A GPU-based Method for Generating quasi-Delaunay Triangulations
based on Edge-flips

Cristobal A. Navarrd, Nancy Hitschfeld-Kahlérand Eliana Scheihirfg
1Department of Computer Science, FCFM, Universidad de Chile, Santiago, Chile
2|nstituto de Informatica, Universidad Austral de Chile, Valdivia, Chile

Keywords:  Delaunay Triangulations, Edge-flip Technique, Parallel Realtime Applications, CUDA, OpenGL, GPGPU.

Abstract: The Delaunay edge-flip technique is a practical method for transforming any existing triangula® mesh
a meshT (S) that satisfies the Delaunay condition. In this paper we present an iterative GPU-based method
capable of improving triangulations under the Delaunay criteria. This method is based on the edge-flip tech-
nigue and its implementation is fully integrable with the OpenGL rendering pipeline. Since the algorithm uses
ane value to handle co-circular or close to co-circular point configurations, we can not guarantee that all trian-
gles fulfill the Delaunay condition. However, we have compared the triangulations generated by our method
with the ones generated by the Triangle software and by the CGAL library and we obtained less than 0.05%
different triangles. Based on our experimental results, we report speedups frotn 58@x against Lawson’s
sequential algorithm and of approximatelyx &gainst theO(nlog n) CGAL's and Triangle’s constructive
algorithms while processing bad quality triangulations.

1 INTRODUCTION is the number of points of the triangulation (Fortune,
1993; Edelsbrunner, 2001).
The Delaunay triangulatiofi of a point setP is the Real-time applications cannot make use of se-

triangulation that maximizes the smallest angle over quential algorithms when handling meshes close to
all triangulations of. Numeric computations on this @ million triangles. To achieve faster computations,
kind of triangulation is known to be more precise Parallel solutions are needed. In recent years, GPU
than in the other ones (De Berg, 2000). Good qual- computing has become an important research area for
ity meshes are needed in many applications such agParallel computing due to its high performance and
scientific simulations, terrain rendering, video-games low cost. Several applications that require geometric
and medical 3D reconstruction, among others. modeling and visualization benefits Stl'Oﬂg'y from the
Delaunay triangulations can be achieved in two Use of a GPU. In particular, the generation of Delau-
ways: (a) by creating them from a PSLG (Planar Nay trlanguilatlons with a fast GPU-based method is
straight linear graph), or (b) by transforming an al- today atopic of research.
ready existing triangulation into one that satisfies the ~ The main contribution of this paper is the design
Delaunay condition. In general, in the case (a), a De- and implementation of an iterative GPU-based al-
launay triangulation is generated for the set of points gorithm that generates quasi-Delaunay triangulations
of the PSLG. The segments (boundary edges) arestarting from any existing triangulation. The algo-
then inserted to generate either a constrained Delau-+ithm maps threads to edges. Each thread is responsi-
nay triangulation or a conforming Delaunay triangu- ble for checking one edge Delaunay condition, doing
lation (Shewchuk, 1996). Case (b) assumes that aone edge-flip and updating one edge data inconsis-
triangulation is given as input and the mesh needstency if necessary. The performance and the qual-
to be transformed into a Delaunay mesh. A known ity of the generated meshes is compared with two
technique for making this transformation is to flip well known and efficient sequential constrained De-
the edges that do not satisfy the Delaunay condition. launay algorithms: the algorithm inside the software
The edge-flip technique was first introduced by Law- Triangle (Shewchuk, 1996) and the algorithm avail-
son (Lawson, 1972) and the proposed sequential al-able in the CGAL library (CGAL, 2012). As test

gorithm has a worst-case complex@®yn?), wheren examples we used bad quality triangulations (with
Navarro C., Hitschfeld-Kahler N. and Scheihing E..
A GPU-based Method for Generating quasi-Delaunay Triangulations based on Edge-flips. 27

DOI: 10.5220/0004281900270034

In Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information
Visualization Theory and Applications (GRAPP-2013), pages 27-34

