
Colour Processing in Tetrachromatic Spaces
Uses of Tetrachromatic Colour Spaces

Alfredo Restrepo Palacios
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Abstract: We exploit the geometry of the 4D hypercube in order to visualize tetrachromatic images.

1 INTRODUCTION

Tetrachromatic images i : N�M! [0;1]4 are images
where each pixel has four spectral components, each
component giving information regarding the energy
contents of the pixel in a given spectral band. We as-
sume that each component value of a pixel occurs in
the interval I = [0;1] and the total gammut of the pos-
sible colours a pixel can take can be modeled with
the hypercube I4, a 4D colour being a point [w;x;y;z]
of the hypercube. Two points of the hypercube are
the black (or ”schwartz”) vertex s := [0000], and the
white vertex w := [1111]; a subset of the hypercube is
A := f(t; t; t; t) : t 2 [0;1]g, the achromatic segment
between s and w. See (Restrepo, 2012a) and (Re-
strepo, 2012b). Tetrachromatic images can be visu-
alized by feeding the RGB channels of a projector or
screen with 3 of the bands W, X, Y Z of the image, in
one or several of the of the 3!

�4
3

�
= 24 possible ways

of doing this.

2 GEOMETRY AND 4D COLOUR

The (tridimensional) boundary ¶I4 of the hypercube
I4 �R4 has a rich geometrical structure; it consists of�4

1

�
21 = 8 solid cubes with 16 vertices, 32 edges, and

24 square faces. A colour [w;x;y;z] is on T := ¶I4 if
at least one of its coordinates is 0 or 1; each solid
cube consists of the points having a given coordi-
nate at value either 0 or 1; for example, the cube
f[w;x;y;z]2 I4 : w= 1g, which we denote as fw= 1g.
Indeed, we write ¶I4 = fw = 0g[ fw = 1g[ fx = 0g[
fx = 1g[ fy = 0g[ fy = 1g[ fz = 0g[ fz = 1g. ¶I4

is a piecewise linear (PL) tridimensional sphere that
can be homeomorphed to a more standard, round S3.

In the 2-skeleton of the complex structure of T = ¶I4,
you find 24 PL 1-spheres (one per face), 8 PL 2-
spheres and 3 PL Heegaard tori. Geometrically, these
manifolds can be used to define an orientation of the
points in the hypercube that, with corresponding coor-
dinate systems, is used to define several types of hue
for 4D colours.

2.1 Tint

To give spherical coordinates (d;Q) to any point
p 2 I4, denote the central point of the hypercube as
g = [ 1

2 ;
1
2 ;

1
2 ;

1
2 ], let d be a measure of the distance be-

tween p and g (e.g. the max of the absolute values
of the components of p� g), and let Q 2 T be the
point where the ray from g through p leaves the hy-
percube. Call Q the tint, or generalized hue, and call
d the colourfulness, or generalized saturation of p. In
this sense, T is the set of tints. Note that the vertices s
(”black”) and w (”white”) are fully colourful and are
tints.

2.2 Chromatic Hue

A pair of vertices of the hypercube is said to be a
pair of opposing vertices if the coordinates of one
are the ”negated” version of the coordiantes of the
other, for example, [0000] and [1111], or [0101] and
[1010]. Eight PL 2-spheres, that are dodecahedra
of square faces, result by considering the faces that
do not meet a given pair of opposing vertices. Each
of these 2-spheres serves as an equatorial 2-sphere
for ¶I4; for our purposes, the most relevant is the
one having as opposing vertices s and w. Call it the
chromatic dodecahedron D = fw = 0;x = 1g [ fw =

1;x = 0g[ fw = 0;y = 1g[ fw = 1;y = 0g[ fw = 0;z =
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1g[fw = 1;z = 0g[fx = 0;y = 1g[fx = 1;y = 0g[fx =
0;z = 1g[fx = 1;z = 0g[fy = 0;z = 1g[fy = 1;z = 0g.
Each of the faces of D has a ”primary” w, x, y or
z at its fullest value 1, and another at its minimum
value 0. Each square face of D is subdivided into
two triangles so that the points in each triangle obey
the same ordering of their coordinates; e.g. the
triangle with vertices [0;1;0;1] [0;1;0;0] [1;1;0;1]
of points [w;x;y;z] with y � w � z � x, and the
triangle [1;1;0;0] [0;1;0;0] [1;1;0;1] of points
[w;x;y;z] with y � z � z � w, are the subdivision
of the face fx = 1;y = 0g of points [w;x;y;z] with
minfw;x;y;zg = y and maxfw;x;y;zg = x. There
are 24 such ordering triangles; together, they give
the subdivision of D called the chromatic icositetra-
hedron IT; on each ordering triangle, the relative
contribution of the primaries is fixed; each ordering
triangle represents a family of hue. To get the hue
family corresponding to a colour not in A, find out
the permutation that orders its coordinates. More
precisely, the hue h of [w;x;y;z] is the point h in IT
that is obtained as h = 1

