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Abstract: This paper presents a fast method for acquiring 3D models of unknown objects lying on a table, using a 
single viewpoint. The proposed algorithm is able to reconstruct a full model using a single RGB + Depth 
image, such as those provided by available low-cost range cameras. It estimates the hidden parts by 
exploiting the geometrical properties of everyday objects, and combines depth and color information for a 
better segmentation of the object of interest. A quantitative evaluation on a set of 12 common objects shows 
that our approach is not only simple and effective, but also the reconstructed model is accurate enough for 
tasks such as robotic grasping.  

1 INTRODUCTION 

The objective of this work is to acquire 3D models 
of unknown objects lying on a table, using a single 
viewpoint. This is of particular interest for 
applications that have to deal with new objects 
constantly, such as augmented reality or general-
purpose robotic manipulation, which is the context 
of this paper (Figure 1). With the availability of 
inexpensive RGB-Depth (RGB-D) cameras such as 
the Microsoft Kinect (Microsoft, 2010), dense color 
and depth information about the scene can be 
acquired in real-time with a good precision at short 
distances. Thus, a RGB-D image already contains a 
lot of information, but a single image only provides 
the geometry of the visible parts (Figure 2). Due to 
self-occlusions, the hidden parts create empty gaps 
that have to be estimated using a priori knowledge.  

The literature on object reconstruction from 
multiple views is large, but single view modeling 
has received a significant interest only recently, 
mostly motivated by robotic grasping applications. 
A first category of methods assumes that the objects 
to be modeled have a simple enough shape, and try 
to fit a predefined set of shape primitives (Kuehnle et 
al., 2008) (spheres, cylinders, cones or boxes) or a 
combination of them (Miller and Allen, 2004). This 
approach was made more general in other works 
such as (Sun et al., 2011) and (Thomas et al., 2007) 
by using a database of objects with known shapes 
and a recognition module. 

 

 
Figure 1: Robotic platform which is the scenario of this 
paper: (1) The Kinect camera is located on the side, 
oriented to get a top view of the objects; (2) a 20-DoF, 
five-fingers anthropomorphic hand from Shadow; (3) a 7-
DoF PA-10 arm. 

 
Figure 2: Example of a point cloud from the Kinect 
camera. Left: view of the visible parts from everyday 
objects lying on a table.  Right: same point cloud from top 
view, where empty gaps belong to occluded parts.  

When an extensive database of object models is not 
available or practical, more generic a priori 
assumptions are required. The most common one is 
to rely on the symmetries of real-life objects (Thrun 
and Wegbreit, 2005). The problem then becomes to 
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find the nature of the symmetries in the partial point 
cloud. These are hard to estimate in practice because 
of the large search space and limited data, leading 
e.g. to limit the set of hypotheses to a vertical plane 
axis in a restricted range (Bohg et al., 2011), or to 
focus on rotational symmetries (Marton et al., 2010). 

Modeling 3D objects by symmetry is a common 
approach because many objects are symmetric, but 
also, a large class of everyday objects, especially 
when manufactured, can be generated by extruding a 
2D shape through an extrusion axis. The extrusion 
process is widely used by designers and engineers to 
generate 3D models from 2D sketch input. This 
approach is particularly adapted to the fast 
reconstruction of objects lying on a flat table, which 
is a common scenario in robotics, because the table 
plane normal provides a natural extrusion axis. Thus, 
this paper proposes to leverage this property by 
reconstructing the hidden parts with an extrusion of 
the top view of the objects. 

The contributions of this paper are three-fold. 
First, we propose a new technique to extrude an 
initial sparse point cloud output by a tabletop object 
detector. Second, we propose a refinement step that 
takes advantage of the complementarity of the depth 
and color images by carefully initializing a graph-cut 
based color segmentation with the depth data. 
Finally, a quantitative evaluation of the accuracy of 
the reconstructed meshes is performed on a set of 12 
common use objects, showing that its effectiveness 
is comparable to the most recent approach using 
symmetries (Bohg et al., 2011). Some preliminary 
experiments for grasping applications are also 
conducted using the OpenRAVE simulator 
(Diankov, 2010). 

2 GLOBAL OVERVIEW 

For achieving our aim of the acquisition of 3D 
models using a single RGB-D image, we propose an 
algorithm which can be divided into two main 
stages: computation of the initial volume (Section 3) 
and its completion through color-based model 
refinement (Section 4). These stages include several 
steps which are illustrated in Figure 3. 

