual cortex of
mammals (Jones and Palmer, 1987).

2.1 Stereo Segmentation and Tracking
of the Object

To segment a potential object at the center of gaze
from the background, we make use of stereo infor-
mation. We find correspondences between interest
points detected in the left and right image by exhaus-
tively comparing Gabor-jets extracted at the interest
points from left and right image, see Fig. 3a,b. Each
interest point in the left image is associated with the
best matching interest point in the right image if the
similarity S between the two jets (we use the normal-
ized inner product) is above a preset threshold (0.95
in our current implementation). We then cluster the
matched interest points from the left image (that is
used for learning) into different groups according to
their image location and disparity (Fig. 3c). We use
a greedy clustering scheme that starts with a single
interest point and adds new ones if their x-position,
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y-position, and disparity are all within 5 pixels of any
existing cluster member. Figure 3d shows how the ob-
ject at the center of gaze is properly segmented from
other objects which are at a similar depth but differ-
ent spatial location or at a close-by spatial location but
different depth.

After segmentation the cameras are moved to
bring the object to the center of view and keep it
there — in case the object is moving — by a track-
ing scheme. To this end, the mean location of fore-
ground features is calculated, then this location is
tracked with both eyes using a model-free tracking
scheme called Democratic Integration (DI) (Triesch
and Malsburg, 2001). DI is a multi-cue tracking sys-
tem that provides a fast and robust way of tracking un-
known objects in a changing environment. Once the
object is at the center of gaze, model learning starts.

2.2 Learning Object Models

Once an object has been segmented and fixated, its
novelty or familiarity is determined by the recogni-
tion system described in section 2.4. If the object is
already familiar, the recognition module provides the
unique identity of the object, i.e., an object index that
was assigned when the object was first encountered.
Otherwise a new object index is assigned.

Obiject learning involves the generation of a model
that has a set of associations between the Ga-
bor wavelet features and the object index (Murphy-
Chutorian and Triesch, 2005). An association is made
between a feature and an object index if they occur
together during learning and it is labeled with the dis-
tance vector between the location of the feature and
the center of the object, i.e., the point on the object on
which gaze is centered.

2.3 Feature Dictionary

Object learning is carried out in an on-line fashion.
There are no separate training and testing/recognition
phases. As the system starts learning, the models
for all the objects are learnt incrementally using a
shared feature dictionary accumulating information
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Figure 3: Several objects are placed in front of the robot
that analyzes the scene using its cameras (a). Harris corner
points are detected and matched across left and right image
using Gabor-jets (b). A low resolution saliency map is used
to select the most salient interest points in the scene. Interest
points on left image are clustered based on their location
and stereo disparity (c). Spurious clusters with less than 3
features are removed. Attention shifts to the most salient
object that is segmented out from the scene (d).

about objects and the associated feature vectors. We
use a single-pass clustering scheme that updates the
feature dictionary for every input feature vector. Let
C be the set of clusters and n be the number of clus-
ters in the feature dictionary. Once the system starts
learning it adds features from the objects in the scene.
Each input feature vector J has an associated ob-
ject index k and the distance vector (x;y) to the object
center measured in pixels. In the beginning, when the
dictionary is empty, a cluster is created and it will be
represented by the input vector. Subsequently, when
the number of clusters grows, the algorithm decides
to either assign a feature to an existing cluster (with-
out altering its representation) if the similarity value
S is higher than a threshold g (equal to 0.95)(see

in Fig. 4) or make it a new cluster otherwise (? in
Fig. 4). During each update, object index and dis-
tance vector are associated to the same cluster. When
a feature matches an existing cluster, a possible dupli-
cate association of this cluster to the current object is
avoided. If the object index is the same and if the fea-
ture locations are within a euclidean distance of 5.0

Feature associations

Feature Dictionary

D| X |Y
111217
11-3|5
2 | -8 7
2 18| 23

Figure 4:  : Cluster centers (dotted lines indicate the
boundaries). ? : Input for which new cluster is created.
Input for which no new cluster is created.

pixels the association is neglected. The algorithm can
be summarized as follows:

Algorithm 1: Online learning of feature dictionary.

