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Abstract: Spectral embedding, as one of shape representative techniques, takes hold of many researchers’ attention
in field of shape correspondence. One of the biggest challenges of spectral correspondence method is that
embeddings of different shapes need to be aligned in the embedding space in order to eliminate sign flip and
ordering ambiguity of their eigenfunctions, before seeking for correspondence. In this paper, we introduce
a spectral correspondence method by embedding shapes in a unified space simultaneously. In the unified
embedding space, the sample points of the same shape with small intrinsic distances, and from different
shapes with high similarity, are close to each other. Our unified embedding can be used for correspondence
directly, without need of alignment. Furthermore, the unified embedding captures both the spatial arrangement
and the feature similarity. Shape correspondence is achieved with such embedding by minimizing an objective
function. Results show the efficiency of our method.

1 INTRODUCTION

Shape correspondence (also called shape matching)
is an important prerequisite to many geometry pro-
cessing applications such as statistical shape model-
ing, shape morphing, deformation transfer, shape reg-
istration, and sequential meshes analysis, etc. Existed
shape correspondence methods could be roughly cat-
egorized into rigid and non-rigid cases, regarding to
the types of transformations they involve. In this pa-
per, we suppose the shapes to be isometric, we make
such restriction based on the observation that many
real world deformations, such as articulated shapes in
different poses, preserve pairwise geodesic distances
up to minor errors, which approximately satisfies the
definition of isometry.

Spectral correspondence method as it represents
the shape in a spectral representation, is an impor-
tant tool in finding non-rigid shape correspondence.
It mainly comprises two key ingredients: represent-
ing shapes using spectral embeddings and matching
the shapes based on their embeddings. To repre-
sent an individual shape using spectral embedding,
some methods usually first construct an affinity ma-
trix based on the geometric information of the shape,
and then perform eigen decomposition on the affin-
ity matrix that will produces low dimensional embed-
ding whose entirety is also called the spectrum. While
as some researchers (Jain and Zhang, 2006; Mateus
et al., 2008) pointed out, directly utilizing the embed-

dings to find correspondences between shapes causes
fallacious inaccurate results, because there may ex-
ist sign flip and ordering ambiguity in their spectral
representations. To address this issue, several authors
(Jain and Zhang, 2006; Mateus et al., 2008) employed
an additional alignment step, using either brute force
search or greedy approach, which is a reasonable way
but a complicated and exhausting task.

In this paper, we introduce a novel framework
for shape correspondence. We simultaneously embed
the target shapes in one unified space. The unified
embedding encodes both the spatial arrangement and
feature similarity as they are captured in the unified
affinity matrix, where the spatial arrangement is pre-
served for sample points of each shape and simulta-
neously the sample points from different shapes with
high similarity are close to each other. Given such
embedding, the matching results can be achieved by
minimizing an objective function, which is expected
to be solved in polynomial time.

Comparing to state-of-the-art shape correspon-
dence methods based on spectral embedding, our
main contributions and advantages are summarized as
follows:

• Our method takes advantages of the unified rep-
resentation of spectral embedding for different
shapes, which doesn’t need a further alignment
step as done by some traditional spectral methods.

• To our knowledge, we are the first to encode both
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the spatial arrangement and feature similarity in
one embedding space. The unified spectral em-
bedding is experimented suitable for shape corre-
spondence.

2 RELATED WORK

Descriptor based Approaches. Dealing with the
non-rigid shapes, the appealing descriptor should pre-
serve intrinsic (e.g., geodesic) distances which are in-
variant to inelastic deformations of the shape. Gal
et al. (Gal et al., 2007) extended the shape context
to the non-rigid cases. Elad and Kimmel (Elad and
Kimmel, 2001) developed multidimensional scaling
(MDS) to represent shape in a low-dimensional em-
bedding space and compared them using Euclidean
distance.