ISBN: 978-989-8565-46-4

Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)



GRAPP 2013 - International Conference on Computer Graphics Theory and Applications

minimum angles close to 0), with mesh sizes rang- Surface Mesh S
ing from 100 thousand up to 5 millions points. We Vertices 0 ! 2 .

are not using exact predicates nor floating point filters ® & o &5 & 6
because these techniques can not be efficiently imple- Triangles 4 )

mented on GPU architectures without sacrificing per-

formance. These techniques would require adding if- [? ? q [? ? ?} [@ 9 G} {g g g}

else conditionals and handle irregular-data access pat- N
terns. That is why, in favor of speed, some results are | edges
quasi-Delaunay triangulations and not fully Delaunay
triangulations.
In principle, the comparison of a transformation 0 1 p-3 b2 p1
algorithm that generates quasi-Delaunay triangula-
tions, as the proposed in this paper, with respect to
constructive ones that generate exact Delaunay trian-
gulations such as CGAL and Triangle can seem un-
fair because they solve different problems. However,
since the complexity of a constructive algorithm is
O(nlog n) and the Lawson algorithm i8(n?), many
times it is preferred to build the Delaunay mesh from

scraehiifsteacafiimpeving gh SxistinglunEmlnEsdne hood consistency after each flip. In addition, indices

way, this research is intended to show that a parallel,[0 the opposite vertices per edge are stored in the

method based on edge-flips can become fast and LESaL eae=t 3 P 4B AT AER N ES -
ful in practice for applications that not require exact PP y P prang P

Delaunay meshes tions (boundary edges have only one opposite vertgx).
The paper is ;)rganized as follows: Section 2 This data model can be naturally implemented qnq in-
presents our data structures and how fhey are Com_tegrated with Jje Op_en_GL APl and CUD.A (Nvidia,
patible with OpenGL. Sections 3 and 4 cover the al- ) or OpenCL. It Is Important to mention that for
gorithm and impleméntation details. Section 5 shows rendering, only the/ert|gesandTnanglesarrays are
accessed by the graphics API; thdgesand theOp-

gﬁﬂig?fﬁ;ﬁl ﬁ;ﬁgiswngei?ofgdggé?igif ;}nrgesi_positesarrays are for efficiently accessing neighbor
lated work agd the sihilarities and differences with information. All mentioned arrays u(n) of mem-
ory space, whera is the number of points.

other GPU-based approaches. Finally, section 7 con-
cludes our work.
A preliminary and short version of this paper was

presented at the EuroCG11 workshop (Navarro et al., 3 ALGORITHM OVERVIEW
2011).

2

Figure 1: Data structures for mesh rendering/processing.

{tb,,tn, }- to. the Trianglesarray (for boundary edges,
t, remains unused). This way, an edge can know
its endpoint indices directly througty, v» or in-
directly via the pairs{ Trianglesta, ], Trianglesta,] }

and {Trianglesty,, |, Trianglest,,]}. This redundant
information becomes useful for checking neighbor-

The algorithm we propose is iterative. In each iter-
ation, two consecutive phases of parallel computing
are executed:

e Phase 1: Detection, exclusion & processing.

2 DATA STRUCTURES

Proper data structures have been defined to efficiently ® Phase 2: Repair.

represent a triangulation on the GPU. Thisrepresenta- On each iteration the algorithm transforms the

tion is inspired by the Dynamic Render Mesh (Tobler mesh a step closer to the Delaunay mesh. The

and Maierhofer, 2006). Figure 1 illustrates the three algorithm finishes when the Delaunay triangulation

main components: Vertices, Triangles and Edges. is reached. The following sub-sections explain the
Verticesare represented with a one-dimensional phases in more detail.

array in the same way as the OpenGL VBO (Ver-

tex buffer object). Each position is of the typey) 3.1 Detection, Exclusion and Processing

or (x,¥,z) depending on the used spatial dimension.