In the first stage, a table-top object detector 
identifies and extracts a cluster of 3D points 
belonging to the object. Then, existing points are 
extruded along the table plane normal to fill a 
voxelized volume around the cluster of interest. 
Object concavities may get filled during the 
extrusion step, which we compensate by checking 

the voxel consistency against the depth image. 
Depth images output by low-cost RGB-D 

cameras are usually imprecise around the object 
borders, and frequently have holes due to reflections 
or other optical effects. Since the color image does 
not suffer from these issues, in the second stage, we 
refine the object boundaries using color 
segmentation. The refined set of voxels is then given 
as an input to the final meshing algorithm. 

3 COMPUTATION OF THE 
INITIAL VOLUME 

3.1 Cluster Extraction 

A table top object detector similar to (Rusu et al., 
2010) is run on the depth image. The dominant 3D 
plane is first fitted to the depth data using RANSAC, 
then points lying outside of a prism around the table 
plane are eliminated. Remaining points are then 
clustered using Euclidean distances with fixed 
thresholds. Clusters that are too small or do not 
touch the table are eliminated. The cluster of interest 
is then determined in a task-dependent way, e.g. by 
choosing the most central one. To make 3D 
processing faster and get a natural neighborhood 
between 3D points, a voxelized volume of fixed size 
is then initialized around the cluster, and the voxels 
corresponding to a cluster point are labeled as 
“object”. The voxel size is a user-defined parameter 
depending on the desired precision/speed tradeoff. 
All reconstructions shown in this paper are with 
3mm voxels. 

3.2 Voxel Filling by Extrusion 

The objective of this step is to “fill” the occluded 
parts by relying on the assumption that the object 
can be approximated by an extrusion process. 
Taking into account that the table plane normal 
provides the natural extrusion axis for most objects, 
it is not necessary to calculate the object axis to get 
the extrusion direction. Instead, we consider the 
table plane normal as the extrusion direction of the 
top face of the object. The proposed algorithm is the 
following: 

1. For each voxel which is considered as “object”, 
compute the line segment going from the voxel 
to the plane along the plane normal. 

2. Label all voxels intersecting a line segment as 
“maybe object”. 

VISAPP�2013�-�International�Conference�on�Computer�Vision�Theory�and�Applications

156



Figure 3: 
to obtain 
consistenc

The resu
object vo
by runni
uncertain
image. T
on the v
data. For
empirica
structurin
in Figure

3.3 C

The extr
correspo
corrected
object” v
by reproj
comparin

Figure 4: 
of a box. 
Right: vo
plane. Gr
occlusion

If the di
voxel is
depends 
sensor, a
Kinect. 
Figure 5

Color an

3D Scen

Overview of o
the initial volu
cy check. The c

ult of this step
olume. The m
ing a morphol
nties around 

The optimal st
voxel size an
r voxels of 3

ally found tha
ng element. A
e 4. 

Consistency

rusion step ma
ond to holes 
d by checkin
voxels against
jecting each v
ng the project

Voxel filling b
Middle: voxeli

oxelized mesh 
ray voxels corre
ns. 

ifference is gr
s labeled as 

on the estim
and is set to 
The output o
. 

nd Depth Image

Table-
Obje

Detec
ne Points 

ur model acqui
ume.  This stag
computed mode

p is a rough 
model is then s
logical closing

object borde
tructuring elem
nd the proper
3mm and a K
at a 3x3x3 cu
An example o

y Check 

ay fill regions
or concaviti

ng the consist
t the depth im
voxel onto the
ted depth with

by extrusion. Le
zed mesh of the
after extrusion

espond to unsee

reater than a 
“background

mated accura
3mm in all 

of this proces

e 

-top 
ect 
ctor 

V
by e

isition process. 
e includes thre
el is the input o

estimation of
slightly smoo
g to cope with
ers in the d
ment size depe
rties of the d

Kinect camera,
ube is a satisfy
of output is g

of the object 
ies. This can
tency of “ma

mage. This is d
 depth image,

h the depth ima

eft: raw point c
e raw object clu
n towards the t
en parts due to 

threshold δd,
”. The thresh

acy of the d
experiments w
s is illustrate

Voxel 
extrusion 

The Kinect cam
ee key points: ta
of the color-base

f the 
othed 
h the 
depth 
ends 

depth 
, we 

fying 
given 

t that 
n be 
aybe 
done 
, and 
age. 