However, descriptors based on geodesic distances
are very sensitive to topological noise, since a small
modification on the connectivity of the mesh will
change geodesic distances dramatically over a large
part of the shape. Spectral method however is stable
under small changes in the intrinsic metric, as some
authors proved (Jain and Zhang, 2006; Sun et al.,
2009; Ovsjanikov et al., 2010). Among them, the
Heat Kernel Signature (HKS) is a very efficient tool
in extracting features and comparing shapes at differ-
ent scales. Sun et al. (Sun et al., 2009) developed the
HKS which inherits many properties of the heat ker-
nel including isometric invariance, multi-scale geo-
metric information encoding, and robustness to small
perturbations.

Due to the strong properties of the HKS, we em-
ployed it as one of the components of our descrip-
tor measuring the feature similarity between a pair of
shapes.
Spectral Embedding. Besides the HKS, other spec-
tral embedding methods have been well studied.
Since the affinity matrix encodes pairwise geometric
invariants which can also be preserved in the spec-
tral embedding space, in order to describe articulated
motion, Jain and Zhang (Jain and Zhang, 2006) pro-
posed to use geodesic distance to construct the ma-
trix. Mateus et al. (Mateus et al., 2007) took use of
LLE (Roweis and Saul, 2000) and Laplace embedding
(Mateus et al., 2008).

The embeddings of different shapes, obtained
through techniques mentioned above, are incompat-
ible and cannot be used to generate correspondences
directly, as their proposer pointed out the reasons that:

• There exists a sign flip problem when computing
eigenvectors (Av = λv ⇔ A(−v) = λ(−v)).

• There exists an unreliable ordering of its eigen-
values due to large algebraic multiplicity of an
eigenvalue and numerical instabilities in calcula-
tion process.

To deal with the sign flip and the eigenfunction
reordering problems. Jain and Zhang (Jain and
Zhang, 2006) suggested to align the embeddings
by minimizing a cost function. Sahillioğlu and
Yemez (Sahillioğlu and Yemez, 2010) aligned the
spectral embeddings using the the same way as (Jain
and Zhang, 2006), and found initialized correspon-
dences by solving a bipartite graph matching prob-
lem. Mateus et al. (Mateus et al., 2008) proposed
to find an orthogonal transformation that best aligns
pairwise embeddings, followed by introducing an un-
supervised clustering and the EM algorithm for seek-
ing correspondences of embeddings.

3 ALGORITHM OVERVIEW

In this paper, we focus on the shape matching be-
tween two approximately isometric shapes. We de-
note byS andT the discrete version of both shapes
which are differentiable 2-manifolds inR3, indicat-
ing the source and target shape respectively. Further-
more, we sample a few feature points on them based
on the importance sampling technique (Hilaga et al.,
2001), the sets of sample points ofS andT are des-
ignated asKS andKT . By embedding the shapes into
a d-dimensional metric space, we useU S ∈ R

d and
UT ∈ R

d to represent the sets of embeddings of sam-
ple pointsKS and KT in the embedding space, re-
spectively. In this respect, the innovative point of our
framework is that we achieveU S andUT at once by
simultaneously embedKS andKT into a unified em-
bedding space. Our final goal is to find a matching
function φ that mapsU S to UT . φ should be mean-
ingful and accurate, at the same time cover the em-
bedding as much as possible, and can be efficiently
determined.

Figure 1 illustrates the pipeline of our 3-stage
framework:

In the “Affinity Matrices ” stage, we introduce the
spatial affinities which represent spatial constraints of
sample points of each shape and the similarity affini-
ties which represent similarity constraints of sample
points between different shapes. These affinities form
submatrices that constitute the unified affinity matrix.
We will show it in details in Section 6.

In the “Unified Embedding” stage, we perform
eigen decomposition on the unified matrix and ob-
tain the embeddingsU S andUT . Since the unified
affinity matrix are composed of the spatial affinities
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Figure 1: Three main stages of the proposed method. We first construct the spatial affinities and similarity affinities forboth
input shapes, then achieve unified embedding through eigen decomposition of unified affinity matrix built in the way of using
spatial and similarity matrices as its block submatrices. Finally, the matching result is obtained by minimizing an objective
function based on the unified embedding coordinates.

and the similarity affinities, our unified embedding in-
trinsically possesses the spatial and similarity proper-
ties of significance. Both properties are applicable for
shape matching. The spatial arrangement maintains
global consistency of correspondences and the simi-
larity constraints improve matching accuracy. We will
offer a detailed discussion in the next section.

