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Abstract: This paper presents a new decomposition model for the Bus Driver Rostering Problem and proposes the 
hybridization of column generation and genetic algorithms to achieve good quality rosters in short time. The 
decomposition model is based on the definition of a subproblem for each driver, which is responsible for the 
creation of valid work-schedules for the rostering period. Column generation is used to obtain an optimal 
linear solution. This solution and the subproblems’ solutions obtained during the column generation are then 
used by the genetic algorithm to find good quality combinations of drivers’ schedules, i.e. good quality 
rosters. Computational tests show the efficiency and effectiveness of the proposed approach. 

1 INTRODUCTION 

Rostering consists in defining the “work-schedule” 
for each of the workers in a company for a given 
period. A roster is a plan presenting the work-
schedules for all workers. A work-schedule defines, 
for each day, if the worker is assigned to work or has 
a day-off and, in the first case, which daily task has 
to be performed. The Rostering Problem arises 
because the company usually has diverse tasks to 
assign on each day, sometimes needing particular 
skills, and on the other hand, the labour and 
company rules (days-off, rest time, etc.) restricts the 
blind assignment of tasks to workers. 

Rostering is addressed in many types of business 
as surveyed in (Ernst et al., 2004). A particular 
attention has been paid to nurse rostering (Burke et 
al., 2004); (Moz and Pato, 2007) and airline crew 
rostering (Kohl and Karisch, 2004). 

In this paper we consider the Bus Driver 
Rostering Problem (BDRP). The literature about the 
BDRP is short (Moz et al., 2009). In fact, most of 
the papers focusing the bus drivers rostering address 
both rostering and shift scheduling as in (De Leone 
et al., 2010); (Dorne, 2008); (Rodrigues et al., 2006), 
where, before the rostering phase, there exists a 
phase where the shift/duties are built by defining the 
sequence of trips and rest time of each bus and only 

after the driver is assigned. In (Wren, 1996) the 
distinctions and similarities between scheduling, 
timetabling and rostering are discussed.  

In this paper we consider the BDRP as described 
in (Moz et al., 2009), where it is assumed that the set 
of tasks (duties) to assign in each day are already 
defined by aggregating sets of consecutive trips and 
rest times. For each task, the start time and total 
duration should be considered to avoid the 
assignment of invalid consecutive tasks (according 
to labour rules), respect the maximum work time 
allowed and obtain the amount of paid overtime. 

The BDRP and most rostering problems are NP-
Hard combinatorial optimization problems (De 
Leone et al., 2010); (Dorne, 2008); (Moz et al., 
2009), being computationally hard to obtain optimal 
solutions. To avoid the computational burden to 
achieve solutions by using exact methods, many 
authors approach the problem with heuristic 
methods which are usually faster in the achievement 
of good solutions. Examples of the use of non-exact 
methods can be found in (Burke et al., 2003); (De 
Leone et al., 2010); (Lučić and Teodorović, 2007); 
(Moz et al., 2009); (Ruibin et al., 2010). 

We propose a non-exact method to address the 
BDRP where the column generation (CG) method 
(Barnhart et al., 1998); (Dantzig and Wolfe, 1960); 
(Desaulniers et al., 2005); (Desrosiers et al., 1984) 
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and a genetic algorithm (GA) (Holland, 1992); 
(Mitchell, 1996); (Reeves, 1997) are combined to 
obtain good quality rosters in short time.  

We present an integer programming model 
adopted for the BDRP, named compact model 
because the growth of the number of constraints and 
variables when the size of the problem increases is 
bounded by a polynomial. We also present a 
decomposition model resulting from grouping 
blocks of independent constraints (related to a single 
driver) of the compact model into independent 
subproblems and connecting them in a restricted 
master problem where the variables represent valid 
driver work-schedules, obtained by solving the 
subproblems. Column generation is used to obtain a 
linear combination of solutions where all tasks are 
assigned. All the information generated during the 
CG process is used as a base for the GA. An 
individual (chromosome) represents a roster where 
each gene represents a driver according to the locus 
and the value of the gene (allele) identifies a 
subproblem solution (driver schedule). The linear 
solution may also be used to identify the 
subproblems’ solutions included in the optimal 
linear solution, allowing the inclusion of part of 
these solutions in the population used by the GA. 

In the first section we present the BDRP, the 
compact model as well as the decomposition model 
whose linear relaxation will be solved by CG. The 
second section presents the solution strategies 
focusing in the presentation of the SearchCol 
framework (Alvelos et al., 2010); (Alvelos et al., 
2013) which allows the search on the column by 
diverse heuristic methods in addition to the GA. The 
third section presents details about the 
implementation of the decomposition model in the 
framework and explains the GA operation. Some 
results showing the behaviour of the GA as search 
method are presented in section four. The last 
section offers some concluding remarks. 

2 THE BUS DRIVER ROSTERING 
PROBLEM 

The Bus Driver Rostering Problem (BDRP) consists 
of defining the work-schedule for all drivers for a 
rostering period, fulfilling all tasks on each day and 
respecting the labour rules. 

In this section we present the integer 
programming model adopted for the BDRP, the 
compact model, and the corresponding decompo-
sition model resulting from the application of the 

Dantzig-Wolfe decomposition (Dantzig, 1963); 
(Dantzig and Wolfe, 1960). This decomposition 
model meets the requirements of SearchCol 
framework which combines column generation and 
metaheuristic (MH) search, as described in (Alvelos 
et al., 2010); (Alvelos et al., 2013). 