r
[w;x;y;z]� n

r
[1;1;1;1] where

r is the chromatic saturation given by the range of
the primaries, and n is the min. Each chromatic point
[wxyz] is in a unique chromatic triangle w� s�h.
Indeed [wxyz] = (1� z)s + rh + n[1111] is an ex-
presion in barycentric coordinates [1� z;n;r] in the
plane spanned by the points s, w and h.

2.3 Hue in a Rhombic Dodecahedron

When the points of R4 are projected along the di-
rection [1111] onto the 3-subspace (through the ori-
gin)1 the chromatic dodecahedron projects, with-
out selfintersections, to a (2D) rhombic dodecahe-
dron2. The achromatic segment projects to the
central point of the rhombic dodecahedron and the
cubes in T project to overlapping parallelepipeds in
the (solid) rhombic dodecahedron. the orthonor-

mal points a = [
q

3
4 ;�

q
1
12 ;�

q
1
12 ;�

q
1
12 ], b =

[0;
q

2
3 ;�

q
1
6 ;�

q
1
6 ] and c = [0;0;

q
1
2 ;�

q
1
2 ] are

a basis that gives 3D coordinates to the projection
space. The coordinates of the projections of the ver-
tices of D are shown in Table 1.

The abc coordinates of the intersection of the ray

1This is computed by subtracting the average of the co-
ordinates from each coordinate.

2The rhombic dodecahedron is a Catalan solid, i.e. a
polyhedron that is dual to an Archimedean solid; in this
case, to the cuboctahedron, which has 12 vertices, 24 edges,
8 triangle faces and 6 square faces; two triangles and two
squares meet at each vertex.

Table 1: The 14 vertices of the chromatic dodecahedron are
projected onto the 3-subspace normal to [1,1,1,1]. Then,
the projections are given 3-space coordinates in the third
column.

vertex projection [a, b, c]
0111 [� 3

4 ;
1
4 ;

1
4 ;

1
4 ] [-0.8660, 0, 0]

0010 [� 1
4 ;�

1
4 ;

3
4 ;�

1
4 ] [-0.2887, -0.4082, 0.7071]

0011 [� 1
2 ;�

1
2 ;

1
2 ;

1
2 ] [-0.5774, -0.8165, 0]

0001 [� 1
4 ;�

1
4 ;�

1
4 ;

3
4 ] [-0.2887, -0.4082, -0.7071]

0101 [� 1
2 ;

1
2 ;�

1
2 ;

1
2 ] [-0.5774, 0.4082, -0.7071]

0100 [� 1
4 ;

3
4 ;�

1
4 ;�

1
4 ] [-0.2887, 0.8165, 0]

0110 [� 1
2 ;

1
2 ;

1
2 ;�

1
2 ] [-0.5774, 0.4082, 0.7071]

1010 [ 1
2 ;�

1
2 ;

1
2 ;�

1
2 ] [0.5774, -0.4082, 0.7071]

1011 [ 1
4 ;�

3
4 ;

1
4 ;

1
4 ] [-0.2887, -0.8165, 0]

1001 [ 1
2 ;�

1
2 ;�

1
2 ;

1
2 ] [0.5774, -0.4082, -0.7071]

1101 [ 1
4 ;

1
4 ;�

3
4 ;

1
4 ] [0.2887, 0.4082, -0.7071]

1100 [ 1
2 ;

1
2 ;�

1
2 ;�

1
2 ] [0.5774, 0.8165, 0]

1110 [ 1
4 ;

1
4 ;

1
4 ;�

3
4 ] [0.2887, 0.4082, 0.7071]

1000 [ 3
4 ;�

1
4 ;�

1
4 ;�

1
4 ] [0.8660, 0, 0]

from the center of the rhombic dodecahedron trhough
the projection of a chromatic point, and the bound-
ary of the rhombic dodecahedron, gives an alternate
hue h. The distance from the center of the rombic
dodecahedron to the projection point is a measure of
chromatic saturation s; also, the projection [l, l, l,
l] on A of [w;x;y;z], l := w+x+y+z

4 , gives a measure
of luminance. Thus s=

p
w2 + x2 + y2 + z2�4l2. In

this way an alternate colour space3 to that with the rµ
triangle results.

