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Abstract: In this paper, a flowshop problem with minimal and maximal delays, setup and removal times is tackled. It
is shown that this problem is equivalent to another flowshop problem with only minimal and maximal delays,
which can be seen as a central problem. The proof is done using an algebraic way which allows to identify the
role of each constraint, once the modeling is performed.

1 INTRODUCTION

In this paper, a flowshop problem with a large set of
constraints is tackled, the objective is to minimize the
makespan. It is shown that this problem can be mod-
eled in an algebraic way and that, as a consequence, a
kind of central problem can be highlighted.

The proposed model is based on MaxPlus alge-
bra. This algebra is sometimes used in control sys-
tem, particularly in relation with Petri Nets, but very
few in scheduling theory. Nevertheless, one can cite
some articles like (Giffler, 1963) on project schedul-
ing, (Hanen and Munier, 1995) on cyclic parallel ma-
chine problems, (Cohen et al., 1985), (Gaubert, 1992)
on cyclic flowshop scheduling problem and (Gaubert
and Mairesse, 1999) on cyclic job-shop scheduling
problems. The MaxPlus approach was applied in
modeling and scheduling flowshop problem with min-
imal delays, setup and removal times in (Lenté, 2001),
(Bouquard et al., 2006) and flowshop problems with
minimal and maximal delays in (Bouquard and Lenté,
2006) for two machines flowshop problems and in
(Augusto et al., 2006) for any number of machines.
In each case, a square matrix was associated to each
job and a similar matrix could be associated to each
sequence of jobs. In the two last articles, it is shown
how to derive lower bounds by constructing a no-wait
instance from the job-matrices that can be solved by
an efficient procedure designed for the traveling sales-
man problem (Carpaneto et al., 1995).

This paper presents a synthesis and a generaliza-
tion of these studies, by considering simultaneously
minimal and maximal delays and setup and removal

times. The objective of this paper is to bring out
equivalence between this general flowshop problem
and the flowshop problem with only minimal and
maximal delays. This equivalence will be put in evi-
dence through a MaxPlus modeling.

Following this introduction, this general flowshop
problem with associated constraints and also nota-
tions used in this paper will be described. The third
part describes the algebraic approach, using MaxPlus
algebra. The fourth one presents how to model the so
called general problem and to calculate in detail job
associated matrix in MaxPlus. The next part indicates
how to transform a Job-matrix of this problem into
a Job-matrix of a minimal - maximal delay flowshop
problem that therefore will be highlighted as a central
problem.

2 FLOWSHOP WITH
MINIMAL - MAXIMAL
DELAYS, SETUP AND
REMOVAL TIME

Figure 1 illustrates the constraints that are applied to
a job. The considered flowshop problem is composed
of m machines numbered from M1 to Mm and a set
of n jobs. A job Ji is then composed of m operations
with duration pi1, pi2, : : :, pim: the kth operation has
to be executed on the kth machine and it can be done
only when the (k�1)th operation of the same job has
been completed on machine Mk�1. Before and after
its execution, an operation requires a setup and a re-
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Figure 1: Schema of the system.

moval time, noted Sik and Rik. During these times the
machine is considered as occupied. At any moment,
each machine can handle at most one task.

Moreover, a waiting time between the execution
of two consecutive operations of the same job must
respect both a minimal and maximal delays that are
noted aik and bik (2� k � m).

The preemption is not allowed but only permuta-
tion schedules are considered, which means that all
jobs are executed in the same order by all machines.
For a given sequence, the end date Cik of the opera-
tion k of the job Ji is measured by the end of its asso-
ciated removal time. The makespan of a schedule is
then defined by the maximum of dates Cim for all jobs
Ji (Cmax = max

1�i�n
Cim). This problem can be denoted

by Fm—Snsd , Rnsd , min�max delay, perm—Cmax ac-
cording to notation of Graham (Graham et al., 1979).

3 ALGEBRAIC APPROACH

3.1 MaxPlus Algebra

As a short introduction of MaxPlus algebra, let’s say
that in this algebra we denote the maximum by � and
the addition by 
. The first operator, �, is idempo-
tent, commutative, associative and has a neutral ele-
ment (�¥) denoted by 0. The second operator, 
,
is associative, distributive on � and has a neutral ele-
ment (0), denoted by 1. The element 0 is an absorbing
element for the operator 
. These properties can be
summarized by saying that Rmax = (R[f�¥g;�;
)
is a dioid. It is important to note that in MaxPlus al-
gebra and more generally in dioids, the first operator
does not allow simplification: a�b = a� c 6) b = c.
Furthermore, in Rmax, the second operator 
 is com-
mutative, and except for 0, every element is invert-

ible: the inverse of a is denoted by a�1 or 1
a . For

more convenience we denote the ordinary subtraction
by a

b instead of a
b�1 and by ab the product a
b.

