
Cage-free Spatial Deformations

M. Àngels Cerveró, Àlvar Vinacua and Pere Brunet
Departament de Llenguatges i Sistemes Informàtics LSI, Universitat Politècnica de Catalunya,

Campus Nord, 08034 Barcelona, Spain

Keywords: Generalized Barycentric Coordinates, Cage, 3D Model Deformations.

Abstract: We propose a new deformation scheme for polygonal meshes through generalized barycentric coordinates that
does not require any explicit cage definition. Our system infers the connectivity of the control points defined
by the user and computes the coordinates using this structure. This allows the user to incrementally position
the control points (or delete them) wherever he considers more suitable. This freedom gives more control,
precision and locality to the deformation process.

1 INTRODUCTION AND
PREVIOUS WORK

Cage-based Deformation is a widely used spatial
model-deformation system. The geometric model to
be deformed is located inside a polyhedron (or a poly-
gon) called cage. The vertices of the cage are the con-
trol points Q of the deformation and the vertices p
of the model are defined as a convex combination of
Q using a system of Generalized Barycentric Coordi-
nates (GBC) (see Equation 1).

p = å
i

qiai(p); (1)

where i is the index of the corresponding control point
and ai(p) is the GBC of p w.r.t control point qi.

The overall deformation consists in two steps:

1. Preprocess step: given the cage, the GBC ai(p)
are computed and stored for each vertex p.

2. Deformation step: every time the control points
are modified, the model is recomputed (see Equa-
tion 2).

p
0
= å

i
q
0
iai(p) (2)

Barycentric Coordinates, as proposed by Mbius
(Mbius, 1827), allow to define a point p inside a sim-
plex w.r.t its vertices. However, the restriction over
the polytope structure has led to the rise of different
Generalized Barycentric Coordinates (GBC) systems
that try to extend the classic scheme to use it in more
general polygons and polyhedra.

Wachspress (Wachspress, 1975) and Meyer et al.
(Meyer et al., 2002) defined GBC systems that work
over convex polygons.

It wasn’t until the definition of the Mean-Value
Coordinates (MVC) (Floater, 2003; Floater et al.,
2006) and MVC in 3D (Floater et al., 2005; Ju et al.,
2005) that a solution to compute the coordinates over
concave polygons and polyhedra was given. How-
ever, MVC give negative results if the point p lies
outside the polygon (polyhedron in 3D) or outside the
kernel of the concave ones. For this reason, Lipman
et al. (Lipman et al., 2007) defined the Positive MVC
which guarantee the positivity of the coordinates over
any domain.

At 2007, Joshi et al. (Joshi et al., 2007) pre-
sented the Harmonic Coordinates (HC), which can
work over any kind of polygon and polyhedron (con-
vex and concave) but do not have a closed formula.

Lipman et al. (Lipman et al., 2008) defined the
Green Coordinates (GC) that can be used over any
kind of polygon and polyhedron. GC use vertices and
normals of the cage to complete their convex combi-
nation (see Equation 3).

p = å
i

qiai(p)+å
j
~n jb j(p); (3)

where j is the index of the corresponding face (edge).
Using GC, Li et al. (Li et al., 2010) developed

a technique to allow local and smooth deformations
over a shape without any kind of cage around it.

The main contribution of our proposed algorithm
is the ability toperform real-time mesh deformations,
without therequirement of defining explicit cages.

The deformation is performed through a novel
system ofGBC and the users can locate the control

111
Cerveró M., Vinacua À. and Brunet P..
Cage-free Spatial Deformations.
DOI: 10.5220/0004285201110114
In Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information
Visualization Theory and Applications (GRAPP-2013), pages 111-114
ISBN: 978-989-8565-46-4
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



+

Compute
Structure

Compute
Generalized
Barycentric
Coordinates

Control
Points’

+
Generalized
Barycentric
Coordinates

Add/Delete Control Points

User Input Preprocess Deformation

Figure 1: Deformation algorithm pipeline with two-step preprocess.

points anywhere, to ensure precise deformation con-
tol. Moreover, they can be inserted and deleted at any
time during the deformation.

Anoverview of the algorithm is presented in Sec-
tion 2. Sections 3 and 4detail the preprocess which
builds the auxiliary list of convexpartitions and com-
putes the GBC. Finally, Section 5 discusses our re-
sults, whereas Section 6 is devoted to theconclusions
and future work.

2 OVERVIEW

As already mentioned, our main goal is to derive a de-
formation schemewhich only considers the distribu-
tion of the control points in thespace, with no imposed
connectivity. Users should havecomplete freedom in
placing control points anywhere in the region of the-
model, not having to define cages and their polyhe-
dral topologies.The proposed deformation algorithm
includes two preprocessing steps:

1. A static framework of convex polyhedra is auto-
matically computed from the set ofuser-defined
control points.

2. For every vertex p of the polygonal mesh to be
deformed, itsGBC ai(p) are computed and stored.

During the deformation, Equation 2 is used to
update thelocation of the mesh vertices, similarly to
cage-based deformation systems.

