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The great number of researches about local features extraction algorithms in the last years, allied to the

popularization of mobile devices, makes desirable efficient and accurate algorithms suitable to run on such
devices. Despite this, there are few approaches adequate to run efficiently on the complexity-, cost- and
power-constrained mobile environments. The main objective of this work is to evaluate the performance of
the recently proposed BRISK algorithm on mobile devices. In this way, a mobile implementation, named
M-BRISK, is proposed. Some implementation strategies are considered and successful applied to execute the
algorithm in a real-world mobile device. As evaluation criterion repeatability, recall, precision and running
time metrics are used, as well as the comparison with the classical well established algorithm SURF and also
with the more recently proposed ORB. The results confirm that proposed mobile implementation of BRISK
(M-BRISK) performs well and it is adequate to mobile devices.

1 INTRODUCTION

The widespread use of digital cameras is responsible
for the generation of millions of images daily. Mobile
digital devices, such as mobile phones and tablet PCs,
extend the digital still cameras functionalities, allow-
ing real-time exchange of images through their com-
munication modems. These kind of devices, usually
capable of capturing images and videos, are nowa-
days available to millions of people over the world.
This fact makes them important tools for image ac-
quisition, allowing anyone to easily capture images
of products, advertisements, people’s faces and bod-
ies, pieces of art or any other visual data from the en-
vironment where he or she is inserted. Extracting use-
ful information from all these data, through efficient
computational algorithms, is an important goal of the
Computer Vison research community.

The use of distinctive visual features to accom-
plish this goal has been highly explored in the last
decade and applied to many problems such as content-
based image retrieval (CBIR) (Smeulders et al.,
2000), markerless augmented reality (MAR) (Skryp-
nyk and Lowe, 2004) and 3D scene reconstruction
(Brown and Lowe, 2005). When a feature extraction
algorithm employs an unique descriptor to an entire
image it is called global. Otherwise, if it uses descrip-
tors to many image points, it is called local. The lo-
cal feature extraction algorithms are widely used be-
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cause their invariance to many visual transformations.
These extractors are able to detect salient regions into
an image, which are called keypoints. Each keypoint
is described by a feature vector, that represents nu-
merically the image properties on the neighborhood
of such point. These sets of keypoints descriptors
can be used to perform matching between images,
through the calculation of similarity metrics among
them.

Despite the great profusion of researches about
features extraction algorithms in the last years, there
are few approaches suitable to run efficiently into
mobile devices. Some algorithms, developed to
have the best performance into unconstrained envi-
ronments, do not perform well in the complexity-,
cost- and power-constrained environment of such de-
vices (Budagavi, 2006).

In this context, the main contribution of this work
is to evaluate the performance of the recently pro-
posed BRISK algorithm (Leutenegger et al., 2011), a
local feature extractor, on a mobile device. To achieve
it, we did a consistent analysis of the BRISK method,
as well as the identification of its critical points con-
cerning the computational cost. Some implemen-
tation strategies were considered and successful ap-
plied to execute the algorithm in a real-world mobile
device. As evaluation criterion repeatability, recall,
precision and running time metrics (Mikolajczyk and
Schmid, 2005) were used, as well as the comparison
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with the classical well established algorithm SURF
(Bay et al., 2006) and also with the more recently pro-
posed ORB (Rublee et al., 2011). The results confirm
the hypothesis that proposed mobile implementation
of BRISK (M-BRISK) performs well and it is ade-
quated to mobile devices.

This paper is organized as follows. In Section 2
we present the main considered algorithms for local
features extraction. In Section 3 the BRISK method
is reviewed, while their mobile implementation is pre-
sented in Section 4. The experiments and results are
shown in Section 5. And finally, Section 6 presents
the conclusions and future work.

2 LOCAL FEATURES
DETECTION AND
DESCRIPTION

Lowe (Lowe, 2004) proposed the Scale Invariant Fea-
ture Transform (SIFT) detector and descriptor algo-
rithm, for extracting high distinctive features from
images. The SIFT method, one of the most reliable
features extractors, is invariant to scale and rotation
transformations, and partially invariant to brightness
and viewpoint changes. This algorithm is composed
by four main stages: scale-space extrema detection,
keypoints localization, keypoints orientation and key-
points description.