Moreover, it is possible to extend these two opera-
tors to m�m matrices of elements of Rmax. Let A and
B be two matrices of size m�m and let [:]i; j be the
element at row i and column j of a matrix, operators
� and 
 are defined by:

8(i; j) 2 f1; : : : ;mg2; [A�B]i; j = [A]i; j� [B]i; j

8(i; j) 2 f1; : : : ;mg2; [A
B]i; j =
mO

k=1

[A]i;k
 [B]k; j

The set of m�m matrices in Rmax endowed with
these two operators is also a dioid. But the operator�
is not commutative and matrices are generally not in-
vertible. For more details, please see (Gaubert, 1992;
Baccelli et al., 1992; Gunawardena, 1998).

3.2 Generalities about MaxPlus
Modeling of Flowshop Problems

The MaxPlus modeling of a flowshop problem al-
ways follows the same principles, whatever the con-
straints are. A matrix Ti is associated to each job
Ji. This matrix is computed from data linked to the
job and defines entirely this job. This matrix allows
also to compute the completion times ~Ci of the op-
erations of the job knowing the dates of availabil-
ity ~d of all the machines ~Ci =~d
 Ti. As a conse-
quence, considering a sequence s of n jobs, if ma-
chines are available at dates~d, the dates of liberation
~Cs of the machines by the sequence are given by for-

mula ~Cs =~d

nO

i=1

Ts(i). So it is possible to associate

to a sequence s the matrix Ts =
nO

i=1

Ts(i). Then lower

bounds can be derived from the algebraic modeling
by extracting sub-matrices from matrices Ti (Lenté,
2001; Augusto et al., 2006). MaxPlus provides a for-
mal framework for the study of flowshop problems.
It allows to extend or adapt easily results from some
kinds of flowshop problems to others.

3.3 Application to Flowshop with
Minimal - Maximal Delays

In (Augusto et al., 2006), the authors have studied and
solved a flowshop with minimual and maximal de-
lays. The flowshop problem is the same that the one
described in section 2 except that there is no setup
nor removal time. They established the form of the
matrix Ti associated to a job Ji (Equation (1) shows
an example for three machines). Then they defined
a lower bound following this way: from a matrix Ti,
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they built a lower matrix T NW
i (T NW

i � Ti) character-
istic of a nowait flowshop job. The resolution of the
corresponding nowait flowshop problem, which can
be done using a fast TSP resolution procedure, gives
a lower bound of the initial flowshop problem. Fi-
nally, they designed a Branch and Bound procedure
to solve the Fmjmin�max delay; permjCmax.

Ti =

0BB@
pi1 pi1 pi2ai2 pi1 pi2ai2 pi3ai3

1
bi2

pi2 pi2 pi3ai3

1
bi3

1
pi2bi2

1
bi3

pi3

1CCA (1)

4 FMjSNSD;RNSD;MIN�
MAX DELAY S;PERMjCMAX

4.1 Modeling

The description from section 2 leads to the sets of in-
equations (2), (3) and (4), written in MaxPlus nota-
tions. They summarize all the constraints applied to
the kth operation of a job Ji. The term dk represents
the date of availability of machine Mk to perform the
setup operation. Typically, in a schedule, dk could be
the completion time of operation k of the job preced-
ing Ji. These inequations are illustrated in figure 2,
they will serve to determine a linear relation between
the dates of availability dk of the machines and the
end dates Cik of job Ji.

Figure 2: Model for calculation.

Cik �Ci(k�1)aik pik
Rik

Ri(k�1)
(2� k � m) (2)

Cik �Ci(k+1)
1

pi(k+1)bi(k+1)

Rik

Ri(k+1)
(1� k � m�1) (3)

Cik � dkSik pikRik (1� k � m) (4)

4.2 Job Associated Matrix

Remembering section 3.2, an expected relation is of
the form:

~Ci =~dTi (5)

where Ti is the matrix associated to the job Ji. Let in-
troduce some new notations before pursuing calculus:

aik = ai(k+1)pi(k+1)
Ri(k+1)

Rik
(1� k � m�1) (6)

bik =
1

bik pik

Ri(k�1)

Rik
(2� k � m) (7)

~Ci = (Ci1; Ci2; : : : ; Cim) (8)
~d = (d1; d2; : : : ; dm) (9)

Pi =

0BBBBB@
Si1 pi1Ri1 0 : : : 0

0 Si2 pi2Ri2
. . .

...
...