2.1 Compact Model 

The compact model for the BDRP was derived from 
the one presented in (Moz et al., 2009). In our case, 
we only consider one objective function to minimize 
the total cost of the roster, resulting in the removal 
of the constraints related with the minimization of 
the number of drivers used without complete 
schedules. 

We consider a rostering horizon of four weeks 
(28 days). The parameters and the variables used in 
the model are: 

ܸ – The set of drivers available to perform tasks; 
 for each time unit ܸ߳ݒ ௩ – Cost paid to driverߩ

of extra work. This cost allows the distinction of 
different salary categories of workers, ܸ߳ݒ; 

 Fixed cost paid for using a driver (equal for – ܥ
all drivers). The cost is not applied if the driver has 
no tasks assigned during the rostering period (his 
schedule is filled up with consecutive days off); 

g – Maximum number of consecutive days 
without a day-off; 

௛ܶ
௪– Set of tasks on day h that must be assign to 

a driver (this set does not include the “special” task 
that represents a day-off), h=-g+1,…,0,1,…,28; 

௛ܶ – Set of tasks to be assigned on day h 
(includes the “special” task that represents the driver 
day-off, which is the last one on each subset 
corresponding to a day), h=-g+1,…,0,1,…,28; 

௜ܶ௛
௩  – Set of tasks which can be assigned to driver 

 ሻ on day h if he does task i on the previous dayܸ߳ݒ)
(h-1). Due to minimum rest periods, depending on 
the start-time and end-time of the tasks, they are 
considered “early tasks” and “late tasks”, and an 
early task cannot succeed immediately a late task, 
߳݅	 ,ܸ߳ݒ ௛ܶିଵ, h=1,…,28; 

 ,௜௛ – Duration (in time units) of task i on day hݐ
݅߳ ௛ܶ

௪, h=1,…,28; 
 Contractual daily work time (limit over wich – ̅ݐ

the work is considered overtime); 
 ,௜௛ – Overtime time units of task i on day h′ݐ

results from max {0,	ݐ௜௛ െ ߳݅ ,{̅ݐ ௛ܶ
௪, h=1,…,28; 

ܾଵ – Maximum total assigned work time (in time 
units) in each week of the rostering period; 

ܾଶ – Maximum total assigned work time (in time 
units) in all the rostering period; 

A�Hybrid�Metaheuristic�for�the�Bus�Driver�Rostering�Problem

231



 

݀௦ – Minimum number of Sundays with day-off 
assigned to each driver during all the rostering 
period; 

݀௪ – Minimum number of days-off assigned to 
each driver in each week of the rostering period; 

q – Number of work days where work tasks 
should be assigned (tasks from ௛ܶ

௪) to get a 
complete schedule to the driver. The remaining days 
of the rostering period are filled with the mandatory 
days-off; 

݁௜଴௩ – Assumes value 1 if driver v was assigned 
to task i on the last day of the previous rostering 
period, otherwise it has value 0, ܸ߳ݒ, ݅߳ ௛ܶ

௪; 
݁଴௩– Number of consecutive work days (without 

any day-off) the driver v did after the last day-off in 
the previous rostering period, ܸ߳ݒ; 

 Index of the “special” task which represents – ߴ
the day-off (always the last task in the sets where the 
task appears); 

௜௛ݕ
௩  – Binary decision variable representing if the 

task i from day h is assigned to driver v, assuming 
the value 1 if true, 0 otherwise,	ܸ߳ݒ, ݅߳ ௛ܶ

௪, 
h=1,…,28; 

 ௩ – Binary decision variable representing theߟ
use of the driver v in the rostering. The variable 
assumes the value 1 if at least one work task is 
assigned to driver v, 0 otherwise,	ܸ߳ݒ. 

Based on these parameters and decision variables 
the compact integer programing model is:  

∑	݊݅ܯ ∑ ∑ ௜௛ݐ௩ߩ
ᇱ ௜௛ݕ

௩
௜∈ ೓்

ೢଶ଼
௛ୀଵ௩ఢ௏ ൅ ௩  (1)ߟܥ

Subject to: 

∑ ௜௛ݕ
௩ ൌ 1௩∈௏ 	, ݅ ∈ ௛ܶ

௪, ݄ ൌ 1,… ,28,		 (2)

∑ ௜௛ݕ
௩ ൌ 1௜∈்೓ 	 , ,ܸ	߳	ݒ ݄ ൌ 1,… ,28,		 (3)

௜,௛ିଵݕ
௩ ൅ ∑ ௝௛ݕ

௩ ൑ 1௝∈்೓\ ೔்೓
ೡ 	 , ߳	ݒ ܸ, ݅ ∈ ௛ܶିଵ,		݄ ൌ 2,… ,28, (4)

݁௜଴
௩ ൅ ∑ ௝ଵݕ

௩ ൑ 1௝∈்భ\೅೔భ
ೡ 	 , ,ܸ	߳	ݒ ݅ ∈ ଴ܶ,		 (5)

∑ ∑ ௜,௛ା௟ݕ
௩ ൑ ݃	, ,ܸ	߳	ݒ ݄ ൌ 1,… ,28 െ ݃,௜∈ ೓்శ೗

ೢ
௚
௟ୀ଴ 		 (6)