The Trianglesarray is a set of indices to theer- This phase is in charge of three steps: (1) detection of

tices array. For each three consecutive indices, a edges that do not fulfill the Delaunay condition, (2)

triangle is defined. Each edge of tiglgesarray exclusion of edges that can not be flipped in parallel

contains a pair of indices;, v, to the Verticesar- and (3) processing the edges that can be flipped in par-

ray and two pairs of indicey, = {ta;,ta,} andty = allel. Our algorithm maps threads to edges by using

28



A GPU-based Method for Generating quasi-Delaunay Triangulations based on Edge-flips

F[] array

T L L T T

AANAAAAT
Lexy) [[exT3) [exms) | A A A A A A Et
y

| ex(m2) [[ex™ | A\ A A A A A
==L ex(12) | | J VANVANY NV NV

|exc|uded| | selected subset |

Figure 2: Exclusion mechanism. Each thread performs aniatoperation ex[j) to select its triangles. The F array has the
information of which thread has taken a given triangle.

the PRAM model in such a way that threfattandles  associated triangldsg, t, making a rotating effect of
edges with i € [0,ne— 1] (neis the number of edges). the triangles (see Figure 3). For a given edgeur
The execution threads detect first the edges that neecparallel edge-flip proceeds in the following way:
to be flipped (bad edges), then they go through a fil- 1 ‘variables: O[] = Opposites, T[] = Triangles
ter where only the independent threads survive and  E[] = Edges;
finally, the survivors flip their edge. . I .

For the detection step, threads test their corre- 2 Ge_t thg opposne v_ertex |nq|ce§,oz.

: : - 01 =O[][0]; 0z =Ofi][1];

sponding edge against the Delaunay condition by
computing the opposite anglasandy of e using the 3. Getcy €ta,C2 tysuch thaty =T[cy], Vo = T[cz]:

information fromts, tp. The test must satisfy the fol- Cr=Efilta; c2=Efi}-th,;
lowing condition: 4. do the edge-flip:
A+y<T @ T[co] =Tloa];  Tlc] =Tloz);
. . . 5. Updateta, tp andvy, vo:
If the test of equation (1) fails, the edge is a bad edge E[p] ti j[o'i acrl]] Vi Vé[.] th=[c 02]

and needs to be flipped. On the other hand, if the test Efilvy = E[i]
passes, the execution thread ends. Most of the time it

is not possible to flip the complete set of bad edges in = tb
one iteration because the flip of a given edgmm-
promises the consistency of the neighbor edges that before n

o s . 2 3
belong tot, andt,. However, it is possible to pro- 3 (@
cess a subsét of the edges that satisfy the following

condition: \
Ve, e A TogNTe, =0; Te={tecT:ect} (2) I\

For implementing the exclusion step, the algo-
rithm internally uses &lagsarray wherd-laggi] == T e
Takenif the i-th triangle was flagged by a thread, and ° T
Flaggi] == Freeif it was not. Each thread that needs after 0 1
to flip an edge requires two flags to be set, the ones
associated with the triangles that share its edge. This Figure 3: Visual example of edge-flip procedure éor
operation is done atomically (atomic operations are
sequential only when two or more threads access theThe steps of this phase are summarized in Figure 4
same memory location). When a thread flags the first showing how threads make their way down.
triangle, some neighbor threads will be excluded (i.e
the ones that failed to catch this flag). When a thread 3.2 Repair
flags the second one, the rest of the neighbors will get
excluded. Figure 2 shows an example, where edgesAfter the parallel edge-flips were executed, incon-

i.ta,; Elil.v2 = E[i].tp,;

4
@

0
Q@

0
®

1
@
Q)

2

a,b andc need to be flipped but onl{a, c} or {b,c} sistent information can be stored on neighbor edges.
can be processed at the same time. By using conditionSome edges can store references to triangles whom
(2), the thread associated with edpis excluded. they no longer belong (obsoleteandt, pairs). Fig-

For the processing step, the per thread edge-flipure 5 shows a simple mesh where inconsistent infor-
method is designed as a swap of indices between themation appears at edgdsandb after e was flipped.

