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Abstract: The paper describes an innovative approach to estimate velocity on an image sequence and simultaneously
segment and track a given structure. It relies on the underlying dynamics’ equations of the studied physical
system. A data assimilation method is applied to solve evolution equations of image brightness, those of
motion’s dynamics, and those of distance map modelling the tracked structures. Results are first quantified
on synthetic data with comparison to ground-truth. Then, the method is applied on meteorological satellite
acquisitions of a tropical cloud, in order to track this structure on the sequence. The outputs of the approach
are the continuous estimation of both motion and structure’s boundary. The main advantage is that the method
only relies on image data and on a rough segmentation of the structure at initial date.

1 INTRODUCTION

The issue of detecting and tracking a structure covers
a broad of major computer vision problems. Read-
ers can refer to (Yilmaz et al., 2006), for instance,
in order to get an extensive description on this issue.
However, images may be noisy, as this is the case for
satellite acquisitions, and assumptions on dynamics
should then be involved. To our knowledge, no paper
concerns a method that simultaneously estimates mo-
tion and segments/tracks a structure from only image
data and a rough segmentation of the structure. How-
ever, methods exist that segment and track a structure,
given motion field and initial segmentation (Peterfre-
und, 1999; Rathi et al., 2007; Avenel et al., 2009), or
that track a structure and estimate its motion if this
structure has been accurately segmented on the first
image (Bertalmı́o et al., 2000).

The use of data assimilation recently emerged in
the image processing community. In (Béréziat and
Herlin, 2011), motion estimation is discussed, and
solutions are described for processing noisy images.
In (Papadakis and Mémin, 2008), an incremental 4D-
Var is used, that also computes motion field and tracks
a structure, but relies, as inputs, on both image data
and accurate segmentation of the structure on the
whole sequence. Our approach has the advantage to
simultaneously solve the issues of motion estimation,

detection, segmentation and tracking of the structure,
based, as only inputs, on image data and their gradient
values.

Section 2 describes the main mathematical com-
ponents of the approach. Sections 3 and 4 discuss
results obtained on synthetic data and meteorological
satellite acquisitions. Section 5 concludes with some
remarks and perspectives on the research work.

2 MATHEMATICAL SETTING

Our approach is based on a 4D-Var data assimilation
algorithm, used to estimate motion on the sequence
and track a structure.

W denotes the bounded image domain, on which
pixels x =

�
x y

�T are considered, [0;T ] the studied
temporal interval, and A = W� [0;T ].

2.1 Model of Structure and Input Data

Let define the structure tracked along the image se-
quence by an implicit function f (see Figure 1): each
pixel x at date t gets for value its signed distance to
the current position of the structure boundary.

Observations, used during the assimilation, are
images themselves and their contour points, obtained
by thresholding the maxima of the gradient norm.
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Figure 1: Implicit representation of structure’s boundary.

2.2 Evolution Model

The assumption on dynamics is the Lagrangian con-
stancy of velocity w =

�
u v

�T , rewritten as:

du
dt

= 0, ¶u
¶t

+u
¶u
¶x

+ v
¶u
¶y

= 0 (1)

dv
dt

= 0, ¶v
¶t

+u
¶v
¶x

+ v
¶v
¶y

= 0 (2)

A pseudo-image Is is defined, that satisfies the op-
tical flow constraint:

¶Is

¶t
+ÑIs:w = 0 (3)

The pseudo-image is compared to satellite data dur-
ing the optimization process: they have to be almost
identical at acquisition dates. The implicit function f

is assumed to satisfy the same heuristics, as the struc-
ture moves accordingly to image evolution:

¶f

¶t
+Ñf:w = 0 (4)

The state vector, defined as X =
�
u v Is f

�T ,
satisfies the evolution system (1, 2, 3, 4), summarized
by:

¶X
¶t

+M(X(t)) = 0 (5)

2.3 4D-Var Data Assimilation

In order to estimate X, and obtain motion estimation
and tracking of the structure, the 4D-Var algorithm
considers the following three equations:

¶X
¶t

(x; t)+M(X)(x; t) = 0 (6)

X(x;0) = Xb(x)+ eb(x) (7)
H(X;Y)(x; t) = eR(x; t) (8)

The first one is the evolution equation. One can
notice that X(x; t), for any t, is determined from
X(x;0) and the integration of Equation (6).

