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Abstract: Discriminating smooth image regions from areas in which significant signal activity occurs is a widely 
studied subject and is important in low level image processing as well as computer vision applications. In 
this paper we present a novel method for estimating signal activity in an image directly in the CFA (Color 
Filter Array) Bayer raw domain. The solution is robust against noise in that it utilizes low level noise 
characterization of the image sensor to automatically compensate for high noise levels that contaminate the 
image signal.  

1 INTRODUCTION 

Digital images are usually acquired by means of 
image sensors covered by a CFA (Color Filter 
Array) which enables sensitivity to only one color 
component per pixel, either Red, Green, or Blue; 
demosaicing is eventually required to obtain a color 
image. Because of the subsampling in the CFA 
pattern, thin edges or texture may occupy just a few 
pixels in the subsampled lattice, making edges hard 
to detect (Chen, 2006). Discrimination between areas 
with signal activity from homogeneous areas can be 
difficult especially when the signal to noise ratio is 
low; noise may overpower the image signal or it 
may have a spatial structure that is similar to texture; 
this makes it difficult to discern useful signal from 
noise.  

In this paper we propose a method that works 
directly in the raw CFA domain and exploits the 
image sensor noise characterization in order to 
robustly compensate for signal degradation caused 
by noise. This technique enables early detection of 
signal activity in the imaging pipeline, allowing 
subsequent algorithms (e.g. demosaicing, noise 
filtering) to optimally adapt to the image content.  

2 NOISE MODEL 

Signal amplification at image sensor level is a blind 

process that amplifies both image signal and noise 
by means of an analog gain usually expressed in 
terms of the ISO setting. The acquired image is 
contaminated by various sources of noise that are 
usually modeled as zero mean additive white 
Gaussian noise; a Poissonian noise component is 
also present (Foi 2007, 2008; Bosco 2010). In general, 
the standard deviation of the underlying Gaussian 
noise distribution is assumed as a measure of the 
noise level. The signal dependent noise model can 
be expressed as (1): 
 

,௦ሺ݅ߪ ݃ሻ ൌ ඥܽሺ݃ሻ ∙ ݅  ܾሺ݃ሻ (1)
 

where ݅ ∊ ሾ0, … , 2 െ 1ሿ is the recorded signal 
intensity; ܾ is the image bitdepth and ܽ, ܾ ∈ Ըା.  
The coefficients ܽ and ܾ depend on the sensor gain 
݃ (i.e. ISO). As the ISO increases, the		ܽ and	ܾ 
coefficients generate noise curves with increasing 
  .௦ valuesߪ
The a and b coefficients can be determined in an 
offline sensor characterization phase repeated by 
varying the amplification gain.  

3 PROPOSED METHOD 

The proposed solution, rather than partitioning 
image pixels into flat and non-flat classes, estimates 
a measure of flatness. A block diagram of the 
proposed solution is illustrated in Figure 1. 
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The processing kernel is split into 4 layers ܮଵ,… ,  ;ସܮ
for each layer, a flatness degree measure ݂ܦ is 

estimated, for i=1,..,4. Finally, the Signal Activity 
Estimator block computes the Signal Activity 
Degree by combining the layers flatness degrees.  

 

Figure 1: A ݊ ൈ ݊ kernel moves across the CFA data. Four 
layers are extracted; for each layer, a flatness Degree 
 is estimated. The Signal Activity Estimator Block (ܦ݂)
combines the four estimations according to equation 10. 

Measuring flatness can be seen as the dual problem 
of estimating signal activity; by normalizing the 
flatness degree ݂ܦ  between 0 (no flatness) and 1 

(max flatness), the layer signal activity measure ܣݏ 
can be simply expressed as (2):  
 

ܣݏ ൌ 1 െ (2) ݅ܮܦ݂
 

In the rest of the paper we will calculate the flatness 
degree and obtain the corresponding signal activity 
by simply applying equation (2).  

3.1 Layer Interpolator 

The input to the proposed estimator consists of a 
CFA raw Bayer image that is pixel-wise processed 
by a moving kernel; a flatness or, dually, signal 
activity degree is hence assigned to each pixel. The 
processing kernel is shown in Figure 2.  

 

Figure 2: Processing Kernel contains pixels from all CFA 
channels. 