29



GRAPP 2013 - International Conference on Computer Graphics Theory and Applications

Threads | 3.3 Handling Problematic and Worst

|
|¢ v VNN Cases

Delaunay condition |

During the first phase, there are two scenarios that re-
quire a more detailed explanatiotase (1);the exis-

. tence of co-circular configurations aedse (2);the
exclusion possible existence of dead-locks.

J( ¢ ¢¢ J( J( Case (1):if there are co-circular or almost co-circular

T T

| |

i i N Y¥' VvV VY VWV W N

o

L L

I I Lo configurations, our algorithm could fall into an infi-

| |

| | | |

¢ J{ ¥ J, i, i, ¢¢ i, \L \L solve this issue by using a small tolerance value in the

processing nite loop of edge-flips due to floating point errors. We
| end / sync | evaluation of condition (1):
Figure 4: General view of the detection, exclusion and pro- A+y<Ti+e (5)

cessing mechanism. Each block acts as a thread filter. This leads to ignoring some flips that in theory

should have been performed. That is why the gen-
erated triangulations may be quasi-Delaunay triangu-
. lations and not fully Delaunay triangulations. The
flipping e. value was experimentally estimated.

2 Case (2): a dead-lock could occur if there exists a
circular chain of triangles, where all edges must be
flipped and each thread can flag only one of its tri-
angles. This kind of chain can not exist because it
must have at least one edge that fulfills the Delaunay
condition: the smallest edge of the chain. Note that
the triangles that share the smallest edge are free to
be flagged by a neighbor thread. Then, in chains like
these there will always be at least one edge that can
be flipped, therefore a dead-lock will never occur.
The known worst case configuration for Law-

son’s sequential algorithm is the one shown in Fig-

The information of the new triangles to whainand
b belong are in the triangles that were rotated while

Edges AN ure 6 (Edelsbrunner, 2001).
e .
) ©
a b e d C
v X v X Vv -

Figure 5: Edges marked with a cross are inconsistent.

Fortunately these inconsistencies can be easily identi-

fied with the following two expressions: Figure 6: One of the worst cases for any edge-flip based
method.
Q= |vi —tay |+ V2~ ta)| @)
W= |V —tp, |+ [Vo — L, | (4) This worst-case triangulation has eight vertices,

thirteen edges and six triangles. The algorithm ex-
, . ecuted five iterations and the number of flips per it-
. T_he rotation relatllons are stored at th_e moment of o o4ion was{1,2,3,2,1}. As this triangulation gets
flipping an edgee using an array of rotations R[] of |3rger the number of triangles increases and the num-
S|_zem(numb_erof triangles). The triangle thatrotated por of iterations also grows. However, the perfor-
with ta andty is tra = R[ta, /3] andti = Rlty, /3], 16-  mance of the algorithm is better than the sequential
spectively. Note that the indices storedtinandty algorithm, because under the PRAM model the cost
point to theTrianglesarray and each triangle is de-  er jteration is9(1) as the algorithm can do several
fined by three consecutive vertex indices. edge flips in parallel. Experimentally, we observed
that for these configurations the number of required

If g> 0 (w> 0) thent, (t,) needs to be repaired.

30



A GPU-based Method for Generating quasi-Delaunay Triangulations based on Edge-flips

iterations ism— 1, with m the number of triangles. they are known to generate full Delaunay meshes
The amount of edge-flips per iteration increases by and they hav@®(nlog n) sequential implementations.
one until them/2-th iteration. Then, the number of Note that these algorithms start from a PSLG geome-
parallel flips decreases by one until the last iteration is try and not from a given triangulation.

reached. The computational complexitydgn) (note

thatm = O(n)). This is an improvement over the se- Table 1: Hardware used for testing.

quential method, which in this case@n?).