2.4 Tori

The tint of a colour p different from g is given by Q =
g+c(p�g) where c = 1

2maxfjw0j;jx0j;jy0j;jz0jg where w0 =
w�0:5, x0 = x�0:5, y0 = y�0:5 and z0 = z�0:5. The
indexes i of the coordinates Qi of Q= [Q0;Q1;Q2;Q3]
of value 0 or 1 indicate the cube Q is at; for example,
if Q1 = 0, then Q 2 fx = 0g.

A coordinate system for the points in an S3 re-
sults by considering the Heegaard splitting of genus
1. It uses two angles and a ”signed radius” r 2 [�1;1],
rather than the better-known, spherical coordinates of
three angles. A Heegaard torus splits the 3-sphere
into two open solid tori and their common boundary.
Out of the 24 square faces, 16 faces can be chosen
that together are a Heegaard torus for T = ¶I4; this
can be done in three ways since the 8 cubes in T
can be grouped in 1

2

�4
2

�
= 3 ways, into two groups

of four cubes each, so that each group is a solid torus.

3To get a B&W image from a color image, in the trichro-
matic case, it gives better visual results to use the max (as
in the HSV colour system) than to use the average.
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Here, we consider the solid tori Vyz := fz = 0g[fy =
1g [ fz = 1g [ fy = 0g and Vwx := fw = 0g [ fx =
1g[fw = 1g[fx = 0g.

The boundaries of Vwx and Vyz are the torus H; H
can be seen as the union of four square pipe segments
in two ways; each pipe segment (topological cylinder
or annulus) is a stack of 1-squares that are meridians
for the solid torus in question and longitudes for the
other solid torus. For the solid torus Vyz we have the
pipes of square meridians with vertices
P0 := f(0;0;s;0);(1;0;s;0);(1;1;s;0);(0;1;s;0) : s 2 [0;1)g (z=0),

P1 := f(0;0;1;s);(1;0;1;s);(1;1;1;s);(0;1;1;s) : s 2 [0;1)g (y=1),

P2 := f(0;0;1� s;1);(1;0;1� s;1);(1;1;1� s;1);(0;1;1� s;1) : s 2 [0;1)g (z=1) and

P3 := f(0;0;0;1� s);(1;0;0;1� s);(1;1;0;1� s);(0;1;0;1� s) : s 2 [0;1)g (y=0),

similarly, the boundary of the Vwx is given by the pipes
of square meridians with vertices
Q0 := f(0; t;0;0);(0; t;1;0);(0; t;1;1);(0; t;0;1) : t 2 [0;1)g (w=0),

Q1 := f(t;1;0;0);(t;1;1;0);(t;1;1;1);(t;1;0;1) : t 2 [0;1)g (x=1),

Q2 := f(1;1� t;0;0);(1;1� t;1;0);(1;1� t;1;1);(1;1� t;0;1) : t 2 [0;1)g (w=1) and

Q3 := f(1� t;0;0;0);(1� t;0;1;0);(1� t;0;1;1);(1� t;0;0;1) : t 2 [0;1)g (x=0).

As we remarked above, H = [Pi = [Qi. Each
point of T is either in the open solid torus Twx, in the
open solid torus Tyz, or in their common boundary H.
The subindex n of the pipe segment together with the
value of t or s, as in n:t, or n:s, give an angular mea-
sure that ranges from 0 to 4, mod-4.