Due to the high dimensionality of the SIFT de-
scriptor and its poor computing performance, other
less time-consuming alternatives began to be pro-
posed in the literature, with the purpose of enabling
their use in real-time applications. In PCA-SIFT (Ke
and Sukthankar, 2004) algorithm, the Principal Com-
ponents Analysis (PCA) was applied to decrease the
dimension of SIFT descriptors and to improve the
matching time.

Bay et al. (Bay et al., 2006) presented a novel ap-
proach, partly based on SIFT, called Speed Up Robust
Features (SURF). For some cases, the SURF algo-
rithm is more robust than SIFT, taking less computing
time. SURF employs integral images to build a fast
detection method called Fast-Hessian. The descrip-
tion is based in a first order Haar Wavelet distribu-
tion. The SURF proves to be a very efficient method,
however it has limited performance when compared
to recent binary description approaches.

Calonder et al. (Calonder et al., 2010) built a bi-
nary descriptor, called Binary Robust Independent EI-
ementary Features (BRIEF), with low dimensionality
and more suitable for real-time applications. In this
approach, the descriptors are formed by binary strings

which makes comparisons more efficient. However,
despite the high performance, the algorithm suffers in
terms of robustness and reliability, because it has low
tolerance in terms of distortion and image transforma-
tions, such as scale and rotation.

In order to overcome the BRIEF limitations, in
terms of rotation invariance, the Oriented FAST and
Rotated BRIEF (ORB) (Rublee et al., 2011) algorithm
was proposed. This method uses Features from Ac-
celerated Segment Test (FAST) (Rosten and Drum-
mond, 2006) detector to provide a complete detection
and description algorithm. It has a good robustness
and a good performance, even concerning mobile de-
vices.

Leutenegger et al. (Leutenegger et al., 2011) pro-
posed the Binary Robust Invariant Scalable Keypoints
(BRISK), a new approach that joins the fast and ef-
ficient Adaptative and Generic Accelerated Segment
Test (AGAST) (Mair et al., 2010) detector to a bi-
nary descriptor inspired by BRIEF. This algorithm,
that uses a sampling pattern resembling the one used
in DAISY dense descriptor (Tola et al., 2010), is in-
variant to many transformations, such as scale and ro-
tation. BRISK allies high-quality descriptor to low
computational requirements, what makes it proper to
real-time applications.

3 BRISK REVISITED

The BRISK method can be divided in three steps:
keypoints detection, keypoints description and de-
scriptors matching®. These stages are executed se-
quentially.

3.1 Keypoints Detection

It is performed at the first moment. The goal at this
step is to identify salient points in the image that, ide-
ally, could be uniquely differentiated from any other
point. To do so, these points must be searched across
the image and scale dimensions using a saliency cri-
terion (Leutenegger et al., 2011). The search through
scale space is fundamental to achieve scale invariance
and it is realized in BRISK by the use of a pyramid
of images. This pyramid is formed by many layers
which correspond to resamples of the original image.
In BRISK method, these layers are divided in n oc-
taves cj and n intra-octaves dj, with i = £0;1;::::;ng
and usually n = 4. The intra-octaves d; are located
between octaves c¢ij and cj+1. These intra-octaves

1The matching step can also be seen as an independent
stage.
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and octaves are formed by the original image sub-
sampled by factors 3 (half-sampling) and 3 (two-
third-sampling). The original image is progressively
half-sampled to form the octaves, while the intra-
octaves are formed by progressives half-sampling of
the first intra-octave dg, which in turn is composed by
a two-third-sampling of the original image.

After the octaves and intra-octaves calculation, the
AGAST corner detector (Mair et al., 2010) is applied
to each one of them. All the points of each layer
will be evaluated as a keypoint candidate, and to be
elected a point must be salient among their intra-layer
and inter-layers neighbors. It means that each point
is compared with its neighbors in the same layer and
also with those in the above and bellow layers. Af-
ter the analysis of all octaves and intra-octaves, the
detection stages finally ends, producing a set of key-
points with space and scale coordinates, what means
that each one of them can be exactly located.