Hardware| Detalil
CPU AMD Phenom | X4 9850 2.5 Ghz
GPU Nvidia Geforce GTX 580

4 |IMPLEMENTATION DETAILS Mem 4GB RAM DDR2 800Mhz

Nvidia’s CUDA architecture and API were chosen to . .

implement the kernels, while OpenGL was chosen to 21 2D Triangulations

render the triangulations. Using C type data struc- ) ]
tures for the mesh model, it is possible to represent The set of tests consists of fully random bad-quality
vertex and triangle data via the OpenGL buffer ob- trlangulatlons_ln the sense that they_ need a high num-
jects: the VBO (Vertex Buffer Object) and EBO (EI- ber of e_dge flips to b(_a transformed into Delaunay tr_|—
ement array Buffer Object). In addition, CUDA sup- @ngulations. These inputs are generated by placing
ports OpenGL interoperability, meaning that threads fandom points inside two adjacent triangles starting
can read and write directly into the VBO and EBO ar- from a square domain. For each new inserted point,
rays. As with the vertices, the edges are also sent tothetnang_lethat includes th(_a pointis divided into three
the GPU at mesh loading time, and they can option- smalk_ar trlang!es as shown in Figure 7. The size of the
ally be sent back at the end if needed (for example, to €St trle}ngulatlons ranges from 100 thousand to 5 ml!—
save the mesh into a file). The exclusion step is han- lion points and the smallest angl_e of all the meshes is
dled with atomic operations available from the CUDA Practically zero (less than 16 radians).

C API. The performance is increased by using loop d c d c
unrolling, coalesced memory on per edge data, mini- T

mal branching, constant types and shared memory to rand() —s—-> 2 divide | lecd

reduce registry usage. The implementation is avail- P y) T —— /T
able as a functionality afleap an open source C/C++ e Tool
library (http://sourceforge.net/projects/cleap/). a b a b

Figure 7: Construction of a full random mesh.

5 EXPERIMENTAL RESULTS In Figure 8(a) we present the computational time

) ) ) _ for each mesh size. It can be observed M&IT is
In the following sections, we will refer to our imple-  approximately three times faster in these bad quality
mentation as MDT (Massive Delaunay Transformer). triangulations than the algorithms inside the CGAL
In order to analyze its performance and its behavior, |iprary and the Triangle software. There is also a
we W|” eVaIUate the f0||OWing aSpeCtS Of the algo- Speedup Of 5Q W|th respect to our Sequentia| im_

rithm: plementation of Lawson’s original edge-flip method.
e Quality of the generated triangulations: how close In Figure 8(b) we show the quality of the generated
they are to being Delaunay triangulations meshes in the sense of how close they are to being full

e Computational time against (a) the Triangle soft- Delaunay meshes. We took the meshes generated by
implementation of Lawson’s algorithm MDT and Triangle generate different triangles with
respect to the reference triangulations. However, the
missed triangles, i.e, the triangles that are in the trian-
gulations generated by MDT and Triangle, and are not
in the reference triangulations, are less than 0.05%.
o Influence of the mesh size in the number of itera- The error rate is Computed as the number of missed

tions triangles with respect to the total number of triangles
Table 1 shows the hardware used for the evaluation.of the reference triangulation. Note that the triangu-
We have selected the algorithm available inside Trian- lations generated by CGAL and Triangle are different
gle and the one available in the CGAL library because because Triangle modifies the vertex list if two points

e Number of edges that can be flipped, number of
edges that were flipped and number of edges that
could not be flipped at each iteration.