In the “Feature Matching” stage, we determine
the optimal matchingφ by minimizing an objective
function with regard to the unified embedding, which
will be particularized in Section 5.

4 THE UNIFIED SPECTRAL
EMBEDDING

To formulate properties of the embedding mentioned
in Section 3, inspired from the work (Torki and El-
gammal, 2010), for the source shapeS , we denote the
spatial affinity matrixP, with the entrypi j measures
the spatial distances ofi-th and j-th sample point of
S . Similarly, we defineQ with entry qi j for the tar-
get shapeT . We next define the similarity affinity
matrix forS asR with respect toT , the entryri j mea-
sures similarity betweeni-th sample point onS and
j-th onT . The construction of these affinities will be
discussed in Section 6.

Suppose we are given the matrices above, then
the embeddingsU S andUT are determined aiming
at minimizing the following objective function

argmin ∑
i, j
‖U Si −U Sj ‖

2pi j +∑
i, j
‖UTi −UTj ‖

2qi j

+∑
i, j
‖U Si −UTj ‖

2ri j +∑
i, j
‖UTi −U Sj ‖

2r ji,
(1)

whereU Si (i ≤ |KS |) denotes the embedding represen-
tation of i-th sample point on shapeS . It can be seen
from the objective function that the first two terms en-
code the spatial arrangement of two point sets, which
guarantees that two points will be close to each other

in the embedding space if their corresponding affin-
ity entry is relatively high. The last two terms aiming
at keeping points pairs of different point sets close to
each other if value of their corresponding similarity
affinity entry is large.

We simplify the Equation 1 by introducing a ma-
trix U stacks the desired embedding coordinates,

U =
[

(U S )T ,(UT )T
]T

=
[

uS1 , . . . ,u
S

|KS |
,uT1 , . . . ,u

T

|KT |

]T
,

and a unified affinity matrixA defined as

A =

[

P R
RT Q

]

,

let ai j denotes the element oni-th row and j-th col-
umn ofA, the Equation 1 can then be simplified to

argmin∑
i, j
‖Ui −U j‖

2ai j, (2)

whereUi is i-th element ofU .
Note that the Equation 2 can then be rewritten in

the following form

argmin
U

(UT LU),

whereL is the Laplacian of the matrixA, i.e.,L =D−
A, andD is the diagonal matrix defined asDii =∑ j ai j.
Since each element ofU is a multi-dimensional rep-
resentation, according to (Belkin and Niyogi, 2003),
the above objective function reduces to

U∗ = arg min
UT DU=I

tr(UT LU), (3)

the constraintUT DU = I removes the arbitrary scal-
ing. The unified embedding can be reached through
a generalized eigen decompositionLu = λDu. We
make use of the bottomd nonzero eigenvectors to
form the optimal solution ofU .
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5 FEATURE MATCHING

In this Section, we model the matching problem as a
Linear Assignment Problem, which can be solved in
polynomial time.

Let φ : KS → KT denote the bijective mapping
function representing the correspondence betweenKS

andKT , we achieve the matching results by minimiz-
ing the following matching cost

argmin
φ ∑

i
ψ(U Si ,U

T

φ(i)), (4)

whereψ(a,b) is the cost function measuring similar-
ity between the embeddingsa andb, which in practice
we useL2 distance.

Similar to (Jiang and Yu, 2009), we rewrite the
Equation 4 in a succinct matrix form. LetX be the
assignment matrix andC be the cost matrix related to
cost functionψ respectively. Thus, we have

Xi j =

{

1, φ(i) = j
0, otherwise ,Ci j = ψ(U Si ,U

T

j ).