3.2 Keypoints Description

In this stage, around each keypoint, which has its co-
ordinates found in the previous step, a sampling pat-
tern is positioned. The BRISK algorithm uses a sam-
pling pattern similar to the one in DAISY descriptor
(Tola et al., 2010). However, it is important to note
that the use of this pattern is quite different. The
pattern relies on 60 equally spaced points located in
four concentric rings. In order to produce a scale
and rotation invariant description, the sampling pat-
tern is exactly scaled and rotated according to each
keypoint. The BRISK descriptor is composed as a bi-
nary string of length 512. This string concatenates
the results of simple brightness comparisons tests be-
tween each keypoint and its 60 neighbors in the pat-
tern (Leutenegger et al., 2011). This approach was in-
spired by the BRIEF method (Calonder et al., 2010).

3.3 Matching

Finally, to perform the comparison between two or
more keypoint descriptors, the Hamming distance is
used. This distance measures the number of differ-
ent bits between two binary strings and it represents
the degree of inequality of the descriptors being com-
pared.

4 M-BRISK

This section presents the mobile implementation of
BRISK algorithm and the main aspects concern-
ing to the environment where it was developed and

tested. This mobile implementation is called M-
BRISK (Mobile-BRISK).

4.1 Implementation

In order to implement the algorithm to be executed
into a mobile device, some issues had to be overcame.
The first of them was the fact that SSE2 and SSE3
instructions (Intel, 2006), the Intel’s SIMD instruc-
tions set (Flynn, 1972), were employed by Leuteneg-
ger et al. (Leutenegger et al., 2011) in their original
implementation of BRISK?. It was used as a crucial
resource to improve the BRISK performance at criti-
cal time-consuming routines.

SIMD instructions are available in ARM architec-
ture (ARM, 2012b), the most popular architecture of
mobile devices processors, just since the ARMv7 ver-
sion, through the NEON instructions (ARM, 2012a).
As these instructions are not available into all devices,
specially into the low-end ones, it was decided not to
use them in the present implementation. This choice
allows M-BRISK to'be a more generic implementa-
tion, avoiding the dependence of specific mobile pro-
cessors and instructions sets. This approach also con-
stitutes a baseline assessment of the algorithm once it
is being evaluated in a most ordinary condition.

The sub-sampling routines, originally imple-
mented trough the SSE instructions, was replaced by
a bilinear interpolation function implemented using
the OpenCV library (OpenCV, 2011). This approach
showed to be efficient and applicable to a mobile en-
vironment while it kept robustness.

Another critical point is the sampling pattern rou-
tine. In the original BRISK implementation, as a
manner to obtain this pattern efficiently, 65536 sam-
ples are generated to each one of the 60 pattern points
during the algorithm initilization and stored in a look-
up table. These samples corresponds to all possible
discretized values of scale and rotation. There are 64
and 1024 possible values to each dimension, respec-
tively. The goal of this approach is to save running
time in the description construction of each keypoint.
However, such process is so time-consuming that its
use is prohibitive on mobile devices. Thus, to avoid
this problem, we chose to previously save a binary
representation of the look-up table in mobile device
memory card. Doing so, at the time of descriptors
construction the table is already completely loaded
into device memory.

Finally, during the matching routine, the SSE in-
structions were also used to improve the performance

2The original BRISK implementation is available in:
http://www.asl.ethz.ch/people/lestefan/personal/BRISK
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of original BRISK implementation. These instruc-
tions were used in this stage to optimize the calcula-
tion of the Hamming distance, employed to compare
two keypoint descriptors. In M-BRISK the Hamming
distance was also implemented through the OpenCV
library. Unfortunately this change represented con-
siderable addition in the running time of matching.

4.2 Mobile Execution Environment

The mobile platform chosen to support the imple-
mentation of M-BRISK algorithm was the Android
(Google, 2012). This decision was motivated mainly
because it is a well documented open development
platform. Another distinguishing feature of Android
is its ability to run very efficiently C and C++ li-
braries, allowing the reuse of previously implemented
code. In order to execute these libraries into Android,
the Native Development Kit (NDK) (Google, 2011)
was used. Since Android applications are written in
Java, to enable interfacing between the different lan-
guages, the NDK relies on the Java Native Interface
(JNI) (Liang, 2003). The Android 2.2 version was
used.

The employed device was a low-end mobile phone
with Mediatek MTK6516 416MHz ARMvV5 proces-
sor, with 256 MB of RAM memory. As mentioned
earlier, the NEON instructions are not available on
this processor architecture version.