For Q in an open torus, there is a distance r 6= 0
from the boundary of the solid torus the tint is at;
the distance from the boundary is measured with the
product metric; that is, for example, for the piece of
solid torus bounded by pipe P0, a tint point [w;x; t;0]
is at distance 0:5�maxfjw�0:5j; jx�0:5jg from its
boundary. Also, there are two 1-squares in pipes
say Pn and Qm with corresponding parameters s and
t such that one of them (a meridian) bounds a two-
square the tint is in, and the other intersects the first
1-square at a point u on H that is closest to Q 4. Let
u = (f;y) := (n:s;m:t) in H be the toroidal hue of
p. If Q is on H, let r = 0. Denote Q as (f;y;r);
with the understanding that if r = �0:5 (i.e. if Q is
precisely on the axis or core of a solid torus), exactly
one of the angles f or y is left undefined and only the
longitude of the corresponding solid torus that con-
tains Q is needed and a coordinate corresponding to
the meridian is left undefined. For example, the tint
of [0.9, 0.2, 0.3, 0.4] is [1, 1/8, 1/4, 3/8] = (3.625,
2.875, 0.25), corresponding to pipes P3 and Q3, with
s = 5=8 and t = 7=8.

4On a disk, with the Euclidean metric, each point differ-
ent from the center has a unique point on the circle boundary
that is closest; in a square though, with the product metric,
for each point on the diagonals, there are two points on the
square perimeter that are closest to the point on the diago-
nals, 4 if it is the center of the square.

2.5 Spinning

We generalize Artin’s concept of spinning is spinning
with an S1 to spinning with a sphere Sn. Given a sub-
set E of R2 (such as the rµ triangle) with a closed sub-
set F (such as the µ edge), form the topological space
(E � Sn)= �, where each set of the form f fg� Sn,
f 2F , is identified to a point. Artin’s method provides
a geometric embedding of subsets F of R3, in R4, as
f(x;y;zcosq;zsinq) : f = (x;y;z) 2 F;q 2 [0;2p)g.

2.6 Runge Ball

A 4D round space is obtained by deforming the hy-
percube into the standard 4-ball f(w0;x0;y0;z0) 2 R4 :
w2 + x2 + y2 + z2 � 1g. This can be done in several
ways; one is to spin the rµ triangle, deformed to a
semicircle, around S2, with hinge the µ basis of the tri-
angle, where S2 is derived from the chromatic dodec-
ahedron; another is to spin the midray (that that orig-
inates at intermediate gray) with S3, with hinge the
point of intermediate gray. In the first case we have a
space with coordinates the luminance, the chromatic
saturation and a 2D (the equatorial sphere derived
from the chromatic dodecahedron) spherical hue; in
the second case, we have a space with coordinates
given by the generalized saturation r and a general-
ized 3D hue given vy the S3 that is derived from the
boundary of the hypercube.

Let [w;x;y;z] be a point in the hypercube, shift the
hypercube so that intermediate gray ends up at the ori-
gin of 4-space R4 and rescale so that the maximum
values of the coordinates is 1 and the minimum is -1.
Let [w0;x0;y0;z0] = 2[w� 0:5;x� 0:5;y� 0:5;z� 0:5]
be the coordinates of the resulting hypercube [�1;1]4.

The lightness in this space is given by the angle
with the achromatic axis: l = arcos w0+x0+y0+z0

2
p

w02+x02+y02+z02

= arcos w+x+y+z�2
2
p

w2+x2+y2+z2+1�(w+x+y+z)
. Rather than us-

ing a chromatic saturation measure i.e. a dis-
tance measure to the achromatic line segment, we
use a distance g obtaining a measure of colour-
fulness in the sense of ”ungrayness”. Let L =
maxfjw0j; jx0j; jy0j; jz0jg; if L 6= 0, the point on the
boundary of the hypercube that is in the same di-
rection is 1

L
[w0;x0;y0;z0] (at least one of its coordi-

nates has value of 1); let d = 1
L

p
w02 + x02 + y02 + z02

and normalize by this length (with the result that
the hypercube is deformed into a 4-ball), get-
ting the point s = [s0;s1;s2;s3] := 1

d [w
0;x0;y0;z0]

whose distance from the center of the ball is k =p
w02+x02+y02+z02

L�1
p

w02+x02+y02+z02
= L. Thus
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k = maxf2w�1;2x�1;2y�1;2z�1g is the colour-
fulness of the point [w;x;y;z]. c = 1

2L
.