∑ ∑ ௜௟ݕ
௩

௜∈ ೗்
ೢ

ି௘బೡା௚ାଵ
௟ୀଵ ൑ ݃ െ ݁଴௩ , 		,ܸ	߳	ݒ (7)

∑ ణ௛ݕ
௩ ൒ ݀௪

଻௟
௛ୀ଻ሺ௟ିଵሻାଵ , ,ܸ	߳	ݒ ݈ ൌ 1,… ,4,		 (8)

∑ ణ,଻௟ݕ
௩ ൒ ݀௦

ସ
௟ୀଵ , 		,ܸ	߳	ݒ (9)

∑ ∑ ∋௜௛௜ݐ ೓்
ೢ ௜௛ݕ

௩ ൑ ܾଵ
଻௟
௛ୀ଻ሺ௟ିଵሻାଵ , ,ܸ	߳	ݒ ݈ ൌ 1,… ,4,		 (10)

∑ ∑ ∋௜௛௜ݐ ೓்
ೢ ௜௛ݕ

௩ ൑ ܾଶ
ଶ଼
௛ୀଵ , ,ܸ	߳	ݒ (11)

∑ ∑ ௜௛ݕ
௩

௜∈ ೓்
ೢ െ qߟ௩ ൑ 0ଶ଼

௛ୀଵ , ߳	ݒ ܸ,		 (12)

௜௛ݕ
௩ ∈ ሼ0,1ሽ	, ,ܸ	߳	ݒ ݅ ∈ ௛ܶ, ݄ ൌ 1, … ,28.		 (13)

௩ߟ ∈ ሼ0,1ሽ	, 		ܸ	߳	ݒ (14)

 

The objective function (1) minimizes the sum of the 
overtime costs drivers and the fixed costs by using 
drivers. Constraints (2) assure that each task from 
each day is assigned to one, and only one, driver 
from the set of drivers. Constraints (3) assure that 
each driver has one task assigned in each day of the 
rostering period (which can be the “special” task 
representing the day-off). Constraints (4) and (5) 
prevent the assignment of incompatible sequences of 
tasks in the schedule of a driver (avoid the 
assignment of an early task after a late task). 
Constraints (4) consider the first day of the rostering 
period, where data from the last day from previous 
rostering period are needed. Constraints (5) consider 
the following days. Constraints (6) and (7) prevent 
the assignment of work tasks in more than g 
consecutive days (maximum number of work days 
without a day-off). Constraints (7) consider the 
initial days of the rostering period where information 
from the previous period is considered in the 
constraints. Constraints (8) force the assignment of 
at least dw days-off (“special” task with index ߴሻ in 
each week of the rostering period. Constraints (9) 
force the assignment of at least ds days-off on 
Sundays during the rostering period. Constraints 
(10) prevent, in each week, the assignment of tasks 
with a total duration exceeding b1, the week limit 
defined by labour rules. Constraints (11) prevent the 
assignment of a complete schedule with a total 
duration exceeding b2, the total work time limit 
defined contractually for the rostering period. 
Constraints (12) force the binary variable ߟ௩ to be 
set to 1 if at least one work task is assigned to driver 
v in the rostering period, the variable is set to 0 if the 
driver schedule is filled with days-off (meaning that 
driver v is not used). Constraints (13) and (14) 
define the variables ݕ௜௛

௩  and ߟ௩, respectively, as 
binary variables. 

2.2 Decomposition Model 

Considering the previously presented compact 
model, it is easy to observe that almost all the 
constraints make use of variables for a single driver 
and only constraints (2) aggregate variables 
corresponding to all drivers. Neglecting constraints 
(2), we have one independent problem for each 
driver. This fact justifies the decomposing of the 
compact model “by driver”. 

We obtain the following model for the 
subproblem of a generic driver v. Note that the 
objective function takes into account the dual 
variables of the constraints of the master problem – 
to be introduced below. 
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Subproblem formulation for driver v (SPv): 

∑	݊݅ܯ ∑ ሺݐߩ௜௛
ᇱ ௜௛ݕ െ ௜௛ߨ ∋௜௛ሻ௜ݕ ೓்

ೢଶ଼
௛ୀଵ ൅ ߟܥ െ 		௩ߨ (15)

Subject to: 

∑ ௜௛ݕ ൌ 1௜∈்೓ 	 , ݄ ൌ 1,… ,28,		 (16)

௜,௛ିଵݕ ൅ ∑ ௝௛ݕ ൑ 1௝∈்೓\்೔೓ 	 , ݅ ∈ ௛ܶିଵ, ݄ ൌ 2,… ,28,		 (17)

݁௜଴ ൅ ∑ ௝ଵݕ ൑ 1௝∈ భ்\்೔భ 	 , ݅ ∈ ଴ܶ, (18)

∑ ∑ ௜,௛ା௟ݕ ൑ ݃	, ݄ ൌ 1,… ,28 െ ݃,௜∈ ೓்శ೗
ೢ

௚
௟ୀ଴ 		 (19)

∑ ∑ ∋௜௟௜ݕ ೗்
ೢ

௚ି௘బାଵ	
௟ୀ଴ ൑ ݃ െ ݁଴,		 (20)

∑ ణ௛ݕ ൒ ݀௪
଻௟
௛ୀ଻ሺ௟ିଵሻାଵ , ݈ ൌ 1,… ,4,		 (21)