31



GRAPP 2013 - International Conference on Computer Graphics Theory and Applications

CPU-Construction vs GPU-Transformation % of error
1000 T T le-01 T T T
* Lawson MDT / CGAL .
- C(;‘AL - Triangle / CGAL .
100 F| " Triangle 4 . R N . .,,4,,.,;:‘,
le-02 ot 9
o .:.i LI «* °
] .
= 10 F E E et
g 5} le-03 F* = E
= 1 F 4 IS "
. . . T
T " n am -
. le-04 F - . - - i
0.1 r.° 4
0.01 le-05

0 05 1 15 2 25 3 35 4 45 5 55
# vertices (1076)

0 05 1 15 2 25 3 35 4 45 5
# vertices (1076)

(@ (b)
Figure 8: (a) Computational time for all methods and (b) &i#nces of Triangle and MDT triangulations with respect to
CGAL triangulation.
GPU iterations Edge flips per iteration for input n=5M
46 3e+06
44 . ) 2e+06 L. 1
g #2r ~ - - 1 2 2406 T 1
g 40 - . 1 gﬂ 2e+06 | 1
= 5} %
*® o3 r S - 1 W 1e406 [ .. 1
36 0/ : Se+05 [ :
34 ! | | | | | | | | 0e+00 LY TP .

0 05 1 1.5 2 25 3 35 4 45 5
# vertices (1076)

@

# iteration

(b)

Figure 9: (a) Number of iterations vs. problem size, (b) nandf edge-flips vs. iterations for the biggest input case ¢alm
of 5 million points).

are too close to each other. Some important aspects oimum angle of smooth 3D surface triangulations for
the behavior of the MDT are shown in Figure 9. Fig- the modeling of tree stem deformations. An edge
ure 9(a) shows an approximated curve that representds considered for flipping only if the normal vectors
the number of iterations versus the mesh size. Empiri- of the two neighbor triangles that shagare almost
cally, this curve shows a complexity 6log n). Fig- parallel according to some threshold value. Figure 10
ure 9(b) shows how the number of edge flips changesshows the different test inputs with their correspond-
among the iterations while transforming the triangu- ing number of vertices, edges and triangles.

lation of 5 million vertices and approximately 15 mil-

lion edges. We can observe that during the first half of [, Hores 3141
the iterations, most of the edge-flips are done, while \ '
in the last iterations few edge flips are executed. For
this input, both MDT and Lawson’s edge-flip methods
performed approximately 37 million edge-flips. It is
worth mentioning that in all the tested triangulations,
the percentage of edge flips done in parallel was more
than 80% (i.e., the excluded threads were less than
20%).

Dragon (M2) Infinite (M3)

y
rl
vV = 112,642

E = 337,920
T = 225,280

Figure 10: 3D Surface test-case meshes.

The dragon was taken from the Stanford Com-
puter Graphics Laboratory, the horse from Cyberware
Inc, the Moai from the GeomView examples and the
Infinite was built with our custom tools. Figure 11
shows the performance of the MDT and our imple-

5.2 3D Surface Triangulations

MDT was originally intended for improving the min-

32



A GPU-based Method for Generating quasi-Delaunay Triangulations based on Edge-flips

mentation of the Lawson sequential algorithm. (The ing which non-Delaunay edges can be flipped in par-
traced lines were added to connect the measurementsillel. Unfortunately, we could not compare our imple-
using the same implementation.) As expected, the mentation directly with the parallel edge-flip methods
MDT method achieves a speedup of>80 Table 2 of the authors because different hardware was used
shows the number of flipped-edges and the percent-in their results and they only compare their edge-flip
age of excluded threads for each iteration in the four routine against prior work of themselves. We think it
input meshes. As in the 2D tests, the first iterations is a better practice to use the standard method of com-
do most of the required edge-flips. The number of parison in parallel computing; to measure speedups
iterations is lower than in the 2D tests because theseagainst a reference sequential algorithm.

surface triangulations have an overall better quality.