 
cloud 
uster. 
table 
self-

, the 
hold 

depth 
with 

ed in 

4

Aft
may
mis
D f
belo
tran
colo
prop
refi
ima
usin

4.1

The
seg
gen
ava
Joll
fore
al.,
et a
mix
a us
to
Rec
des
info
cha
both
run
dep
mas

Consistency
Check

mera provides a
able-top object 
ed refinement m

COLOR
REFINE

er the above s
y still have m
ssing or incorr
frame. Incorre
ong to objec
nsparent or re
or image do 
pose to impro
ining the obj
age and then
ng image inpa

1 Improv
Segmen

ere are many 
mentation, bu

neral case. Ho
ailable, graph
ly, 2001) h
eground/backg
2005). In par

al., 2004) co
xture models a
ser provided m
the refinem

cently, GrabC
cribed in (Va
ormation by 
annels with a w
h information

GrabCut on
pth information
sk. This appro

Color-bas
Model

Refineme

a depth and col
detector, voxe

model stage. 

-BASED M
EMENT 

steps, the obta
issing parts an
rect depth inf
ct pixels in th

ct borders an
eflective objec

not suffer f
ove the quality
ject segmenta
n filling-in in
ainting. 

ement of th
ntation 

existing techn
ut this is still a
wever, when 

h-based techn
have proven 
ground segme
rticular, the Gr
ombines graph
and is designe
mask. It is thu

ment of an 
Cut has been 
aiapury et al
combining 

weighting fact
n in a single e
nly on the co
n for the initia

oach takes a gr

ed 

ent

Poiss
Reconstr

lor image, whic
el filling by extr

MODEL 

ained 3D obje
nd irregulariti
formation in t
he depth imag
nd areas of 
cts. Observing
from these is
y of the mode
ation using t
ncorrect dept

he Object 

hniques for co
an open probl
a good initial
niques (Boy

very effec
entation (Lom

GrabCut varian
h cuts with 
ed to take adv
us particularly
initial segm
extended in 

l., 2010) to u
the RGB an
tor. Instead of
energy, we pr
olor image, b
alization of an

greater advanta

3D Objec

son 
ruction

 
ch are used 
rusion and 

ect model 
ies due to 
the RGB-
ge usually 

specular, 
g that the 
ssues, we 
el by first 
the color 
th values 

olor-based 
em in the 
lization is 

ykov and 
ctive for 
mbaert et 
nt (Rother 
Gaussian 

vantage of 
y adapted 

mentation. 
the work 

use depth 
nd depth 
f merging 
ropose to 
but using 
n accurate 
age of the 

ct Model

3D�Object�Reconstruction�with�a�Single�RGB-Depth�Image

157



 

complem
image is
color in
sensitive
segmenta
the initia
3 using 
3D poin
Then, p
backgrou
not con
informat
point, th
different
belong t
foregrou
consider
be chang
robustne
uncertain
image, o
marked 
algorithm
compute

Than
Cut per
backgrou
backgrou

4.2 H
In

The obt
some pi
after the 
the hole 
inpaintin
using ne
depth m
vision ap
2011). 
foregrou
a hole-fi
for 3D v

Follo
this work
segmenta
surround
holes are
from the
are filled
"back-gr
 
 

mentarity of th
s misleading n
nformation i
e to backgro
ation. The in
al model outp
depth inform

nt from the v
ixels are lab
und or unkno
nsistent or 
tion). Taking 
he mask is cr
t initialization
to foreground

und or backgr
red as foregro
ged by the alg
ess to segmen
nty associated
only pixels wh
using those d

m on the colo
ed mask for on
nks to the accu
rforms well 
und have a sim
und is cluttere

Hole Filling
npainting 

ained object 
xels which h
color refinem
filling metho

ng techniques 
eighbouring pi

map output by
pproach has b
However, it

und/backgroun
filling method
video was prop
owing this, im
k to fill missi
ation mask 

ding values of
e filled only w
e other "object
d only with d
round" values.

he techniques
near the objec
s not neces
ound clutter 

nitialization is
put by the algo
ation only, re

volume onto 
belled as obj
own (if their p

they do n
this initializa

reated. GrabC
n values acc
d, background
round. Pixels 
ound and bac
gorithm and th
ntation errors
d to edge pix
hich are not o
definitive labe
or image is th
ne iteration. 
uracy of the in
even if the 

milar color dis
ed, as shown in

g through D

segmentation
have been cla

ment do not ha
ods use image

to fill up the
ixels. Recentl

y Kinect, a cr
been presente
t does not 
nd segmentati
d using depth
posed in (Oh e
mage inpaintin
ing depth valu

to fill pix
f the same ki
with depth inf
t" pixels and b
epth coming 
. 