According to Figure 2 we define a ݊ ൈ ݊ kernel 
	2	݀݉	݊ such that ,(݊ݎ݁ܭ) ് 0, ݊  9. From this 
kernel, four subkernels are generated; each 
subkernel has size ݏ ൈ ݏ2  ,ݏ െ 1≤	݊ and is centered 

in ቀ
ିଵ

ଶ
,
ିଵ

ଶ
ቁ. The first subkernel, ݊ݎ݁ܭ௦, is 

obtained by simply subsampling ݊ݎ݁ܭ as indicated 
in Figure 2 and Eq. 3:  

 

௦ሺ݉ଵ,݉ଶሻ|భ,మୀ,…,௦ିଵ݊ݎ݁ܭ

ൌ ,ሺ2݅݊ݎ݁ܭ 2݆ሻห,ୀିଵସ ି
௦ିଵ
ଶ ,…,

ିଵ
ସ ା

௦ିଵ
ଶ

 
(3)

 

The elements ܲ , ሺ݅ ൌ 0,… ,8) of ݊ݎ݁ܭ௦ with 3 = ݏ 
are shown in Figure 2. The other three subkernels 
are generated by interpolating the complementary 
CFA channels in the same spatial positions of 
 ௦. The three interpolated subkernels are all݊ݎ݁ܭ

centered in ସܲ ≡ ቀ
ିଵ

ଶ
,
ିଵ

ଶ
ቁ and, taken together, 

they constitute 9 virtual pixels for which all the CFA 
information is available. Basically, a trivial 
demosaicing is performed in the same spatial 
locations of	݊ݎ݁ܭ௦; for example the complementary 
CFA information in ସܲ is interpolated by averaging 
the nearest pixels of the same color to be 
interpolated:ሺܤܩ, ,ଵܤܩ ,ଶܤܩ ,ଷሻܤܩ ሺܴ, ܴଵሻ, ሺܤ,  ଵሻܤ
for the green-blue, blue, and red CFA channels 
respectively. The procedure is similar for the other 
non-central pixels. Though other more sophisticated 
interpolation choices are possible, simple averaging 
provides enough precision for our purposes. The 
four subkernels share the same spatial locations, 
hence they can be considered as superimposed 
“layers”. The usage of the interpolated layers is 
necessary because tiny lines may occupy just a few 
pixels in the Bayer grid, hence the use of adjacent 
pixels to ݊ݎ݁ܭ௦	does not provide satisfactory results.  

3.2 Layer Flatness Degree Estimator 

The Layer Flatness Degree Estimator block is 
illustrated in Figure 3. 

 

Figure 3: The Layer Flatness Degree Estimator Block 
processes a ݏ ൈ  layer and produces the flatness degree ݏ
estimation for the input layer according to equation 8. 
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As the kernel moves pixelwise across the raw image, 
four ݏ ൈ  ሺ݅ܮ layers ݏ ൌ 1,…4ሻ	are obtained at each 
new position of the kernel; the standard deviation of 
each layer is computed, i.e. for ܲ ∊ ,ܮ ݎ ൌ 0,… , ݏ ൈ
ݏ െ 1, ݅ ൌ 1,… ,4: 
 

ߪ ൌ ሺ݀ݐݏ ܲሻ (4)
 

The minimum value of each layer ܮ is computed: 
 

݉݅݊ ൌ minሺ ܲሻ , ݎ ൌ 0,… , ݏ ൈ ݏ െ 1 (5)
 

Then, the noise level associated to the layer 
minimum pixel value is retrieved taking into account 
the acquisition gain ݃: 
 

,ܮௌ௦ሺߪ ݃ሻ ൌ ,௦൫݉݅݊ߪ ݃൯ ൌ

ටܽሺ݃ሻ ∙ ݉݅݊  ܾሺ݃ሻ  
(6)

 

The values of equation (6) can be stored in a LUT 
instead of computing them. The reference noise 
level ߪௌ௦ is the one associated to a flat area 
whose value is equal to the minimum pixel value in 
the layer, with the given ISO gain ݃; the minimum 
value of the layer is chosen to avoid flatness 
overestimation.  