Equation (7) corresponds to the knowledge, that is
available on the state vector at initial date 0, and ex-
pressed as the background value Xb(x). The solution
X(x;0), estimated by 4D-Var, should stay close to this
background value. However, as it is uncertain, an er-
ror term, eb(x), is considered. No knowledge is avail-
able on the initial velocity field and its background
value is null; the background on the pseudo-image Is
is the first image of the sequence; and the background
of f, denoted fb, roughly defines the structure to be
tracked. Let P be the projection of the state vector on
components Is and f, Equation (7) is rewritten as:

P(X(0)) =P(Xb)+ eb (9)

Equation (8), named observation equation, links
the observations to the state vector X. The obser-
vation vector Y includes the image acquisitions and
a distance map to the contour points, that have been
computed on these acquisitions. This distance map is
denoted by Dc(x; t). H denotes the observation opera-
tor, split in two parts: H=

�
HI Hf

�T . HI compares
pseudo-images Is to image observations I:

HI(X;Y) = Is� I = eI (10)

Their discrepancy is described by the error eI . Hf

compares f to the distance map Dc(x; t). The absolute
value of f should be almost equal to Dc:

Hf(X;Y) =
4e�af

(1+ e�af)2 (jfj�Dc) = ef (11)

The function 4e�af

(1+e�af)2 is introduced to decrease the
impact of contours, that do not belong to the bound-
ary of the tracked structure. Parameter a controls the
slope of the function. The more a increases, the more
the function looks like an indicator function: only pix-
els in a small neighborhood of structure’s boundary
are considered byHf during the optimization process.

Errors eb, eI , ef are supposed Gaussian, zero-
mean, not correlated, with respective variance B, RI ,
Rf. Solving System (6, 9, 10, 11) is then written as
the minimization of the following cost function:

J(X(0))=
Z

A

eI(x; t)2

RI(x; t)
+
Z

A

ef(x; t)2

Rf(x; t)
+
Z

W

eb(x)2

B(x)
(12)

Let l denote the adjoint variable, verifying:

l(T ) = 0 (13)

� ¶l(t)
¶t

+

�
¶M

¶X

��
l(t) =H�R�1

H(X;Y)(t) (14)

with the adjoint operator
�

¶M

¶X

��
, which is defined

by: hZh;li = hh;Z�li. The adjoint operator
�

¶M

¶X

��
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is automatically generated from the discrete opera-
tor M by an efficient automatic differentiation soft-
ware (Hascoët and Pascual, 2004). Then, gradient of
J is:

¶J
¶X(0)

=PT B�1[P(X(0))�P(Xb)]+l(0) (15)

Minimization is achieved by a steepest method and
the L-BFGS algorithm (Zhu et al., 1997).

3 TWIN EXPERIMENT

A sequence of five Image Observations (see Figure 3),
Ii = I(ti) for i = 1 to 5, is generated by integrating
model M from initial conditions, displayed in Fig-
ure 2. Contours are first computed on images Ii. Then
Distance Map Observations Dc(x; ti) are derived. This
is done in order to estimate motion on the whole im-
age sequence and track the brightest square.

Figure 2: Left : initial image. Right : initial motion field.

Figure 3: Image Observations at t1 and t5.

After assimilation, pseudo-images are compared
to Image Observations. They are almost identical and
their correlation measure is over 0.999. At dates ti,
the region of positive values of f, corresponding to
the inside of the tracked structure, is compared to the
contour points, see Figure 4.

The simulation, that provides Image Observa-
tions, also provides ground-truth of the velocity field.
This allows to perform statistics on the discrepancy
between estimated motion and ground-truth: average
error is around 1% in norm and less than one degree
in orientation. Motion estimated on the whole image
is displayed on Figure 5 with the coloured representa-

Figure 4: Comparison of f and contour points on Image
Observation. Left: t1, Right: t5.

Figure 5: Left: Ground-truth. Right: Assimilation result.

tion tool of the Middlebury database1: there is no vis-
ible difference between estimation and ground-truth.

4 METEOSAT IMAGES

The assimilation method is applied on a Meteosat se-
quence and displayed on Figure 6.

Figure 6: Images of a tropical cloud in the infrared domain.
From left to right, up to down.

Figure 7, first column, displays the contour points,
used to calculate the Distance Map Observations
Dc(x; ti). Pseudo-images, obtained as result of data
assimilation, are displayed on the second column. On
the third column, the blue curve corresponds to the

1http://vision.middlebury.edu/flow/
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Figure 7: Left: Contours on observations. Middle: pseudo-
images. Right: red is the result withHf, blue is without.

result of assimilation without the term Hf in Equa-
tion 11, while the red one is obtained with Hf. As it
can be seen, including constraints on f allows to im-
prove the accuracy of segmentation. Motion field is
estimated on the whole image, but Figure 8 focuses
on the boundary of the structure. It shows that the re-
sulting velocity vectors correctly assess displacement
of the structure along the sequence. The displacement
estimated at the boundary of the tracked structure, su-
perposed on satellite images, is shown on Figure 8.

Figure 8: Motion result superposed to images on the bound-
ary of the tracked structure. From left to right, up to down.

5 CONCLUSIONS

The paper describes an innovative approach enabling
to estimate motion, segment and track a structure on
images, such as, for instance, a cloud on a satellite se-
quence. The approach is based on 4D-Var data assim-
ilation, and the state vector includes an implicit func-
tion f modelling the boundary of the tracked struc-
ture. Results are given on synthetic and meteoro-
logical data. Additional experiments have been con-
ducted, not described in the paper, that confirm the
robustness of the approach.

The main perspective of this research is to ex-
tend the method to multi-structures tracking and to
a space-time segmentation process. An additional in-
teresting perspective is to allow uncertainty on the dy-
namic equations and take into account a model error
in Equation (6).
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