s, since the d
t borders, and
ssary and m

for the in
 thus taken f
orithm of Sec

e-projecting ev
the depth im
ect (foregrou
projected dept
not have d
ation as a star
Cut can take 
cording to pi
d, most prob
which have b

ckground will
hus ensure a g
s. To handle
xels in the d
on a boundary
els. The Grab
hen run using

nitial mask, G
object and 

stribution or if
n Figure 6. 

Depth 

n is accurate 
assified as ob
ave depth. Mo
e interpolation
e remaining h
ly, to improve
ross-modal st
ed in (Chiu et

benefit from
ion. Furtherm
-based inpain
et al., 2009). 
ng is propose
ues, but using
xels with o
nd.  Thus, ob
formation com
background h
from surround

depth 
d the 
more 
nitial 
from 
ction 
very 

mage. 
und), 
th is 

depth 
rting 
four 
ixels 

bably 
been 
l not 
good 
 the 

depth 
y are 
bCut 
g the 

Grab-
the 

f the 

but 
bject 
st of 
n or 

holes 
e the 
tereo 
t al., 
m a 
more, 
nting 

ed in 
g the 
only 
bject 
ming 
holes 
ding 

Figu
con
afte
chec
the 

Figu
whe
ima
post
unk
Righ
mar

The
200
mar
orig
spe

dep

1.

2.

Onc
algo
imp

ure 5: Consi
cavities. Left: 
r extrusion. Ri
ck. Holes and 
extrusion algor

ure 6: Snapsho
en the foregrou
age, the object 
ter. Middle: ini

known (black), 
ht: final object 
rked as: object (

e OpenCV 
04), a fast in
rching, is the 
ginal depth 
cifying the pix
To fill the d

pending on the

Object: the ta
"object" pixe
inconsistent d
4.1. Pixels w
marked as t
influencing th
Background: 
labeled as “b
Similarly to t
also marked a

ce the depth im
orithm of S
provement obt

istency check 
color image. M
ght: remaining 
concavities tha
ithm are remov

t of a refined o
nd is similar to
of interest is 
tial segmentatio
object (white) 
segmentation, 

(white) and bac

implementatio
npainting tech

used method
image and 

xels to be fille
depth image, 
e pixel class: 

arget area to b
els without 
depth values 

which belong t
target area to
he inpainting. 
the target area
background” 
he previous ca
as target area. 

mage has been
Section 3.3 
tained after se

to carve h
Middle: coloriz

g voxels after c
at were wrongly
ved if they are v

object segment
o background. L
a storage jar o
on. Pixels are m

) and backgrou
after Grabcut. 

ckground (black

on of Telea
hnique based

d. It takes as 
an inpaintin

ed. 
two masks 

be filled corre
depth value 
determined in

to background
o prevent th

a corresponds
without dep

ase, "object" p

n refined and 
is run aga

egmentation re

 
holes and 
zed voxels 
onsistency 
y filled by 
visible. 

 
ation even 
Left: color 
on a color 
marked as: 
und (gray). 

Pixels are 
k). 

a (Telea, 
d on fast 
input the 

ng mask 

are used 

sponds to 
or with 

n Section 
d are also 

hem from 

s to pixels 
th value. 
pixels are 

filled, the 
ain. The 
efinement 

VISAPP�2013�-�International�Conference�on�Computer�Vision�Theory�and�Applications

158



 

and dept
pixels w
whose d
is obtain
(Kazhda
to create

5 EX

5.1 E
R

Figure 7:
refinemen
from the 
image. (c
point from
as: unkn
(gray). (
according
(white) a
hole fillin

The prop
12 real o
which ar
between 
our algo
where th
orientatio
contains 
calculate
the eval
reference
proposed
reference
commerc

The 
currently

th inpainting 
without depth 

epth was not 
ned using P

an et al., 2006
e a smooth me

XPERIME

Evaluation 
Reconstruct

(a)                  

(d)             