5 EXPERIMENTS AND RESULTS

Leutenegger et al. (Leutenegger et al., 2011) com-
pared BRISK with SIFT and SURF algorithms, show-
ing the high performance of the former. The purpose
of the present experiments was to evaluate the perfor-
mance of M-BRISK. To accomplish this, the mobile
implementation is compared with the original BRISK
implementation. Tests were performed to compare
the repeatability rate and to measure the relation be-
tween execution time in the steps of detection, de-
scription and matching of the both approaches. More-
over, M-BRISK it is compared with SURF and ORB
using the recall and precision metrics and also on a
real mobile device, used to compare the running time
of such algorithms.

5.1 Image Dataset

The image dataset® used to perform the experiments
is a well established benchmark, largely employed to

3The image dataset is available in: http://www.robots.
ox.ac.uk/ vgg/research/affine/.

(d) Leuven.

(9) Ubc.

Figure 1: Image dataset used for the tests.

evaluate many methods in this field (Calonder et al.,
2010), (Mikolajczyk and Schmid, 2005), including
the BRISK algorithm (Leutenegger et al., 2011). The
transformations covered by the dataset, shown in the
Figure 1, are: viewpoint change (Graffiti and Wall),
blur (Bikes and Trees), brightness change (Leuven),
zoom and rotation (Boat) and JPEG compression
(Ubc).

5.2 Repeatability Test

The repeatability test was used to identify the ability
of the detector to find the same keypoint into distinct
images modified by some kind of transformation. The
goal of this test is to evaluate if the modifications in
the sub-sampling methods (half-sampling and two-
third-sampling) affected the quality of the detection
in the M-BRISK implementation.

The results in Figure 2 show the repeatability for
viewpoint change (Boat images) and zoom and rota-
tion transformations (Wall images). The percentual of
repeatability measured for each algorithm is shown on
top of each bar. Based in the values, we can conclude
that M-BRISK has repeatability similar to the BRISK,
proving that the mobile implementation of the detec-
tion step did not degrade the quality of the algorithm.
In some cases, M-BRISK has even slightly better re-
sults than BRISK.
5.3 Recall 1-Precision Evaluation
Recall and 1-precision are two relevant metrics used
to show the effectiveness of a descriptor method.
Recall measures the proportion of correct positives
matches, considering all the possible correct posi-
tive matches between two images. While 1-precision
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Figure 3: Results shown recall ~ 1-precision curves for M-
BRISK, BRISK and ORB. Values of recall and 1-precision
were calculated for different matching thresholds (Ham-
ming distance limit bellow which two keypoints descriptors
are considered equal).

(d) Recall 1-precision curves for

measures the proportion of false positives matches,
considering all the performed matches between those
images.

These curves represent the algorithm capacity to
keep a small number of false positives (1-precision)
while it associates the maximum number of keypoints
between two images (recall).

The resulting to recall 1-precision curves,
shown in Figure 3, allow to compare the effectiveness
of M-BRISK, BRISK and ORB. It enables to eval-
uate the quality of the algorithms in all steps. The
curves allow us to observe that M-BRISK and BRISK
have similar robustness to viewpoint and brightness
changes. However, BRISK has slightly better results
to JPG compression, zoom and rotation transforma-
tions. Besides this, it is clear that ORB presents worst
results for almost all threshold values.

5.4 Running Time Test

These tests compare the time variations in the dif-
ferent stages of BRISK and M-BRISK implementa-
tions. Moreover, the comparison between the mobile
device running time of M-BRISK, SURF and ORB
are shown.

5.4.1 Distribution of Running Time between
BRISK and M-BRISK Stages

In Figure 4, the mean time per point spent in each
step of BRISK and M-BRISK is presented. The pur-
pose is to analyse the relation between the running
time of each algorithm step aiming to evaluate the ef-
fects of the modifications over BRISK. The tests were
performed using 100 samples of images for the sets
Graffiti, Boat and Leuven. The execution was host in
a computer with a Core2Duo T8100 2.10Ghz proces-
sor, 3GB of RAM memory and Windows 7 (64-bits)
operating system.