Without loss of generality we assume that|KS | ≥
|KT |, and lettr denotes the trace of a matrix, then
Equation 4 can be solved by

min f (X) = tr(CT X), (5)

subject to

X1|K
S | = 1|K

T |
,

XT 1|K
T | ≤ 1|K

S |
,

X ∈ {0,1}|K
T |×|KS |

.

where 1n denotes a column vector of size n with en-
tries equal to 1,X ∈ {0,1}|K

S |×|KT | denotes that the
matching between the candidate pair (i, j) is either
true or false. For the|KS |= |KT | case we force each
row and each column ofX containing exactly a sin-
gle one, that means all sample points from source
shape should be matched into target sample points
and vise versa. For more general case where there
exists min(|KS |, |KT |) injections in the matching re-
sult, we allow some undetected matchings, which is

represented as zero elements inX1|K
S | or XT 1|K

T |.
In our implementation we employed the lpsolve

(lp solve, ) to solve this linear assignment problem.

6 AFFINITIES

6.1 Spatial Arrangement Affinity

The spatial affinity should reflect the spatial arrange-
ment of the sample points of each shape, which means

in our case two sample points are close to each other
in the embedding space if the intrinsic distance be-
tween them is small. In order to attain bending in-
variant representation, we use geodesic distances to
define the relationships between the sample points of
each shape. We further apply a Gaussian kernel fil-
tering on the geodesic distances so as to remove scale
relevance. In summary, for shapeS, we construct the
spatial affinity matrixP using the following definition

pi j = exp

(

−d2
g(K

S
i ,K

S
j )

2σ2
S

)

,

wheredg(a,b) is the geodesic distance between sam-
ple pointsa andb, KSi is i-th sample point of shape
S , σS = wSdmax is the Gaussian kernel width with re-
spect to the maximal geodesic distancedmax among
sample points, withwS usually set to 0.005. We also
construct the spatial affinity matrixQ for T similarly.

6.2 Feature Similarity Affinity

The similarity affinity matrix should reflect the fea-
ture similarity of embeddings from different shapes.
In this work, we adopt the HKS (Sun et al., 2009)
as our choice with consideration to its strong proper-
ties as mentioned previously. However, due to the ge-
ometry discretization errors and sampling distortion,
it’s hard to preserve the consistency of signatures in
the diffusion embedding space. Moreover, there also
exists ambiguity problem when dealing with intrinsi-
cally symmetric shapes of the HKS. In order to mea-
sure the feature similarity following a continuity con-
strained way, we employed a geodesic field and com-
bine it with HKS. Hence, our similarity affinity matrix
is constructed through the following steps
• Calculate the HKS for each shape, based on which

we then detect anchor correspondences.

• Compute the geodesic field using the anchors.
Construct new signature as combination of the
HKS and the geodesic field.

• Compute optimized matrix through singular value
decomposition (SVD) on primal affinity matrix
measured on Gaussian kernel on squared Eu-
clidean distance in the signature space.
We follow the work proposed by (Sun et al., 2009)

to calculate the HKS, and extract the anchor corre-
spondences using the method of (Ovsjanikov et al.,
2010).

Given a set of anchors on shapeS , denoted by
κS1 , · · · ,κ

S

k ,k < |KS |, for each sampling point we es-
tablish the geodesic field defined as

yi =

[

dg(K
S

i ,κ
S

1)

dmax
, · · · ,

dg(K
S

i ,κ
S

k )

dmax

]T

,
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wheredmax is the maximal geodesic distance among
sampling points,KSi is i-th feature point of shapeS .

The combination of the HKS and geodesic field is
a straightforward dimensional concatenation, that’s to
say our new signature can be written as

fi =
[

hT
i ,λyT

i

]T
, (6)

where fi is the combined signature fori-th sample
point of the shape andhi is the HKS. We believe that
a balanced weightλ = 1 is ideal for most cases.

Now we can compute feature similarity affinity
R measured on combined signatures. The affinity
should exclude most of features, while at the same
time, avoid to make any hard decision, i.e., a zero-one
permutation matrix is not the one we pursuit.