: 2D images r
nt using a book

Kinect camera
c) Initial segm
m the volume 

nown (black), 
(d) Final obje
g to Section 4
and background
ng through depth

posed algorith
objects with v
re shown in F

5 and 9 mes
orithm in the 
the objects l
ons and pla
72 reconstru

ed from a sing
luation, the g
e and recon
d algorithm 
e models h
cial laser scan
processing tim

y less than 2 

is shown in 
information a
correct. The fi

Poisson surfac
6) on the voxe
sh of the obje

ENTS 

of the Accu
ted Mesh 

       (b)               

  
                          

results of the 
k as illustrativ
a: (a) color im

mentation re-pr
of Section 3.3.
object (white

ect segmentati
4.1. Pixels are 
d (black). (e) 
h inpainting. 

hm has been t
very different 
igure 8. For e
shes have bee
scenario sho
ie off the ta

aces. Therefo
ucted models 
gle view of K
geometric dif
nstructed me

has been 
have been a
nner. 
me of the wh
seconds on a

Figure 7, fil
and border pi
final object m
ce reconstruc
elized point cl
ect. 

uracy of the

            (c) 

   (e) 

color-based m
ve example. Im
mage and (b) d
rojecting every
. Pixels are ma
) and backgro
ion after Grab
marked as: ob
Depth image 

tested on a se
sizes and sha

each of the obj
en acquired u
wed in Figur
able in diffe
re, the data 
which have b

Kinect camera.
fference betw
eshes using 

calculated. 
acquired with

hole algorithm
a 2Ghz comp

lling 
ixels 

model 
ction 
loud 

e 

 

 

model 
mages 
depth 
y 3D 
arked 
ound 

abCut 
bject 
after 

et of 
apes, 
bject, 
using 
re 1, 
erent 

set 
been 
 For 

ween 
our 
The 

h a 

m is 
puter 

for 
sign
in 
poin
for 
con

(Me
geo
reco
alig
(IC
dist
betw

     (a

      

      

Figu
obje
obje

dev
mes
mes
0.96
sim
extr
in c
sign
met
obje
al., 
20m

mea
sen
diff
tabl
con

a point clo
nificantly imp
(Bohg et al.,
nts.  Althoug

the curren
nsidered as fut
A free 3D m
eshLab, 2011

ometric diffe
onstructed 3D
gned in the s
P) is used to 
tance to m
ween them. 

  
a) Baci               

  
(e) Camera      (f

 (i) Pink Handle 

ure 8: The 12
ect, at least 5 
ect in different o

Figure 9 sh
viation betwe
shes for all o
shes is 3.87m
6mm. Taking

milar to the se
rusion approa
comparison w
nificant impro
thod, the me
ects, independ
2011) the av

mm for bigger
It is importa
asurement gat
se that each
ferent orientat
le, as it is sho

nsideration mo

oud with less
proving comp
, 2011) with 
h this compu
nt applicatio
ture work.  

mesh processin
1), has been 
erence betw
D models w
same space. 
align the mes
easure the 

       (b) Book     

  
f) Pencil Holder   

  
               (j) Pen 

real objects of
images have 

orientations and

hows the me
een referenc
objects.  The 
mm and the 
g into accoun
et used in (B
ach provides a
with earlier sy
ovement for la
an error is l

dently of their
verage error i
r objects. 
ant to note t
thered is statis
h object ima
tions and diff
wn in Figure 

ost of the poss

s than 3000
putation time 

a similar nu
utation time is
on, optimiz

ng software, 
used to com

ween referen
which should 

Iterated Clos
shes and the H
geometrical 

  
            (c) Can   

  
(g) Toy          (h)

    
     (k) Tennis bal

f the database.
been acquired
d places on the 

ean and the 
ce and reco
e average erro

standard dev
nt that the ob

Bohg et al., 20
a similar effe

ymmetry meth
arge objects. 
less than 5m
r size while in
is less than 7

that the exp
stically very r
age was cap
ferent location
10. Such set t
sible sources 

0 points, 
achieved 

umber of 
s suitable 
ation is 

MeshLab 
mpute the 
nce and 

be well 
sed Point 
Hausdorff 

distance 

   
  (d) Glue 

 
) Cup 

 
ll (l) Cube 

. For each 
d from the 

table. 