Initializen 0, q  0:95.
loop
Provide new feature vector J and distance vec-
tor (x;y).
Obtain: object index k from recognition (new or
existing)
Calculate iyjn = argmax; S(J ;Cj)
if S(J;Cj,;,) <0g then
n n+1, C, J
Store association of C,, with object k at (x;y)
else
if Cj,,, not associated with object k at (x;y)
then
Store association of C; . with object k at
xy)
end if
end if
end loop

2.4 Recognition

In our work recognition is an integral part of the learn-
ing process. When the robot looks at an object the fea-
tures on the segmented portion are sent to the recog-
nition module and compared with the features in the
dictionary. We use a generalized Hough transform
(Ballard, 1987) with a two dimensional parameter
space for recognition. Each feature votes in the space
of all object identities and possible centroid locations
based on their consistencies with the learned feature
associations. Features with a similarity value higher
than 0:95 will cast one vote each for the object iden-
tities that they match in the feature dictionary. Votes
having information about object’s identity as well as
object’s location are then aggregated in discretized
bins in Hough space. We use bins of size 5 5 pixels
in our work. If the number of votes in a bin favor-
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ing a particular object index is greater than a prede-
fined threshold (10 in this implementation) we declare
the object as being present at the corresponding loca-
tion. However, if there are different bins voting for the
same object at different locations in the scene due to
possible false feature matching, the location with the
maximum number of votes is marked as the expected
location. In the end, the recognition module returns a
set of locations corresponding to those objects in the
model whose voting support was sufficient.

3 ATTENTION MECHANISM

Our attention mechanism controls what the robot will
look at, for how long it will keep looking at it, and
where it should avoid looking. \We embody curios-
ity in the attention mechanism by introducing the fol-
lowing ways of guiding attention to where learning
progress is likely.

3.1 Bottom-up Saliency at Interest
Points

We have adapted a bottom-up saliency model devel-
oped by Itti et al. (Itti and Koch, 2001). In this
model the conspicuity of each image location in terms
of its color, intensity, orientation, motion, etc. is en-
coded in a so-called saliency map. We make use of
stereo information to select the most salient point in
the scene. Images from both eyes are processed to
obtain left and right saliency maps. Since objects
are represented as features extracted at interest points,
our attention mechanism only considers points in the
saliency map that are associated with a pair of in-
terest points matched between left and right image
(all other points are neglected). In this way we re-
strict attention to locations of potential objects that
the system could learn about. The saliency values
for the matched interest points are computed using a
2-dimensional gaussian centered on them, with s =
1.5 and a cutoff value of 0.05. This has the effect of
bringing out clusters of high salience more than just
isolated pixels of high salience.

When there are no other variations in the visual
characteristics of the scene it is very likely that the
attention mechanism continues to select the same lo-
cation as the most salient point. To avoid this we tem-
porarily inhibit the saliency map around the current
winner location by subtracting a Gaussian kernel at
the current winner location. This allows the system
to shift attention to the next most salient location. To
avoid constant switching between the two most salient
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locations, we also use a top-down inhibition of al-
ready learned objects below.

3.2 Attention based on Learning
Progress

It has been argued that infants’ interest in a stimu-
lus is related to their learning progress, i.e., the im-
provement of an internal model of the stimulus (Wang
etal., 2011). We mimic this idea in the following way.
When the robot looks at an object, it detects whether
the object is familiar or not. If the object is new it cre-
ates a new object model making new associations in
the shared feature dictionary. If the object is known,
the model is updated by acquiring new features from
the object. The attention remains focused on the ob-
ject until the learning progress becomes too small. As
a side effect, the robot continues learning about an ob-
ject when a human interferes by rotating or moving it,
exposing different views with unknown features.

3.3 ~Top-down Rejection of Familiar
Objects

The third mechanism to focus attention on locations
where learning progress is likely makes use of the sys-
tem’s increasing ability to recognize familiar objects.
A purely saliency-based attention mechanism may se-
lect the same object again and again during explo-
ration, even if the scope for further learning progress
has become very small. Therefore, once there are
no more new features found on certain objects, our
system inhibits their locations in the saliency map
whereever they are recognized (Fig. 5a). To this end,
the models of these objects are used to detect them in
every frame using the recognition module. The inter-
est points on the saliency map that are in the vicinity
of the object detections are removed from being con-
sidered for the winner location.