To address this issue, according to (Scott and
Longuet-Higgins, 1991), we first define an affinity
matrix R̃, whose entry is given as

r̃i j = exp

(

−‖ f Si − f Tj ‖2

2σ2

)

,

where we set the width of Gaussian kernelσ = 0.005.
Then we run the singular value decomposition of the
affinity matrix R̃, which we express it in the form
R̃ = Ũ S̃Ṽ T , whereŨ andṼ are orthogonal matrices,
andS̃ is a non-negative diagonal matrix. Next we con-
vert the matrixS̃ into an identity matrixE by replac-
ing the singular values of̃S by ones, and obtain an op-
timized matrixR∗ = ŨEṼ T , where each element indi-
cates the extent of pairing between two sample points
of different shapes. The optimized matrixR∗ corre-
lates best withR̃ as is shown in (Scott and Longuet-
Higgins, 1991).

Finally, we use the optimized matrixR∗ to con-
struct the similarity affinity matrixR by setting the
negative values to zero.

7 RESULTS

Time Evaluation. We implemented our framework
in C++ and evaluated the performance on a com-
puter with Intel CoreTM 2 Quad processor and 4GB
of RAM. The running time of our pipeline mainly
depended on the construction of the spatial and sim-
ilarity affinity matrices. For a mesh with about
6000 vertices, these preprocessing stages totally spent
about one minute, with the computation of HKS tak-
ing about more than half of the duration. Fortu-
nately, finding that the complexity of HKS can be
reduced through a multi-resolution optimization ap-
proach (Vaxman et al., 2010), we consider employing
it in future to extend capability of our framework to
extremely large meshes.

Table 1: Time consumption of the alignment using brute
force search. #f denotes the number of sample points,k
represents the dimension of embeddings. Times are given
in seconds.

#f k = 3 k = 4 k = 5 k = 6
100 0.11 0.72 6.8 73.2
200 0.21 1.8 16.25 180
300 0.38 2.5 20.0 208
400 0.42 2.99 31.6 367.8

Table 2: The matching distortion of our method in com-
parison with (Sahillioğlu and Yemez, 2010) on the TOSCA
nonrigid world dataset (Bronstein et al., 2008).

Sahillioğlu et al. Our method
pair Davg,Dmax Davg,Dmax
Cat 0.032, 0.117 0.024, 0.167
Michael 0.031, 0.119 0.035, 0.165
Victoria 0.014, 0.094 0.021, 0.117

In contrast with the state-of-the-art spectral based
techniques, our method doesn’t entail an alignment
step to eliminate sign flips and orderings between em-
beddings of different shapes. The alignment is quite
time consuming (Jain and Zhang, 2006; Mateus et al.,
2007), for twok-dimensional embeddings, there are
2kk! possible cases to be verified. Table 1 shows the
time consumption by using exhaustive search. Al-
though the author of (Mateus et al., 2007) addressed
this problem by searching for an orthogonal transfor-
mation, still the algorithm is low performance.
Matching Results Evaluation.We evaluated match-

ing qualities using triangular meshes from the
TOSCA nonrigid world dataset (Bronstein et al.,
2008) and human bodies generated using the SCAPE
model (Anguelov et al., 2005). We sampled about
200 feature points on each shape that originally have
about 3K to 20K vertices.

We used the average matching errorDavg and
the maximal matching errorDmax, as defined by
Sahillioğlu and Yemez (Sahillioğlu and Yemez, 2011)
to quantify the matching distortion. The quantified
distortions are provided in Table 2, and visualized
matching results are shown in Figure??, where we
can observe that our method achieves good results
with less time-consuming.

8 CONCLUSIONS

We proposed a unified spectral embedding for shape
correspondence. The embedding is achieved through
eigen decomposition on a unified affinity matrix com-
posed of the spatial affinities and the similarity affini-
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Figure 2: Some experimental results by our method tested on shapes from the TOSCA nonrigid world dataset (Bronstein
et al., 2008).

ties, which means that the obtained embedding en-
codes both the spatial arrangement and the feature
similarity. Comparing with other existing spectral
techniques, our embeddings of different shapes can be
directly used as shape descriptors for correspondence,
without necessity alignment between them.

In this paper, we only consider isometric shapes
matching in this paper because the construction of
affinity matrices are based on isometric invariant geo-
metric properties. In the future we plan to explore the
possibilities for rigid matching and partial matching
of our framework.
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