standard 
onstructed 
or for all 
viation is 
bjects are 
011), our 

ectiveness 
hod and a 
With our 

mm in all 
n (Bohg et 
7mm and 

erimental 
rich in the 
ptured in 
ns on the 
takes into 
of errors,

3D�Object�Reconstruction�with�a�Single�RGB-Depth�Image

159



Figure 9: 
the databa

such as h
or other 
results an

Figur
“pink ha
visible 
approxim
view (Ca
top-view

Takin
this wor
obvious 
errors le
be seen 
different
average 
3mm. If 
the spe
reconstru
particula

      (a) Cas

      (e) Cas

Figure 10
orientatio

 
 

0

1

2

3

4

5
A

ve
ra

ge
 M

es
h 

Er
ro

r [
m

m
] 

Evaluation of t
ase. The mean e

hiding differen
optical effec

nd increase th
re 11 shows 
andle” object

parts provi
mate the geom
ase 2 and 3), b

w is not very in
ng into accoun
rk is 3mm (
that we cann
ss that the me
in the table 

t objects, wh
error is 2,5m

f more precisio
eed and imp
ucted object m
ar task require

  
se 1         (b) Case

  

se 5         (f) Case

0: The “pink h
ons on the table.

Baci B0 
0.5 

1 
1.5 

2.5 

3.5 

4.5 

5.5 

2 

3 

4 

5 

the mean error 
error is less tha

nt geometric d
cts, which af
he error. 
as, due to th
, the error is
ide enough 

metry by an ex
but the error in
nformative (C
nt that the vox
Section 3.1) 

not obtain rec
entioned voxe

of the avera
here only th
mm while th
on is required
prove the a
models. This 
s it. 

  
e 2          (c) Case

  

e 6           (g) Case

handle” object 
. 

Book Camera

and standard de
n 5mm in all ob

details, reflect
ffect the obta

he position of
s lower when

information 
xtrusion of its 
ncreases when

Case 6). 
xel size chose
then it is fa

constructions w
el value.  This
age errors of
he Rubik’s c
he rest are ab
d, we may sca
accuracy of 
can be done 

  
 3           (d) Case

  

e 7          (h) Case

in the 8 evalu

a Can Cup

eviation betwee
bjects, being th

tions 
ained 

f the 
n the 

to 
top-

n the 

en in 
fairly 
with 

s can 
f the 
cube 
bove 
arify 

the 
if a 

 
e 4 

 

e 8 

uated 

Figu
tabl
Com
4.09

5.2

Fig
algo
13 s
be 
clou
app
than
Rec
alm
ima

a ge
an e
obta
esti
ano
be e

up Glue P

A
ve

ra
ge

 M
es

h 
Er

ro
r [

m
m

] 

en reference and
he average error

ure 11: Evaluat
e of the “pink 

mparing to its 
9mm and the sta

2 Model R

ure 12 shows
orithm for the
shows objects
obtained des
ud. The qualit

proach, but it 
nks to the se
construction is

most no inform
age.  
Figure 14 giv
eometry that 
extrusion of t
ained model
imations for g
other camera w
enough to obt
 

Pen Pencil 
Holder 

 7
6.5

6
5.5

5
4.5

4
3.5

3
2.5

2
1.5

1
0.5

0

Case 1 Case 2

d reconstructed
less than 4mm

ion of the error
handle” object,

reference mo
andard deviatio

Reconstruc

s some mesh
e tested set of 
s for which a v
pite of a ver
ty of the top v
was made sig
gmentation an
s even possibl
mation was p

ves examples 
cannot be rou
their top-view
s are not v
grasping are 
with a differen
ain a good mo

Pink 
Handle

Rubik
Cub

Case 3 Case 4 C

d meshes for all
m. 

r for 8 orientati
, shown in the 
odel, the mean
on is 1.49mm. 

ction Result

hes acquired u
12 real objec

very good mo
ry sparse init

view is essenti
gnificantly mo
and depth filli
le in some cas
present in the

of objects wh
ughly approxi

w. Note that ev
very accurate
still obtained
nt point of vie
odel in these c

k’s 
be 

Tennis 
Ball 

T

Case 5 Case 6 Cas

 
l objects of 

 

ions on the 
Figure 10. 
n error is 

ts 

using our 
ts. Figure 

odel could 
tial point 
ial for the 
ore robust 
ing steps. 
ses where 
e original 

hich have 
imated by 
ven if the 
e, useful 

d. Adding 
ew would 
cases. 