3.4 Top-down Rejection of Recently
Visited Locations

We have incorporated an inhibition-of-return mech-
anism that prevents the robot from looking back to
locations that it has recently visited. To this end, the
absolute 3D coordinates of the visited locations are
saved in the memory and they are mapped onto the
pixel coordinates on images from the cameras in their
current positions to know the locations for inhibition.
In our experiments, a list of the 5 most recently visited
locations is maintained and close-by interest points
are inhibited for the next gaze shift (Fig. 5b).
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Figure 5: (a) Top-down rejection of familiar objects: When
objects become familiar to the robot they will be inhibited
for further selection by removing the corresponding inter-
est points. Color blobs indicate recognized objects whose
interest points have been removed. (b) Top-down rejection
of visited locations: The robot inhibits recently visited lo-
cations (white blobs).

In order to ease exploration of regions beyond the cur-
rent field of view, we have also added a mechanism to
occasionally turn the head in a new direction. To this
end, the space of possible head directions is parcel-
lated into 4 quadrants. Whenever the robot has visited
ten locations in one quadrant it shifts to the opposite
quadrant.

4 EXPERIMENTS AND RESULTS

The system described above incorporates several
mechanisms to make it intrinsically motivated to seek
out new information or, simply put, to make it cu-
rious. To evaluate the benefits of this curiosity, we
test the performance of the system by incorporating
one or more of the attention mechanisms in a staged
manner. We will label the full system including all
mechanisms as the IM (intrinsic motivation) system.

4.1 Experimental Setup

The model is implemented on an iCub robot head
(Metta et al., 2008) (Fig. 1a). It has two pan-tilt-
vergence eyes mounted in the head supported by a
yaw-pitch-twist neck. It has 6 degrees of freedom
(3 for the neck and 3 for the cameras). Images are
acquired from the iCub cameras at 27 fps with resolu-
tion of 320 240 pixels. Experiments are performed
placing iCub in a cluttered environment with various
objects in the scene that are placed at different depths
with partial occlusions. The background comprises
walls, doors and book shelves. Figure 6 shows the
objects, which have different sizes and shapes.

4.2 Evaluation Method
To evaluate the system, we let the robot autonomously

explore its environment for 5 minutes and then test
its performance using previously recorded and manu-

Figure 6: Objects used in the experiments. Black frames
indicate the objects used in the dynamic object scenario.

ally segmented ground truth images. During ground
truthing we manually control the robot to look at each
object present in the scene. The robot will extract fea-
tures on the objects, that are manually segmented, un-
til it does not find any new feature. This period was
observed to be less than 10 frames on an average for
static objects, but more for rotating/moving objects
(see below). Once all the features are collected on
all the objects, they are tested with the model gener-
ated by the system at the end of the learning process.
To evaluate the performance of the system we con-
sider the following parameters: Number of objects
learnt, number of visits on an object (to test the ex-
ploration efficiency), accuracy of the object models
(in terms of repeated object identities, missed/wrong
detections, recognition rate), and time taken for learn-
ing the objects. Since the object identities depend on
the order in which objects are learnt, we programmed
the systems to store representative images of the ob-
ject together with the self-assigned object I1D. These
images are displayed while testing and allow a visual
verification of the correctness of the recognition.

4.3 Two Experimental Scenarios

In the following we describe two testing scenarios us-
ing static and dynamically changing scenes.

In the first scenario, objects are static and iCub
has to actively explore the scene and learn about the
objects. We set a time span of 5 minutes during which
iCub learns as many objects as possible. We place
12 objects in the scene allowing partial occlusions.
Obiject locations are varied from one experiment to
another.

In the second scenario we tested the ability of the
system to update the model of an object with new fea-
tures (Fig. 10). We used only 3 objects that are rotated
by a human to dynamically change the objects’ ap-
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Figure 7: Comparison of system performance with and
without top-down information in the static object scenario.
(a) Total number of objects learnt. (b) Total number of re-
visits of objects. (c) Maximum number of object revisits.
(d) Number of objects whose models were duplicated

pearance while iCub learns about them. The learned
object models are evaluated with separate test images
showing the objects in four different poses.

4.4 Results

In this section we illustrate the performance of our
system in a staged manner. We have employed
bottom-up saliency in all the experimental scenarios.
We will demonstrate a further improvement in atten-
tion and learning mechanism by using top-down in-
formation and learning progress parameters on top of
this.