∑ ణ,଻௟ݕ ൒ ݀௦
ସ
௟ୀଵ ,				 (22)

∑ ∑ ∋௜௛௜ݐ ೓்
ೢ ௜௛ݕ ൑ ܾଵ

଻௟
௛ୀ଻ሺ௟ିଵሻାଵ , ݈ ൌ 1,… ,4,		 (23)

∑ ∑ ∋௜௛௜ݐ ೓்
ೢ ௜௛ݕ ൑ ܾଶ,

ଶ଼
௛ୀଵ 		 (24)

∑ ∑ ∋௜௛௜ݕ ೓்
ೢ െ qߟ ൑ 0ଶ଼

௛ୀଵ ,		 (25)

௜௛ݕ ∈ ሼ0,1ሽ	, ݅ ∈ ௛ܶ, ݄ ൌ 1,… ,28,		 (26)

ߟ ∈ ሼ0,1ሽ;		 (27)

Where: 
 ௜௛ - Binary variable representing if task i fromݕ

day h is assigned to driver associated with this 
subproblem, assuming the value 1 if true, 0 
otherwise, ݅߳ ௛ܶ

௪, h=1,…,28; 
 Binary variable representing the use of the - ߟ

driver associated with this subproblem. The variable 
assumes the value 1 if at least one work task is 
assigned to driver, 0 otherwise (schedule full of 
days-off); 

 Cost paid to driver v for each time unit of – ߩ
extra work; 

 ௜௛ – Dual variable associated to the linkingߨ
constraint of task i of day h (constraints (29) from 
the RMP); 

 ௩ – Dual variable associated to the convexityߨ
constraint (constraint (30) from the RMP) inserted in 
the restricted master problem associated with this 
subproblem (driver v); 

௜ܶ௛ – Subset of ௜ܶ௛
௩  (defined in the compact 

model) related to the subproblem driver v; 
݁଴	– Number of consecutive work days (without 

day-off) the subproblem driver did after the last day-
off in the previous rostering period; 

݁௜଴ – Assumes value 1 if subproblem driver was 
assigned to task i on the last day of the previous 
rostering period, otherwise it has value 0, ݅߳ ௛ܶ

௪; 
All other parameters remain the same as in the 

compact model. 
Considering the subproblem model (SPv), the 

compact model can be rewritten considering the 

convex combination of the extreme points resulting 
from the subproblems’ solutions, leading to a master 
problem (MP) that considers all possible columns. 
Without loss of generality, we can assume that the 
set of columns to be considered is known, thus 
resulting in the following restricted master problem 
(RMP). 

RMP formulation: 

݊݅ܯ ∑ ∑ ௝݌
௩ߣ௝

௩
௝ఢ௃ೡ௩∈௏ ൅ ∑ ∑ ௜௛ߜሺܯ

ା ൅	ߜ௜௛
ି ሻଶ଼

௛ୀଵ௜ ఢ ೓்
ೢ ൅

∑ ௩ାߪሺܯ ൅ ௩ିሻ௩ߪ ఢ ௏

(28)

Subject to:

∑ ∑ ܽ௜௛
௝௩ߣ௝

௩ ൅ ௜௛ߜ
ା െ ௜௛ߜ

ି
௝ఢ௃ೡ ൌ 1௩∈௏ 	, ݅	߳	 ௛ܶ

௪,	 
݄ ൌ 1,… ,28,

(29)

∑ ௝ߣ
௩

௝ ൅ ௩ାߪ െ ௩ିߪ ൌ 1 , ݒ ߳ ܸ, (30)

௝ߣ
௩߳ሼ0,1ሽ, ݆ ߳ ,௩ܬ ݒ ߳ ܸ, (31)

0 ൑ ௜௛ߜ
ା ൑ 1, ݅ ߳ ௛ܶ

௪, ݄ ൌ 1,… ,28,		 (32)

0 ൑ ௜௛ߜ
ି ൑ 1, ݅ ߳ ௛ܶ

௪, ݄ ൌ 1,… ,28,		 (33)

0 ൑ ௩ାߪ ൑ 1, ݒ ߳ ܸ, (34)

0 ൑ ௩ିߪ ൑ 1, ݒ ߳ ܸ (35)

Where: 
௝ߣ
௩– Variable associated to the schedule j of 

driver v;  
௜௛ߜ
ା 	, ௜௛ߜ

ି  – Artificial variables associated to the 
linking constraint (for task i on day h) to make the 
problem possible until the first convex combination 
of extreme points is achieved by the column 
generation; 

,௩ାߪ  ௩ି – Artificial variables associated to theߪ
convexity constraint (for subproblem/driver v) to 
make the problem possible until the first convex 
combination of extreme points is achieved by the 
column generation; 

 ௩ – Set of schedules for driver v generated byܬ
column generation; 

௝݌
௩ – Cost of the schedule j obtained from the 

subproblem of driver v; 
ܽ௜௛
௝௩ – Assumes value 1 if task i of day h is 

assigned in the schedule j of driver v; 
M – Very big value used to penalize the use of 

artificial variables in the solution of the restricted 
master problem. 

The linking constraints (29) and convexity 
constraints (30) have dual variables ߨ௜௛ and ߨ௩, 
respectively, which are present in the objective 
function of the subproblem. 