Toy 

se 7 Case 8

VISAPP�2013�-�International�Conference�on�Computer�Vision�Theory�and�Applications

160



 

5.3 A

Since gr
paper, th
grasping
represen
experime
OpenRA
grasps in
grasps fo

          (a) B

    (e) Cam

      (i) Pink

Figure 12
objects of

 (a) 

 (b) 

 (c) 

Figure 13
(a), a pink
Middle: in
table). Rig

Application

rasping itself 
he suitability

g has been te
ntative way.  
ents have 

AVE simulator
n many positio
or a given obje

  
Baci                    (

       
mera        (f) Penci

  
k Handle           (j

2: Model reco
f the database, s

  

 

 
3: Model recons
k handle (b) an
nitial point clou
ght: final mesh 

n to Graspin

is not the m
y of the acqu
ested on a si

Both planni
been per

r (Diankov, 20
ons to determ
ect, as illustra

(b) Book              

      
l Holder     (g) To

    
) Pen        (k) Ten

onstruction resu
shown in Figure

 

struction result
nd a camera (c)
ud (white point
using Poisson r

ng 

main scope of 
uired meshes
ingle object a
ing and grasp
rformed wi
010).  It simul

mine a set of st
ated in Figure 

    
    (c) Can     (d) 

   
oy         (h) Cup 

      
nnis ball    (l) Cub

ults of the 12 
e 8.  

 

 
s of a pencil ho
. Left: color im
ts correspond to
reconstruction.

f this 
s for 
as a 
ping 
ithin 
lates 
table 
15.  

 
Glue 

 

 
be 

real 

 

 

 
older 

mage. 
o the 
 

 (a) 

 (b)

Figu
tripo
initi
reco

 

Figu
Ope
gen

Figu
tow
calc
hav

)  
ure 14: Model 
od (a) and a ten
ial cluster. 
onstruction. 

 
ure 15: Five g
enRAVE for a
erated using the

ure 16: Simula
ard the selecte

culated off-line 
e been perform

reconstruction 
nnis ball (b). Le
Right: final 

  

grasps of the g
a pink handle 
e proposed algo

ted and real se
ed grasping po
previously. Bo
ed within Open

 

 
results of a ca

Left: color imag
mesh using

 
grasp table gen

whose mesh 
orithm. 

equence of the
osition, which 

oth planning an
nRAVE. 

 

 
amera on a 
ge. Middle: 

Poisson 

 

  
nerated by 

has been 

 
trajectory 
has been 

d grasping 

3D�Object�Reconstruction�with�a�Single�RGB-Depth�Image

161



 

Then it can be used for online path planning in a 
given scene, where the object is recognized and its 
pose estimated to perform the suitable grasp, which 
has been calculated off-line previously. 

Figure 16 shows the sequence of the trajectory in 
simulation and on the real robot of our scenario 
(Figure 1), suggesting that the acquired mesh is 
suitable for grasping.  A more exhaustive evaluation 
of grasping from a single viewpoint in simulation 
and on our robotic platform is considered as future 
work. 

6 DISCUSSION AND FUTURE 
WORK 

In this paper, a method that reconstructs a model of 
everyday, man-made objects from a single view has 
been proposed. We have validated the precision 
evaluating the difference between the reference and 
the reconstructed model for 12 real objects. The 
average error for all meshes is less than 4mm and 
the standard deviation is less than 1mm. 
Furthermore, compared to earlier methods, our 
approach provides 3D models improving run-times 
significantly with a similar accuracy and even, a 
significant improvement both in run-time and 
accuracy for bigger objects.  

Experimental results with different objects 
demonstrate that the obtained models are precise 
enough to compute reliable grasping points. Thus, 
the current system is an easy and effective approach 
but it has some limitations when objects have very 
thin structures, or with objects whose top-view is not 
very informative. However, thanks to the generality 
of the proposed algorithm, this could be 
compensated by adding more cameras as needed, 
applying the same technique on each view and 
finally merging the resulting voxels. Furthermore, 
symmetry and extrusion could complement one 
another. 

In the future, to handle a wider range of objects, 
rotational symmetries exploitation is planned 
through the combination with techniques of shape 
estimation such as the work described in (Marton et 
al., 2010). Moreover, for manipulation applications, 
the integration of single view estimation with the 
incremental model refinements techniques of e.g. 
(Krainin et al., 2010) and (Krainin et al., 2011) 
would be interesting. Finally, the combination of this 
approach with an online grasp planner is also 
planned to enable fast online grasping and 
manipulation of unknown objects. 
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