The value ߪோ௧ is computed as: 
 

,ܮோ௧ሺߪ ݃ሻ ൌ
ߪ

,ܮௌ௦ሺߪ ݃ሻ
 (7)

 

The value ߪோ௧ is ISO dependent by means of the ݃ 
factor, hence ߪோ௧ is implicitly compensated as the 
noise in the image increases or decreases. The basic 
idea underlying the equation (7) is that if the area is 
homogeneous, then the ratio between the standard 
deviation of the pixels in the layer (ߪ) and the 
minimum noise standard deviation (ߪௌ௦) of the 
layer, should be close to 1. Ideally, when ߪோ௧ 
exceeds 1, the central pixel of the layer should be 
classified as belonging to a non-flat area because the 
standard deviation of the pixels in the layer 
overpowers the standard deviation of the noise in a 
flat area whose value corresponds to the minimum 
value in the layer; however, as detailed in paragraph 
4, this is an ideal condition because some biasing 
effects need to be considered.  

In particular, a threshold ݂݈݄ܽܶݐ must be 
defined for each layer to compensate the biasing 
factors: 
 
ܦ݂

ൌ

ە
۔

ۓ
ோ௧ߪ		݂݅							1  	݄ܶݐ݈݂ܽ

݄ܶݐ݈݂ܽ 	െ ோ௧ߪ
∆

 ݄ܶݐ݈݂ܽ			݂݅				1 	൏ ோ௧ߪ  ݄ܶݐ݈݂ܽ  ߂

0 ோ௧ߪ		݂݅  ݄ܶݐ݈݂ܽ 		߂

 (8)

The term ߂ is used to avoid a strong binary 
classification; its value can be chosen to define a 
linearly fading zone that extends beyond ݂݈݄ܽܶݐ . 

3.3 Signal Activity Estimator 

The final flatness degree ݂ܦ associated to the 
central pixel ܲ ቀିଵ

ଶ
,
ିଵ

ଶ
ቁ of the kernel, is obtained 

by summation of the flatness degrees ݂ܦ of all 
layers:  
 

ܦ݂ ൌ݇ ∙ ܦ݂

ସ

ୀଵ

 (9)

 
Where 	݇ is a weighting coefficient, currently set to 
“1” for i=1,2,3,4. 

Finally, we obtain the signal activity degree 
 associated to the central pixel of the kernel	ܣݏ
ܲ ቀ

ିଵ

ଶ
,
ିଵ

ଶ
ቁ as: 

 

ܣݏ ൌ 4 െ݇ ∙ ܦ݂

ସ

ୀଵ

 (10)

4 COMPENSATING THE 
BIASING EFFECTS 

As described in (Kim, 2005), two areas can have the 
same standard deviation but different pixel 
arrangements, such that one area contains some 
detectable pattern whereas the other area does not; 
we mitigate this problem by using the four data 
layers. Additionally, the assumption that ߪோ௧ is 
close to 1 for flat areas is only ideal; ߪோ௧ must be 
compared with ݂݈݄ܽܶݐ ൏ 1, compensating the two 
other important biasing factors: the small kernel size 
and the layers interpolation process. After 
compensating for these biases, the thresholds are 
mathematically defined and they do not need to be 
changed when noise levels change. In case a 
different image sensor is used, only the sensor noise 
profile LUT generated during the sensor 
characterization process needs to be updated. 

5 EXPERIMENTAL RESULTS 

Experiments have been performed using a noise 
profiled image sensor for mobile devices.  
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Figure 4: Scaled output examples. Top: original CFA ISO 
100 (left) and ISO 1600 (right). Center: estimated signal 
activity maps. Bottom: Two magnified crops of the signal 
activity maps. 

Figure 4 shows the results of the signal activity 
estimator for two CFA images taken at ISO 100 and 
ISO 1600. Images are scaled to fit them in the 
figure.  

Areas with signal activity are shown using 
increasing values of grey, whereas flat classified 
pixels are shown using low values of grey. It can be 
observed how the method works very well in the 
detection of the signal activity related to the texture 
of the floor tiles, without misclassifying it as noise 
(Figure 4 (bottom left)). 

6 CONCLUSIONS 

A method for estimating the signal activity in the 
CFA raw domain has been presented. The solution 
works prior any pre-processing algorithm.  The 
image sensor noise profiling is embedded in the 
estimation process; hence the solution is robust in 
the presence of noise and does not require tuning 
thresholds at different noise levels. Experimental 
results show the high robustness of the estimator 
also in presence of high levels of noise. Future work 
includes further refinements of the solution and 
incorporating the method in noise filters and 
demosaicing algorithms. 
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