The mean times and the standard deviations are
showed at the top of the bars. As can be observed,
in the average, M-BRISK had performances in the
detection and matching stages, respectively, around
15% and 75% worst than BRISK. Even without the
use of SSE instructions, what was the reason of the
M-BRISK waorst results, the time consumed in the de-
tection stage was not affected so significantly. In the
description stage the performance of both implemen-
tations was similar.

Another important difference between the two
approaches is concerning the look-up table usage.
While it is calculated during the execution in BRISK,
in M-BRISK the look-up table is calculated previ-
ously. The mean time consumed in the BRISK look-
up table calcutation is 1.269s, while the mean time
spent to load it from memory in M-BRISK is 0.088s.
The latter amount of time corresponds to less than
10% of the former.

5.4.2 Running Time Test on a Mobile Device

The purpose of this test is to provide a reference for
running times of M-BRISK, SURF and ORB in a real
mobile device. These tests are performed using the
images Graffiti 1-3 with 50 samples.

Tables 1 and 2 show the execution running times
in the mobile device. The times in the tables represent
an average of all running time samples with their re-
spective standard deviation between parenthesis. As
we can observe, the M-BRISK is about twice faster
than ORB and more than 20 times faster than SURF
in detection and description steps. In the matching
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Figure 4: Comparison between the running time of BRISK
and M-BRISK steps. The mean amount of time spent per
point in each step is shown at the top of the bars, as well as
the standard deviations in parenthesis.

step, the time difference is not so significant compar-
ing ORB and M-BRISK. However, SURF had worst
results than M-BRISK in all execution steps.

The Table 1 shows the detection and description
times. The time per point represents the average time
for detection and description for each keypoint. This
value represents a fairness comparison between the
algorithms. The Table 2 shows the matching times,
including the average time spent during each descrip-
tor comparison. The serial implementation of Ham-
ming distance decreased the matching performance,
however remained very fast when compared with
SURF descriptors matching. Even compared with
ORB, M-BRISK implementation still demonstrates
pretty competitive timings.

Table 1: Detection and description timings for the Graffiti
image 1.

SURF ORB M-BRISK
Number of points 3201 1000 1957
Detection time (s) 65.87 (1.56) 3.17(1.13) | 1.83(1.81)
Description time (s) 140.66 (0.50) | 2.85(1.25) | 3.59(3.53)
Total time (s) 206.54 (1.71) | 6.02(1.89) | 5.42(5.35)
Time per point (ms) | 64.52 (0.53) 6.02(1.89) | 2.77(2.78)

Table 2: Matching timings for the Graffiti images 1 and 3.

SURF ORB M-BRISK
Points in first image 3201 1000 1957
Points in second image 3820 1000 2529
Total time (s) 370.66 (17.90) | 5.99 (2.44) | 26.59 (9.66)
Time per comparison (ns) 30.31 (1.46) 5.99 (2.44) 5.37 (1.95)

6 CONCLUSIONS

The wide use of local features extractors applied to
many computer vision problems, allied to the popu-
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larization of mobile devices, makes desirable efficient
and accurate algorithms suitable to run on such de-
vices. These algorithms must join robustness and low
computational cost, and still there are few methods
efficiently adequate to the constrained mobile envi-
ronments. Thus, the main objective of this work was
to evaluate the performance of the recently proposed
BRISK algorithm on a mobile device. To do so, a
mobile implementation, named M-BRISK, was pro-
posed.

M-BRISK is focused to run in the most com-
mon ARM processors architecture. The implemen-
tation successfully overcame some mobile environ-
ment constraints, as processing power and limited in-
structions set, confirmed through the analysis of the
obtained results. These showed that M-BRISK is
so efficient and accurate as the original BRISK im-
plementation, which presents excellent results even
when compared with the well established SIFT and
SURF. Moreover, M-BRISK presented a overall run-
ning time approximately twice smaller than ORB and
20 times smaller than SURF, the other mobile ap-
proaches evaluated. Thus, it is possible to point M-
BRISK as a very suitable approach for detection and
description on mobile applications.

In future works, a version of M-BRISK with
NEON instructions will be tested against the serial
version. Also other parallel development paradigms,
such as GPGPU processing, supported by the most
advance mobile devices, must be considered. More-
over, a detailed analysis of M-BRISK computational
complexity is desirable.
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