. . .
. . . 0

0 : : : 0 Sim pimRim

1CCCCCA (10)

Ai =

0BBBBBBBB@

0 ai1 0 : : : 0

bi2 0 ai2
. . .

...

0 bi3
. . .

. . . 0
...

. . .
. . .

. . . ai(m�1)

0 : : : 0 bim 0

1CCCCCCCCA
(11)

Basically, vector ~Ci represents end dates of operations
of job Ji, matrix Pi regroups data defining an operation
and matrix Ai the data linking two successive opera-
tions of job Ji, it can be seen as a ”delay matrix”.
According to this system of inequations (2), (3) and
(4), it can be inferred that: ~Ci �~dPi�~CiAi. The small-
est solution of this system is found using Kleene star:
~Ci =~dPiAi

� where A�i = (1�Ai�A2
i � : : :�Aq

i � : : :).
Therefore, to meet relation (5) we must define

Ti = PiAi
� (12)

Ti is the matrix associated to job Ji. Note that this ma-
trix is totally independent of position of the associated
job in the sequence. The general form of matrix Ti is:

[Ti]‘;c =

8>>>>>>>>><>>>>>>>>>:

Si‘pi‘Ric

cO
k=‘+1

pikaik if ‘ < c

Si‘pi‘Ric if ‘= c
Si‘Ric

bi‘

‘�1O
k=c+1

1
pikbik

if c < ‘�1

Si‘Ric

bi‘
if c = ‘�1

(13)
As an example, in case of 3 machines, the matrix

associated to the job Ji is:
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Ti =

0B@
Si1 pi1Ri1 Si1 pi1Ri2 pi2ai2 Si1 pi1Ri3 pi2ai2 pi3ai3

Si2Ri1
bi2

Si2 pi2Ri2 Si2 pi2Ri3 pi3ai3

Si3Ri1
bi3

1
pi2bi2

Si3Ri2
bi3

Si3 pi3Ri3

1CA (14)

It must be noted that this model can be generalized
to additional constraints such as release dates (ri), la-
tency duration (qi) or some batch constraints.

5 CENTRAL PROBLEM

In (Augusto et al., 2006) or (Fondrevelle et al., 2006),
authors proposed a way to calculate lower bounds
and optimal schedules for problem Fm—min�max
delays; perm—Cmax. This section represents now
how to transform our studied problem into flowshop
with only minimal and maximal delays. To do that,
terms relating to setup and removal times must be in-
tegrated to the definition of new processing times and
minimal and maximal delays. It will define a new
flowshop problem whose characteristics are described
below. In this new formulation, a job Ji is only defined
by operations’ processing times pik and minimal and
maximal delays aik and bik. But its associated matrix
Ti remains unchanged.8>>>><>>>>:

pik = Sik pikRik (1� k � m)

bik =
bik

SikRi(k�1)
(2� k � m)

aik =
aik

SikRi(k�1)
(2� k � m)

(15)

For example, in case of three machines, the matrix
associated to job Ji becomes

Ti =

0BBB@
pi1 pi1ai2 pi2 pi1ai2 pi2ai3 pi3

1

bi2
pi2 pi2ai3 pi3

1

bi2 pi2bi3

1

bi3
pi3

1CCCA (16)

6 CONCLUSIONS

Thanks to MaxPlus approach, it is possible to trans-
form a flowshop scheduling problem into a matrix
problem. Some manipulations over these matrices al-
low us to exhibit a sort of central problem. Permu-
tation flowshop with several classical constraints are
equivalent to some permutation flowshop with min-
imal and maximal delays. Calculus have been pre-
sented with non sequence dependent setup and re-
moval times, but the equivalence can also be stated for
release dates or groups of jobs for example. This re-
sult means that one can focus our efforts to solve this
central problem. It also means that it must be possible

to adapt automatically a method developed for a type
of constraints to another type of constraints.

Further research will concern modeling a greater
set of constraints, like limited stocks between ma-
chines or blocking constraints and, if possible and
if necessary, the definition of an other central prob-
lem. They will also concern improvements of solving
methods presented in (Augusto et al., 2006).
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