The linking constraints (29), as was the case in 
the corresponding constraints from the compact 
model (2), assure that all the tasks are assigned. 
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Since the variables on the RMP are linear, the 
solution of the RMP can share a task among multiple 
drivers, but the sum of the columns including that 
task should be 1. 

3 SOLUTION STRATEGIES 

Given the models presented in the previous section, 
we now present methods used to obtain the optimal 
integer solution, integer solutions (approximate) and 
linear solutions with better lower bounds than the 
direct linear solution. 

3.1 Optimal Integer Solution 

The most direct way to obtain the optimal integer 
solution for the BDRP is by solving the compact 
model using branch and bound through efficient 
software implementation like CPLEX (ILOG, 2009). 
As stated in (Moz et al., 2009), the bus rostering 
problem is classified as NP hard and computational 
tests previously completed by the authors shown that 
it takes a considerable amount of time to obtain 
optimal solutions. In part of the instances the time 
limit (four hours) was achieved without proving the 
optimality of the solution found. We also tested to 
directly solve some instances and the behaviour was 
the same, the solver faced difficulties to prove 
optimality before the test time limit defined. 

3.2 Hybrid Metaheuristic 

The core of our research is to find good solutions 
through the hybridization of column generation and 
metaheuristics, as proposed in (Alvelos et al., 2010) 
using the SearchCol framework. The SearchCol 
framework proposes the use of metaheuristics to find 
good combinations of the subproblem solutions 
(schedules) generated during the column generation 
method considering the linear optimal solution of the 
restricted master problem as an indicator of the 
quality of each column in the search space.  

This framework provides the possibility of 
running multiple times the CG with new constraints 
to force the generation of new schedules with 
unassigned tasks. 

The framework concept, details about the 
implementation, search spaces and solutions 
representation after the column generation are 
presented in (Alvelos et al., 2013). The overview of 
the search for solutions within the framework 
follows the high-level algorithm in Figure 1: 

1: Column generation 
2: Search 
3: repeat { 
4: Set column generation perturbation 
5: Optimize perturbed column generation 
6: Search 
7: } until Stopping criterion fulfilled 

Figure 1: SearchCol general algorithm. 

In step 1 of the algorithm (Figure 1), it is 
possible to obtain lower bounds to the linear solution 
of the problem better than those obtained from the 
compact model, which is a well-known 
characteristic of the Dantzig-Wolfe decomposition 
reformulated models (Lübbecke and Desrosiers, 
2005). These lower bounds are important in the 
enumeration methods (like branch and bound) used 
to obtain optimal integer solutions since they are the 
reference to evaluate the need to explore branches of 
the search tree (reducing the search) and also the 
reference to calculate the gap between the integer 
and the linear solutions.  

In step 2 of the algorithm, it is possible to obtain 
integer solutions by selecting one solution from each 
subproblem, satisfying the linking constraints. A 
possible strategy is to round up the linear values of 
the optimal RMP solution, however that solution 
will assign the same task to more than one driver (in 
our problem) every time the linking constraint has 
more than one variable with nonzero value. 

After the column generation, the variables 
associated with the columns may be set of type 
integer and the resulting MIP can be optimized by 
branch and bound in order to obtain the best 
available integer solution on the new search space 
(the set of columns generated by CG). If this new 
search space contains a considerable number of 
admissible solutions for each subproblem, this 
process is very time consuming. 

The idea behind SearchCol is the use of heuristic 
search methods to select the columns (solutions of 
the subproblems) which should integrate the integer 
solution. Currently, the framework has as methods 
(metaheuristics), among others, multi-start local 
search (MSLS) and variable neighborhood search 
(VNS) to improve a single solution. We now 
integrate genetic algorithms as the search method, 
being the first population based metaheuristic 
implemented in the SearchCol framework. 

Our contribution is the integration of a new 
problem in the SearchCol framework and the 
development of a new “Search” phase (steps 2 and 
6) which can be used by most of the other problems 
solved using this framework. The next section 
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presents the details on the integration of the new 
problem and on the new search method. 

4 IMPLEMENTATION 

This section presents details about how the 
decomposition model presented in section 0 was 
implemented in the SearchCol framework and how 
the genetic algorithms were used to explore the 
search space resulting from the column generation. 

4.1 Implementing the Decomposition 
Model 

To integrate the new problem in the Searchcol 
framework we defined a new class (BDRostering) 
responsible to store all the parameters used in the 
decomposition model and offering methods that 
allow for reading the instances from files and 
mapping the data to the correct variables in the class. 
The BDRostering class is used as base class to 
another class (DecBDRostering) which also inherits 
from class Decomposition (part of SearchCol 
framework) where the methods needed to implement 
are defined and given access to internal 
implementation of the RMP and subproblems 
implementation. 

The class DecBDRostering needs to implement a 
set of methods used by the framework to: 

- define the decomposition, create all the 
subproblems, define the linking constraints on the 
RMP and the matrix with their coeficients used to 
define columns, etc; 

- update the subproblems objective function costs 
in each CG iteration;  

- construct the new column added to the RMP 
from the subproblem solution; 

- optimize the subproblems. 
The methods implemented on the 

DecBDRostering are those where knowledge about 
the problem/decomposition is needed, all the 
algorithm steps were already implemented within 
the base class (and other classes) of the framework. 