3D surface improvement times

7 DISCUSSION
AND CONCLUSIONS

MDT
—*— Lawson CPU

We have presented a GPU-based implementation for
computing quasi-Delaunay triangulations. The so-
lution is compatible with OpenGL, handles special
cases such as co-circular point configurations and is
free of dead-locks. The behavior of the MDT shows
several interesting aspects. The amount of edge-flips
per iteration quickly decreases, making the first half
of the-iterations much more important than the rest.
We report an exclusion rate of threads under 20%
serving as a guarantee that parallelism can indeed be
useful. The curve of the number of iterations as a
function of the mesh size empirically shows a com-
6 RELATED WORK plexity of O(log n). This is a good behavior since
GPU methods are aimed at addressing large problems
There is a considerable amount of work on the subject and less iterations means more parallelism. The worst
of computing Delaunay triangulations, from sequen- behavior of the algorithm is when edge-flips can not
tial implementations (Paul Chew, 1989; Shewchuk, be done in parallel. In this case the computational
1996; De Berg, 2000) to parallel ones (Antonopou- complexity for the sequential and parallel algorithms
los et al., 2005; Healey et al., 1997; Kohout and is the same.
Kolingerovéa, 2003; Rong et al., 2008). Most of these We analyzed the performance of MDT under dif-
works belong to the case when a Delaunay triangu- ferent inputs; bad-quality random 2D triangulations
lation needs to be computed from a set of points or and popular 3D surface meshes. Our experimental
from a PSLG, and not from an existing triangulation. evaluation shows that the percentage of missed tri-
To the best of our knowledge, only recently has the angles of the triangulations generated by MDT with
edge-flip technique been used in the design of parallelrespect to the triangulations generated by CGAL was
GPU-based algorithms for the generation of triangu- less than 0.05% in all experiments. On these bad qual-
lations. Cao Thang (Cao, 2010) developed an algo- ity meshes, MDT obtains a speedup of up to50ith
rithm for the generation of a Delaunay triangulation respect to Lawson'®(n?) edge-flip method on CPU
and its Voronoi diagram from a set of points. One step and a speedup ofBwith respect to the 2(nlog n)
of his method performs GPU-based edge-flips; the al- algorithms available inside CGAL and Triangle. This
gorithm maps threads to triangles. Cervenansky et al. speedup seems to be not so impressive as we are com-
(Cervenansky et al., 2010) propose a GPU-based tri-paring GPU with CPU implementations and quasi-
angulation algorithm for image processing. Edges are Delaunay triangulations with exact ones. However, it
flipped in parallel, as we also do, but by using a differ- isimportant to mention that the MDT implementation
ent approach for deciding which subset of them can beis sensitive to the topology of the input triangulation
flipped in parallel (i.e., they do not use Delaunay con- and the CGAL and Triangle implementations are not
ditions). Harada (Harada, 2011) proposed a constraintbecause they are constructive methods. This means
solver for rigid body simulation. In his work, threads that if the input mesh needs little work to become De-
are assigned to pairs of adjacent triangles by usinglaunay, the speedup of MDT with respect to CGAL
atomic operations in the same way as we do for decid- and Triangle should be higher thax 3

0.1 ¢

time [s]

0.01 f

0.001 £

0.0001 ‘
Moai Dragon Horse Infinite

mesh

Figure 11: Performance results on 3D meshes.

33



GRAPP 2013 - International Conference on Computer Graphics Theory and Applications

Table 2: Detail of effective edge-flips and parallelismaatt each iteration for the 3d examples.

Moai Horse Dragon Infinite

#iteration | flipped | excluded| flipped | excluded| flipped | excluded| flipped | excluded
1| 1,786 3.88% | 31,453| 0.08% | 106,101| 6.63% | 508,502 8.62%
2 215 1.83%| 4,376 0.21%| 22,608 4.08%| 237,340 8.48%
3 41 4.66% 598 1.65%| 4,455 5.86%| 95,975| 3.81%
4 3 0% 131 4.38% 995 1.49%| 29,568| 5.95%
5 1 0% 33 8.34% 207 1.43% 7,882 4.52%
6 10 0% 34 0% 2,844 1.6%
7 4 0% 1 0% 762 5.81%
8 1 0% 195 6.25%
9 40 0%
10 11 0%