Figure 1 shows the complete pipeline of our de-
formation scheme.

3 NESTED PARTITIONS

Once the user has defined the control points in the
vicinity of the model, our system needs to automati-
cally define some kind of connectivity between them
to support the calculation of the coordinates. This
connectivity is done through two complete partitions
of the convex hull (CH) of these points into triangu-
lated convex polyhedra.

The first partition that our method calculates is
the convex hull. Then, the second partition is built
adding, one by one, those control points laying into
the CH, respecting the order in which the user had de-
fined them (from more general to more local impact).
The first added point performs a complete convex par-
tition of the CH and for the rest of the points, the algo-
rithm finds the already computed convex that contains
this point and substitutes it by a convex partition of it.
See Algorithm 1 and Figure 2 for an overview of the
algorithm.

Algorithm 1: Layers.of.nested.partitions.

Require: The control points Q

Ensure: P is the set of partitions

CH = GetConvexHull(Q)

AddPartition(P, CH)

Qint = GetInteriorCPoints(CH, Q)

part = GetPartition(CH, Qint[0])

for i = 1 to size(Qint)

convex = GetConvexWithQ(part, Qint[i])

sub_part = GetPartition(convex, Qint[i])

RemoveConvex(part, convex)

AddConvexes(part, sub_part)

AddPartition(P, part)

return P

Partitions are simply computed by spliting the
convex to be partitioned into a set of tetrahedra. See
Algorithm 2 for the pseudocode of this algorithm.

Algorithm 2: Get.Partition.

Require: A Convex and a control point Qint[i]

Ensure: Partition is the partition of Convex

into tetrahedra w.r.t Qint[i]

for j = 0 to numFaces(Convex)

face = GetFace(Convex, j)

tetra = GetTetrahedron(face, Qint[i])

AddTetrahedron(Partition, tetra)

return Partition

Figure 2 shows a 2D example of the supporting
structure that is obtained by our algorithm.

GRAPP�2013�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

112



Initial situation

Nested partitions +

Figure 2: Convex partitions in the 2D case (framed in red).

4 COMPUTATION OF THE GBC

The next step is to compute the GBC that relate the
model with the control points.

Our system has to deal with multiple convexes
which are arranged in two partitions. Each of these
convexes contains parts of the mesh to be deformed
and each partition contains the whole mesh. This
means that the GBC system used must ensure the con-
tinuity between all the convexes in the same partition
(the GBC on a face must coincide for the left and right
convexes of this face).

The coordinates of a vertex p of the polygonal
mesh are computed in three steps:
1. Compute the set Convexes of p (Qp): for each par-

tition Pj, find the convex q j that contains p:

Q
p = fq j : p 2 q j ^q j 2 Pj; j 2 f0;1gg (4)

2. For each convex q j of Qp, compute the set of co-
ordinates of p w.r.t q j:

(a
j
0(p);a

j
1(p); :::;a

j
m�1(p)); (5)

where M = jQj.
3. Compute the final coordinates as a convex combi-

nation of the coordinates for each q j in Qp:

a0(p) =
1

å
j=0

w ja
j
0(p)

a1(p) =
1

å
j=0

w ja
j
1(p)

...

am�1(p) =
1

å
j=0

w ja
j
m�1(p); (6)

where å
1
j=0 w j = 1 and w j =

1
jQpj =

1
2 .

The coordinates in Step 2 are calculated using one
of the existing systems of GBC that coincide on the
boundaries of the convexes. In our implementation,
we have chosen the MVC.

See Figure 3 for an example of the influence of the
control points over the mesh of the model.

Figure 3: Influence regions of two different control points.
Red colors correspond to higher values of the coordinate.
The complete connectivity is also shown for a better under-
standing.

4.1 Properties Discussion

Constant precision: åi ai(p) = 1 8p
Proof:

å
i

ai(p) =
1

å
j=0

 
w j å

i
a

j
i (p)

!
(7)

MVC have this property which, together with
Equation 6, implies:

å
i

ai(p) =
1

å
j=0

w j = 1 (8)

Linear precision: p = åi qiai(p) 8p
Proof:

å
i

qiai(p) =
1

å
j=0

 
w j å

i
qia

j
i (p)

!
(9)

MVC have this property, which, together with
Equation 8, implies:

å
i

qiai(p) =
1

å
j=0

w jp = p
1

å
j=0

w j = p (10)

Convex combination: ai(p)� 0 8i; 8p
Proof:

ai(p) =
1

å
j=0

w ja
j
i (p) (11)

Knowing that MVC have this property over con-
vex polytopes, the property is concluded being:

w j =
1
2

j 2 f0;1g (12)

Smoothness
The smoothness of the coordinates of our system is
inherited by the existing coordinates system used in
Step 2 (see Section 4). In our case, the chosen system
is the MVC. For this reason, the final coordinates of
our method present C¥ continuity inside the convexes
(they are smooth) and C0 continuity on their bound-
aries.