4.2 Search Columns with Genetic 
Algorithms 

The conclusion of the column generation process 
gives us two main sources of useful information to 
build valid solutions for the rostering problem: 

- The first one is the set of columns added to the 
RMP. We know that each one corresponds to a valid

 schedule for a given driver; 
- The second one is the optimal solution of the 

RMP. Even being a fractional solution, the selection 
of columns used in that solution can be set as the 
primary search space to explore in the search of 
good integer solutions. The value of the variable 
associated to each column can be seen as an 
indicator of the quality of that column, if the 
variable is close to one it means the solution 
associated to the corresponding driver should be 
tried in the rostering. The optimal solution value is 
also the lower bound to consider in the search of 
valid integer solutions. 

Given the set of valid schedules to each driver 
(column generated by corresponding subproblem), a 
roster consists in the selection of a schedule to all 
drivers of the bus company. The only remaining 
constraint is the one that forces the accomplishment 
of all the tasks, which is not achieved by randomly 
selecting a schedule to each driver. The challenge is 
to find combinations of schedules that assign all the 
tasks while minimizing the total rostering cost. 

4.2.1 Genetic Algorithms Integration 

The use of Genetic Algorithms (GA) (Holland, 
1992); (Mitchell, 1996); (Reeves, 1997) as the 
metaheuristic used in the “Search” phase of the 
SearchCol global algorithm arises naturally since the 
resemblance of the solution representation used and 
the chromosomes present in the GA. 

C1 C7 C23 … C10 
Driver 1 Driver 2 Driver 3 … Driver n 

Figure 2: Roster solution representation as a chromosome. 

As presented in Figure 2, a roster can be 
considered a chromosome with n genes, where each 
allele is the identification of a driver schedule 
selected from the set of valid schedules (columns 
added from the corresponding supbroblem solution) 
generated by the column generation iterations. In 
order to create a new chromosome representing a 
roster each gene must be filled with the 
identification of a solution generated by the driver 
subproblem corresponding to that gene locus. In the 
iterations of the column generation, every time a 
subproblem solution is considered attractive to be 
added as a new column, the original solution is 
saved with data from which subproblem produced 
the solution and the column added (column order 
number) to the RMP. Keeping this information 
updated, at the end of column generation, we may 
consider we have virtual pots (as illustrated in 
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Figure 3) for each driver, with valid solution inside, 
from where we can pick a solution with the 
guarantee that it is a valid solution for the driver. 

 

Figure 3: Valid schedules pots for each driver. 

4.2.2 GA Initial Population Generation 

The GA rely on the existence of a population (Pop) 
of individuals where the GA operators are applied in 
order to evolve through generations. 

We need to create populations assuring a good 
dispersion of the individuals on the search space. To 
reach that target, we cannot focus only in the 
solutions that integrate the optimal solution of the 
RMP at the end of column generation (assumed of 
good quality) but also explore the others solutions. 

The SearchCol framework already provides a set 
of distinct methods to create global solutions 
(individuals) where those different scenarios are 
considered. All available methods, detailing the 
solutions considered for selection in each one, are 
detailed in (Alvelos et al., 2013). 

Since those methods are already available and 
we need diversity on the individuals integrating the 
population, we have created a set of parameters to 
define the percentage of individuals generated by 
each method in the initial population of the GA, 
easily allowing changes/trials at runtime. 

4.2.3 GA Operators  

The evolution of populations is achieved by 
selecting the best individuals to integrate the mating 
pool (MP) and applying over those individuals the 
variation operators commonly used in the GA, the 
crossover operator and the mutation operator. 

The method we are using as selection operator is 
the tournament. We randomly select pairs of 
individuals and compare them using a bi-level 
evaluation function (presented below). The one with 
lower infeasibility is selected. If both have the same 
infeasibility, the evaluation function that calculates 
the value of the original objective function is used to 
select the best one. 

The crossover operator is used to generate 
offspring that share characteristics from both 
parents. Usually the operator creates the offspring by 
selecting subsequences of genes alternatively from 
both parents. Our current implementation has two 
implementations of commonly used crossovers: the

 one point crossover and the two point crossover. 
Considering the following parents for an instance 

with 9 drivers: 

Parent 1: 1 7 23 4 5 9 20 38 10

Parent 2: 11 22 8 26 29 17 13 31 25

Applying the one point crossover, considering 
the point between the fourth and the fifth genes, 
results in: 

Offspring 1: 1 7 23 4 29 17 13 31 25

Offspring 2: 11 22 8 26 5 9 20 38 10

Applying the two point crossover, considering 
the first point between the third and the fourth genes 
and the second point between the sixth and the 
seventh genes, results in: 

Offspring 1: 1 7 23 26 29 17 20 38 10

Offspring 2: 11 22 8 4 5 9 13 31 25

The mutation operator is used to change an 
individual by randomly modifying one or more 
genes. This operator produces a small dispersion on 
the search space avoiding the stagnation in local 
optimums. Currently, when mutation is applied, each 
locus is drawn to be changed and, if selected, the 
selected gene is replaced by another allele, chosen 
from the pot of solutions of the subproblem 
associated to that position/driver.  

4.2.4 Evaluation of Individual 

One of the important pieces of the GA is the 
function used to evaluate an individual in such a way 
that the result can be used to compare two or more 
individuals and identify which is better and which is 
worst. The definition of good evaluation functions is 
very important since the result is often used to 
decide the inclusion or not in the mating pool, 
allowing the persistence of an individual (or 
descendants) along generations. 