3 PROCESSING

By colour processing a digital tetrachromatic image,
we mean the application of a law to each pixel in the
image, producing a new tetrachromatic image. The
image is then to be visualized or fed to a computer vi-
sion algorithm. By appropriately modifying the hue,
it is possible to visualize tetrachromatic images in
such a way that certain aspects are made conspicuous.

The linear (i.e. noncircular, nonspherical) coordi-
nates such as colourfulness, chromatic saturation and
luminance, are transformed via exponential-law maps
xg. The hue may be independently processed by au-
tomorphisms either of the 3-sphere, a hue sphere or
of a hue torus. As the hue surfaces are rotated or
otherwise automorphed, the colours of a tetrachro-
matic image may change in interesting ways when
trichromatically visualized. The automorphisms re-
spect the continuity; the rotations are isometries and
respect the antipodicity or complementary colours as
well. The simplest modification type of the hue of 4D
colour is given by rotations of the 2-sphere, of the
3-sphere, or of the Heegaard torus. The rigid mo-
tions of s 2 S3 or equivalently, the rotations of R4

are implemented by pre- and post-multiplying by unit
quaternions p;q, as in psq, s 2 S3. The rigid mo-
tions of S2 are implemented by pre and post multy-
plying a pure quaternion s times a unit quaternion q
and its conjugate, as in qsq�. The space of rigid mo-
tions of S3 has the group structure SO(4); it is the
topoloical space S3�RP3 for which S3�S3 is a dou-
ble cover.5 The rigid motions of S3 can be coded as a
pair (q1;q2) 2 S3�S3 in the sense that a unit quater-
nion is being pre and post multiplied by unit quater-
nions. The space H of the quaternions can be seen as
R4 or as C2. For C2, the analogous case of an orthog-
onal transformation is that of a unitary transformation
that, rather than preserving the structrure of the in-
ner product in R2, it preserves the standard hermitian
form (z1;z2):(w1;w2) = z1w̄1 + z2w̄2. The set of uni-
tary transformations has the group structure SU(2). A
point of S3 can be denoted as a pair (z1;z2)�C2 with
z1z̄1 + z2z̄2 = 1.

For toroidal hue, for PL rotations, the 1D squares
with sides parallel to the axes w and x are meridians of
the yz solid torus and longitudes of the wx solid torus;

5The set of rotations of the plane is the group SO(2)
which has the topology of S1 while the set of rigid motions
of S2 (of rotations of R3) is the group SO(3) which has the
topology of RP3.

Figure 1: p=[1/2, 1/2, -1/2, -1/2], q=[-1/2, -1/2, 1/2, 1/2],
g = 0:6; bands 1 (in R), 3 (in G), 4 (in B). p=[1/2, 1/2, 1/2,
-1/2], q=[1/2, -1/2, 1/2, 1/2], g = 1:0; bands 1, 2 and 3.
p=[1/2, 1/2, 1/2, -1/2], q=[-1/2, 1/2, 1/2, 1/2], g= 1:0; bands
2, 3 and 4. p=[1/2, 1/2, 1/2, -1/2], q=[1/2, -1/2, 1/2, 1/2],
g = 1:0; bands 1, 2 and 4.

the 1D squares with sides parallel to the axes y and z
are meridians of the wx solid torus and longitudes of
the yz solid torus. Similarly for the other cases. Shifts
around such squares implement modifications of hue.

4 CONCLUSIONS

Tetrachromatic colour spaces find applications in the
visualization of 4-spectral images. Its use in satellite
imaginery (Landsat, 2012) is very likely providing al-
ternate ways to the mere feeding of the visualizing
RGB channels with permutations of the image wxyz
channels. Also, as a technique for computational pho-
tography, the explotation of IR and UV bands is likely
to be of use in different ways. Further work remains
to be done in the exploration of automorphisms of
spheres and tori different from isometries. Depend-
ing on the application diferent types of tetrachromatic
colour processing will be needed.

REFERENCES

Landsat (2012). http://zulu.ssc.nasa.gov/mrsid/tutorial/
landsat%20tutorial-v1.html.

Restrepo, A. (2012a). Tetrachromatic colour space. SPIE
Electronic Imaging, San Francisco.

Restrepo, A. (2012b). Tetrachromatic colour spaces. Visapp
Rome.

Colour�Processing�in�Tetrachromatic�Spaces�-�Uses�of�Tetrachromatic�Colour�Spaces

129