Cage-free�Spatial�Deformations

113



5 RESULTS AND DISCUSSION

In this section we present some of the examples over
which we have tested our deformation system. The
computer used in these tests is equipped with an Intel
Core2Duo E8400 3.00GHz CPU with 4GB of RAM
and running Ubuntu 11.10 as O.S.

Figure 4 shows a deformation sequence using the
Armadillo model mesh. For this example we have set-
up 8 surrounding control points and 2 more positioned
near the hand and the elbow of the Armadillo. Notice
that the control point located near the hand allows to
keep it in a more constant position while the control
point in the elbow is displaced.

Figure 4: Local deformation on the Armadillo. The first
image is the initial position. The next two images show the
effect of displacing the control vertex close to the elbow.

We have also evaluated the time needed to com-
pute the connectivity between the control points and
the GBC using these structures. The obtained data is
shown in Table 1.

Table 1: Time needed to automatically compute the con-
nectivity between the control points and the coordinates for
different well-known models.

Model Model
points jQj Interior

Q
Con

vexes

Connec
tivity
(ms)

GBC
(ms)

Total
(ms)

Teapot 529 13 5 25 0.39 4.73 5.12
Bunny 35947 13 5 25 0.39 223.58 223.97
Arma
dillo 172974 14 6 28 0.43 1102.61 1103.04

Dragon 437645 14 6 28 0.40 2533.25 2533.65
Happy
Buda 543652 14 6 28 0.40 3363.91 3364.31

Analyzing the results, we observe that most of the
cost of our algorithm lies in the coordinates compu-
tation. Notice that each partition contains the entire
mesh of the model. In our case, the model has to be
processed twice so the computation of the coordinates
will be at least twice slower than in the classical cage-
based methods.

6 CONCLUSIONS

We have presented a new method for interactive mesh
deformation which does not need any explicit defini-
tion of the structure between the control points. The
user is only responsible of the definition of these con-
trol points, being allowed to locate them wherever he

wants. Our method will automatically compute a con-
nectivity between them to support the computation of
the GBC used to deform the mesh. We have also pre-
sented all algorithms needed to reach our goal.

Our future work will be centered on the study of
new algorithms that improve the creation of the con-
nectivity between control points. Another main line
of work is the parallelization of the algorithms to de-
crease the time used in the computation of the GBC.

ACKNOWLEDGEMENTS

This project has been funded by the Universitat
Politcnica de Catalunya (UPC) and by the project
TIN2010-20590-C02-01 of the Spanish Government.

We wish to thank the reviewers for their helpful
suggestions which have been taken into acconut.

REFERENCES

Floater, M. S. (2003). Mean value coordinates. Computer
Aided Geometric Design, 20(1):19–27.

Floater, M. S., Hormann, K., and Ks, G. (2006). A gen-
eral construction of barycentric coordinates over con-
vex polygons. In Advances in Computational Mathe-
matics, pages 311–331.

Floater, M. S., Kós, G., and Reimers, M. (2005). Mean
value coordinates in 3d. Comput. Aided Geom. Des.,
22(7):623–631.

Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki,
T. (2007). Harmonic coordinates for character articu-
lation. ACM Trans. Graph., 26(3):71.

Ju, T., Schaefer, S., and Warren, J. (2005). Mean value
coordinates for closed triangular meshes. ACM Trans.
Graph., 24(3):561–566.

Li, Z., Levin, D., Deng, Z., Liu, D., and Luo, X. (2010).
Cage-free local deformations using green coordinates.
Vis. Comput., 26(6-8):1027–1036.

Lipman, Y., Kopf, J., Cohen-Or, D., and Levin, D.
(2007). Gpu-assisted positive mean value coordi-
nates for mesh deformations. In Proceedings of the
fifth Eurographics symposium on Geometry process-
ing, SGP ’07, pages 117–123, Aire-la-Ville, Switzer-
land, Switzerland. Eurographics Association.

Lipman, Y., Levin, D., and Cohen-Or, D. (2008). Green
coordinates. ACM Trans. Graph., 27(3):1–10.

Mbius, A. F. (1827). Der Barycentrische Calcul. Johann
Ambrosius Barth, Leipzig.

Meyer, M., Barr, A., Lee, H., and Desbrun, M. (2002).
Generalized barycentric coordinates on irregular poly-
gons. J. Graph. Tools, 7(1):13–22.

Wachspress, E. L. (1975). A Rational Finite Element Basis.
Academic Press, New York.

GRAPP�2013�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

114