In our problem we consider a bi-level function to 
evaluate an individual by its feasibility and 
infeasibility values. The feasibility is the value 
obtained by applying the objective function (1) from 
the original formulation of the BDR problem. The 
infeasibility is measured by the number of tasks not 
assigned to the group of all drivers. A task is not 
assigned if the linking constraint (29) is not satisfied 
by having the left hand side smaller than the right 
hand side, otherwise it may be considered feasible, 
even if a task is assigned to more than one driver, 
since the correction is done easily by removing the 
duplicated task to one of the drivers. 

SP 1 
{1,6,11,16}  SP 2 

{2,7,12,22}  
SP 3 

{3,8,18,23} 
SP |V| 

{10,15,25} … 

ICORES�2013�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

236



 

When comparing individuals, the infeasibility is the 
first level evaluation value. The feasibility value is 
only used to compare individuals with the same 
value of infeasibility, since it is normal that 
individuals with higher infeasibility (more 
unassigned tasks) return better feasibility values 
(cost), because the tasks not assigned may have costs 
not considered. 

4.2.5 GA Runs 

A GA run consists in constructing an initial 
population and letting it evolve through generations 
until achieving a stopping criterion. We are 
considering as stopping criterion the reaching of a 
number (defined by parameter) of consecutive 
generations without improving the evaluation value. 

Figure 4 describes the most important steps of a 
run of the algorithm. 

Generate Initial Population 
repeat{  
 Build Mating Pool (MP): 
 for (population size){ 
  Select a pair of individuals 
  Apply tournament to select the best 
  Add best to MP 
 } 
 Apply Crossover: 
 for (population size/2){ 
  Select pair of individuals from MP 
  If selected to crossover{ 
   Apply crossover operator to pair 
   Add offspring to next population 
  }else 
   Add pair of individuals to next 
   population 
 } 
 Apply Mutation: 
 for each individual of population  
  If selected to mutation 
   Apply mutation operator 
 Update Best: 
 for each individual of population{ 
  Evaluate Individual  
  Update best found 
 } 
}while(iterations without improvement 
< limit) 

Figure 4: GA pseudocode. 

The entire algorithm is parameterized. The 
generation of the initial population uses parameters 
to decide the percentage of individuals created by 
each of the methods already available in the 
framework. We also defined parameters to the 
population size, number of generations without 

improvement (for stopping criterion), probability of 
crossover and probability of mutation. 

5 RESULTS 

To evaluate the effectiveness of the proposed search 
method over the search space of schedules (resulting 
from solving the decomposition model with column 
generation) some tests were made over a subset of 
the instances used in (Moz et al., 2009). The 
instances tested were the designated as P80 and the 
same parameters were used, except for the number 
of drivers: we use a pool of 36 drivers. In the 
instances, the group of drivers is divided in four 
categories of overtime cost, starting from a cost 
factor of one and doubling for the next group, 
resulting that the last group overtime is 8 times more 
expensive. 

The results show the effectiveness of the column 
generation over the decomposition model to 
generate a good search space of schedules where a 
complete roster can be obtained and also that the GA 
can be a faster option to search for the best roster in 
that search space. 

All the tests ran on a Dell Optiplex 380 with an 
Intel Core 2 Duo CPU E7500, 2,93GHz, 4 Gb of 
RAM, operating system Windows Vista 32 bits and 
IBM ILOG 12.3 installed. 

In this stage we only tested the first search phase, 
which means we only used the steps 1 and 2 from 
Figure 1. 

To test the search space obtained by the column 
generation, the step 2 used was the direct 
optimization of the resulting RMP, setting the 
variables as binary, designated as MipSearch. This 
procedure searches for the optimal solution within 
the set of schedules available in the search space. In 
the tests, the total time was limited to 7200s (2 
hours) and the column generation (step1) was 
limited to 1800s (1/2 hour). 

Table 1 presents the obtained results. The 
Feasibility column presents the total cost of the 
roster found and the Infeasibility column displays 
the number of tasks not assigned. 

The first observation from the results presented 
in Table 1 is that CPLEX spent all available time 
applying branch-and-bound to search for the optimal 
solution, indicating that it is time consuming to find 
the best available solution. On 3 of the 11 instances, 
no feasible solution was found (complete roster with 
all tasks assigned).  

The previous results also show that this search 
method is not a good option if the entire algorithm 
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Table 1: MipSearch Results. 

Instance Infeasibility Feasibility  Time Search Time CG

P80 0 93 -  5400 1800
P80 1 0 6477  5400 1800
P80 2 0 4628  6815,2 384,7
P80 3 0 8762  5400 1800
P80 4 0 6809  5400 1800
P80 5 0 6648  5400 1800
P80 6 0 7182  5400 1800
P80 7 0 6819  5400 1800
P80 8 12 -  5400 1800
P80 9 0 5599  5563,2 1636,4
P80 10 3 -  5400 1800

from Figure 1 is used (with multiple searches in the 
cycle – step 6), since it consumes too much time. 

To test the GA as search method, two sets of 
tests were run, where the difference between them is 
in the search space generation. In the first set of tests 
(GA1), in each iteration of the column generation a 
schedule from each driver is added to the RMP (if 
attractive) and in the second one (GA2), only one 
schedule is added from a single driver, changing 
sequentially the driver through the iterations. Both 
options were tried since, though generating columns 
for all subproblems in each iteration results in a fast 
growth of the number of variables in the RMP, 
making it difficult to optimize, it also may result in 
similar solutions to all drivers which may be useful 
to the GA. The Mip Search was applied over the 
search space resulting from the column generation 
with one subproblem solved in each iteration. 