Total flips 2,046 36,596 134,401 883,119

Our proposed implementation is useful for appli- Harada, T. (2011). A parallel constraint solver for a rigid
cations that need to quickly improve the minimum an- body simulation. IFSIGGRAPH Asia 2011 Sketches
gle of triangulations and visualize a mesh atthe same ~ SA'11, pages 22:1-22:2, New York, NY, USA. ACM.

time; dynamic terrain manipulation and tree stem de- Healey, R. G., Minetar, M. J,, and Dowers, S., editors
(1997). Parallel Processing Algorithms for GISay-

formauon; to name some examples. In the near fu- lor & Francis, Inc., Bristol, PA. USA.
ture, we will compare the in-circle test with the oppo- . 1
" le test 4 this impl tali We al Kohout, 'J. and Kolingerova, I. (2003). Parallel Delau-
site angle test use _'n 'S_'mp emen ?‘ lon. Vve also nay triangulation based on circum-circle criterion. In
want to test the algorithm with bad quality 3D surface SCCG '03: Proceedings of the 19th spring conference
meshes. on Computer graphicgpages 73-81, New York, NY,
USA. ACM.

Lawson, C. L. (1972). Transforming triangulationBis-
crete Mathematics3(4):365 — 372.

ACKNOWLEDGEMENTS Navarro, C., Hitschfeld-Kahler, N., and Scheihing, E.
_ ) (2011). A parallel GPU-based algorithm for Delaunay
This work was partially supported by Fondecyt edge-flips. IMbstracts from 27th European Workshop

on Computational Geometry (EUROCG201ftqges
75-78. Morschach, Switzerland.
Nvidia (2011). NVIDIA CUDA Compute Unified Device
Architecture - Programming Guide
REFERENCES Paul Chew, L. (1989). Constrained Delaunay triangulations
Algorithmica 4:97-108.
Antonopoulos, C. D., Ding, X., Chernikov, A., Blagojevic, Rong, G., Tan, T.-S., Cao, T.-T., and Stephanus (2008).

ProjectN°® 1120495.

F., Nikolopoulos, D. S., and Chrisochoides, N. (2005). Computing two-dimensional Delaunay triangulation
Multigrain parallel Delaunay mesh generation: chal- using graphics hardware. 18D ’08: Proceedings of
lenges and opportunities for multithreaded architec- the 2008 symposium on Interactive 3D graphics and
tures. InProceedings of the 19th annual international gamespages 89-97, New York, NY, USA. ACM.
g(;gfe;gxigﬂ S’\lu\i)e&cso'&n%uct:jl\r;lgs 05, pages 367- Shewchuk, J. R. (1996). Triangle: Engineering a 2d quality
’ o e : ) . mesh generator and Delaunay triangulator. In ACM,

Cao, T. T. (2010). Computing 2d Delaunay triangulation editor, First Workshop on Applied Computational Ge-
using GPU.Manuscript in preparation ometry pages 124-133. (Philadelphia, Pennsylvania).

Cervenansky, M., Toth, Z., Starinsky, J., Ferko, A., cGAL (2012). cGAL, Computational Geometry Algo-
and Sramek, M. (2010). Parallel GPU-based data- rithms Library. http://www.cgal.org.
gi?ze)?fzegiltggnguIatlons.Computers & Graphics Tobler, R. F. and Maierhofer, S. (2006). A mesh data struc-

) ture for rendering and subdivision. WSCG '2006:

De Berg, M. (2000). Computational Geometry: Algo- Proceedings of WSCG (International Conference in
rithms and Applications Springer-Verlag TELOS, Central Europe on Computer Graphics, Visualization
Santa Clara, CA, USA. and Computer Visionpages 157-162.

Edelsbrunner, H. (2001). Geometry and topology for mesh
generation (Cambridge monographs on applied and
computational mathematics).

Fortune, S. (1993). A note on Delaunay diagonal flips”.
Pattern Recognition Letterd4(9):723 — 726.

34