We will first illustrate the effect of top-down infor-
mation on the system’s performance in the static ob-
ject scenario. Figure 7 compares the system’s perfor-
mance with and without top-down information. We
report average values over 10 experiments carried out
with different objects, locations, and lighting condi-
tions. Error bars represent maximum and minimum
values. Figure 7a shows the number of objects learnt
by the system in 5 minutes that were validated by
ground truth. Figure 7b shows the number of revis-
its of objects during exploration. In the absence of
top-down information the system visits some objects
repeatedly although little new information is available
there. Similarly, Fig. 7c shows the maximum num-
ber of revisits across all objects. Figure 7d shows the
number of objects whose models were incorrectly du-
plicated, i.e., the system did not recognize the object
when visiting it at a later time and created a second
object model for the same object. Figure 8 shows the
comparison in terms of time taken by the system to
learn the first n objects. Across all measures, the sys-
tem using top-down information is superior to the one
without. One can expect a higher performance on a
robot that has higher visual range and resolution cov-
ering more objects in the scene.
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Figure 8: Comparison of the system with and without top-
down attention in terms of the time taken by the system to
learn the first n object models.

Our system looks at-an object for as long as it finds
something new to learn about. To evaluate the bene-
fit of this feature we compare the full system (IM)
to a version that only looks at an object for a fixed
duration (equal to 3 seconds which was observed to
be sufficient for learning an arbitrary object) before
shifting gaze (No IM). The advantage of the full IM
system is illustrated in the rotating object scenario.
For this experiment we used the three objects marked
by black rectangles in Fig. 6. The objects are ro-
tated by a human operator as the robot learns about
them (see Fig. 10). It is observed that the full IM
system avoids duplicate representations for the same
object. Figure 9 shows feature to object associations
after learning. The features corresponding to an ob-
ject model are collected and their distance vectors are
marked from the center of the object. Figure 9a shows
that for the IM case the features are densely popu-
lated covering most of the parts of the object. As our
object models are pose invariant what is depicted in

Figure 9: Features belonging to the model for the learnt ob-
ject are marked at locations given by distance vectors from
the object center that were saved in the feature dictionary.
(a) Objects during their learning progress. (b) For IM: Fea-
tures cover the object densely and the object model is not
duplicated. (c) For No IM: Features are sparse and there are
duplications of object representations in the feature dictio-

nary.
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Figure 10: The IM system updates the model of the object finding new features on it while it is rotated by a human operator.
Red dots represent features found on the object when the model is first created, purple dots represent new features found on
the object during the model update, green dots represent shared features that have previously been associated with this object

but found at a different location on the object.

Table 1: Object representation in the feature dictionary.

Milk packet Water bottle Tea box
No IM IM No IM IM No IM IM
Model 1 63 1511 27 535 55 1601
Model 2 82 - 35 - 44 -
Model 3 69 - 65 - - -

Table 2: Recognition Accuracy (Rotating Objects).

Milk packet Water bottle Tea box
Pose No IM IM No IM IM No IM IM
Pose 1 57.14% 100% 18.86% | 52.57% - 100%
Pose 2 - 96.10% 32.14% | 57.14% 27.58% | 100%
Pose 3 20.58% 100% - - - 100%
Pose 4 30.88% | 67.64% - - - 100%

the picture is the aggregation of feature vectors from
all poses that are captured in the model. Figure 9b
shows that for the other case there are duplicate mod-
els for the same object in the feature dictionary as
the system in this case fails to realize that an object
seen sometime later exhibiting different pose is the
same object hence learning a new object model with
new identity. The features are also not dense enough
to identify the objects with high reliability. This is
evident from Table 1 that lists the number of associ-
ated features in the feature dictionary for every object
and the corresponding models. As shown in Table 2,
the full IM system also has superior recognition ac-
curacy. Recognition accuracy is defined as the per-
centage of features of the object model matched with
ground truth. Four different poses of every object are
shown to the system to see how well it can recognize.
We observe that the recognition accuracy is substan-
tially higher for the IM case.

5 CONCLUSIONS

We have presented a “curious” robot vision system
that autonomously learns about objects in its envi-
ronment without human intervention. Qur experi-
ments comparing this curious system to several al-
ternatives demonstrate the higher learning speed and
accuracy achieved by focusing attention on locations

where the learning progress is expected to be high.
Our system integrates a sizeable number of visual
competences including attention, stereoscopic vision,
segmentation, tracking, model learning, and recogni-
tion. While each component leaves room for further
improvement, the overall system represents a use-
ful step towards building autonomous robots that cu-
mulatively learn better models of their environment
driven by nothing but their own curiosity.
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