The following parameters were used in the GA: 
Population Size = 200; 
Crossover | Mutation Probability = 80% | 15%; 
Stopping Criterion = 5000 generations without 

improvement. 
Each initial population is composed by: 
70% of individuals selected randomly from the 

pots of schedules available (40% with uniform 
distribution for each schedule and 30% with biased 
distribution for each schedule according to the 
optimal solution of the RMP); 

10% of individuals composed by rounding the 
linear solution of the RMP; 

10% of individuals composed by the first 
solution generated by column generation; 

10% of individuals composed by the last solution 
generated by column generation. 

Table 2 shows the results obtained by GA1 and 
GA2. In each instance test, after the column 
generation (limited to 1800s) 10 runs of the GA 
were performed. Columns (1) display the number of 
unassigned tasks for the best solution found by each 
GA, while columns (2) present the average of this 
number for the 10 runs. Columns (3) display the 
corresponding cost value, while columns (4) present 

the average cost in the 10 runs. The last column of 
each group shows the average search time spent by 
the GA to find the solutions. When value Best (1) is 
zero, the algorithm was able to find a feasible 
solution for the global problem. The GA were 
clearly more effective in the second scenario 
obtaining valid rosters to 7 of the 11 instances, only 
one less than the MipSearch. Curiously, in the 
harder instances (were the MipSearch did not found 
a solution, instances 0, 8 and 10) the GA1 obtained 
better results, even better than MipSearch for the 
P80_0 (considering only the Infeasibility value). 

Since the search space of the GA1 is larger than 
GA2, it is natural to have higher average search 
time, but in both scenarios, the search time is much 
faster than the MipSearch, claiming to be a good 
option to be used as the “Search” step in the entire 
algorithm from Figure 1 to improve the first solution 
obtained getting new schedules after applying 
perturbations on the RMP. The GA2 found valid 
rosters in almost all instances. The three instances 
where the MipSearch was unable to find a solution 
have a high number of tasks to assign, making it 
difficult to find the exact combination of schedules 
where all tasks are assigned. 

The results obtained reveal promising to the 
entire SearchCol algorithm, since they suggest that 
GA are effective and fast as search method. The 
resulting Feasibility values obtained by the best GA 
configuration are on average 17% higher than the 
best found by MipSearch, however the time spent by 
the GA in the search is less than 5% (average 1,8%) 
of the time spent by MipSearch. 

6 CONCLUSIONS 

This paper presents a new formulation to the BDRP 
and a new hybrid metaheuristic to obtain valid 
rosters from the proposed model without large time 
consumption. The proposed decomposition model 
splits the problem of tasks assignment into multiple 
subproblems were the assignment concerns only one 
driver, and a restricted master problem where the 
variables are associated to work-schedules created 
by the subproblems and where the assignment of all 
tasks is assured by combining multiple work-
schedules from all the drivers. 

The column generation is used to create new 
work-schedules by solving one or more subproblems 
in each iteration until an optimal linear solution is 
obtained. 
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Table 2: GA results. 

GA1 GA2 
Infeasibility Feasibility Time Infeasibility Feasibility Time 

Instance Best(1) Average(2) Best(3) Average(4) (Average) Best(1) Average(2) Best(3) Average(4) (Average) 
P80_0 29 83,6 7748 7316,4 223,9 123 134,6 6251 6376,7 117,2 
P80_1 0 13,2 7970 7096,2 91,0 0 7,3 8324 8325,1 78,7 
P80_2 0 0 5854 6743,9 52,6 0 0 5625 5697,2 31,9 
P80_3 9 13,3 8919 9494,1 87,3 0 5,3 9329 10865,4 64,3 
P80_4 5 11,1 7107 6798,1 77,4 0 2,2 7986 8583,2 64,7 
P80_5 3 7,6 7820 7594,5 84,0 0 4,2 7600 8582,7 61,4 
P80_6 2 3,5 8216 8304,9 66,2 0 0 8481 9156,6 38,1 
P80_7 13 18 6745 6840,2 96,0 2 5,2 9343 8757,9 45,9 
P80_8 31 50,6 7711 6769,4 90,0 32 53,2 8605 6891,7 67,4 
P80_9 0 2,9 7017 7344 74,6 0 0,2 6661 7287 56,9 

P80_10 12 53,3 6188 6026,4 132,5 43 58 6219 5923,8 99,3 

 
The set of subproblem solutions (driver work-

schedules), added as new columns in the CG, 
defines the search space where the genetic 
algorithms are used to find the best combination of 
solutions that at first assigns the major number of 
tasks and after reduces the total cost. 

Results of applying the MipSearch (solving the 
RMP as a Mip) over the work-schedules generated 
by column generation are presented, with the best 
values obtained within a given time limit. The 
computational tests show that the proposed 
metaheuristic is skilled to obtain valid rosters. Two 
configurations were run using a genetic algorithm as 
“search” method, showing that GA is faster than the 
MipSearch.  

Future work will include testing different 
parameters' configurations for the GAs and 
comparing our approach with the existing ones. 
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