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Abstract: Local surface description is a critical stage for surface matching. This paper presents a highly distinctive local
surface descriptor, namely TriSI. From a keypoint, we first construct a unique and repeatable local reference
frame (LRF) using all the points lying on the local surface. We then generate three spin images from the three
coordinate axes of the LRF. These spin images are concatenated and further compressed into a TriSI descriptor
using the principal component analysis technique. We tested our TriSI descriptor on the Bologna Dataset
and compared it to several existing methods. Experimental results show that TriSI outperformed existing
methods under all levels of noise and varying mesh resolutions. The TriSI was further tested to demonstrate
its effectiveness in 3D modeling. Experimental results show that it can accurately perform pairwise and
multiview range image registration. We finally used the TriSI descriptor for 3D object recognition. The results
on the UWA Dataset show that TriSI outperformed the state-of-the-art methods including spin image, tensor
and exponential map. The TriSI based method achieved a high recognition rate of 98.4%.

1 INTRODUCTION ence of occlusion and clutter (Salti et al., 2011). In
the process of surface matching, the distinctiveness

Surface matching is a fundamental research topic in @nd robustness of the local surface descriptors play a
both 3D Computer Vision and Computer Graphics. It Significant role (Taati and Greenspan, 2011).
has a number of applications, including 3D modeling A number of papers on local surface descriptors
(Mian et al., 2006), 3D shape retrieval (Shilane et al., can be found in the literature (Bustos et al., 2005;
2004), 3D objectrecognition (Attene et al., 2011; Guo Bronstein et al., 2010; Boyer et al., 2011). Chua and
et al., 2012; Guo et al., 2013), 3D mapping (Huber Jarvis (1997) proposed a Point Signature by record-
et al., 2000), robotics (Lai et al., 2011b), and reverse ing the signed distances between the neighboring sur-
engineering(Williams and Bennamoun, 2000). With face points and their correspondences in a fitted plane.
the rapid development of low-cost 3D scanners (e.g., Point Signature is however, sensitive to noise and
Microsoft Kinect), range images are becoming more varying mesh resolutions (Mian et al., 2005). Johnson
available (Lai et al., 2011a; Rusu and Cousins, 2011). and Hebert (1999) proposed a Spin Image descriptor
The data availability together with the progress in by accumulating the neighboring points into a 2D his-
high-speed computing devices have increased the detogram. The spin image is one of the most cited meth-
mand for efficient and accurate range image represen-ods in the literature. It is however weakly distinc-
tation techniques (Mian et al., 2010). tive and sensitive to varying mesh resolutions (Mian
There are two basic approaches to represent aetal., 2010). Chen and Bhanu (2007) used Local Sur-
range image, namely global feature and local feature face Patches (LSP) to represent a range image. Since
based approaches (Salti et al., 2011). A global fea- the LSP descriptor requires the calculation of second-
ture based approach uses a global feature to represertrder derivatives of a surface, it is sensitive to noise.
a surface. It is very popular in 3D shape retrieval, but Flint et al. (2007) introduced the THRIFT descriptor
it is sensitive to occlusion and clutter. A local feature by generating a 1D histogram according to the surface
based approach however, uses a set of 3D keypointsnormal deviations. Tombari et al. (2010) proposed
and local surface descriptors to represent a surface. Ita Sighature of Histograms of OrienTations (SHOT)
is therefore, suitable to surface matching in the pres- by encoding the surface normal deviations in a parti-
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tioned spherical neighborhood. The SHOT is highly
descriptive. It is however, also sensitive to varying
mesh resolutions. Other descriptors include Point’s
Fingerprint (Sun and Abidi, 2001), 3D Shape Context
(Frome et al., 2004), Tensor (Mian et al., 2006), Ex-
ponential Map (EM) (Novatnack and Nishino, 2008)
and Variable-Dimensional Local Shape Descriptors
(VD-LSD) (Taati and Greenspan, 2011).

Most of the existing local surface descriptors suf-
fer from low descriptiveness, or robustness to noise,
or sensitivity to varying mesh resolutions (Bariya
et al.,, 2012). Motivated by these limitations, we
propose a highly distinctive and robust local surface
descriptor called Tri-Spin-Image (TriSI). The TriSI
is an improvement of the Spin Image descriptor. It

first builds a unique and repeatable Local Reference

Frame (LRF) for each keypoint. It then generates

o.k=12--- K, we first extract the local surface
£ using a sphere of radiuscentered abx. We then
construct a LRF foiok using all the points lying on
the local surfacer rather than using just the mesh
vertices.

Assume that the local surfagecontainsN trian-
gles andM vertices. For théth triangle with vertices
gi1, ;> andq;3, we calculate the scatter mati$ us-
ing the continuous PCA algorithm:
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The overall scatter matri® of the local surface

three spin images by spinning one sheet around eachis then calculated as:
axis of the LRF. The three images are concatenated to

form an overall TriSI descriptor. The TriSI descrip-
tor is further compressed using the Principal Compo-
nent Analysis (PCA) technique. Performance evalu-
ation results show that our proposed TriSI descriptor
is highly descriptive. It is very robust to both noise

and varying mesh resolutions. The effectiveness of

TriS| descriptor was also demonstrated by 3D mod-
eling including pairwise and multiview range image
registration. The TriS| descriptor was further used for
3D object recognition and was tested on the UWA
Dataset. Experimental results show that TriSI out-
performed the state-of-the-art methods including Spin
Image, Tensor, EM and VD-LSD.

The rest of this paper is organized as follows: Sec-

N
S= Z\ﬁl\ﬁzS, (2

where the weightgi1 andy;, are respectively defined
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Vi = (r 0k7Qi1+q:igz+Qi3 ) ' (4)

We perform an eigenvalue decomposition on the
scatter matrixS to get three orthogonal eigenvectors

tion 2 describes the TriSI surface descriptor. Section V1- V2 andvs. These eigenvectors are in the order
3 presents the feature matching performance. Sectiorf decreasing magnitude of their associated eigenval-
4 demonstrates the TriSI based 3D modeling meth- Ues: The eigenvectoss, vz andvs form the basis
ods and their experimental results. Section 5 presents©r the LRF. However, their directions are ambigu-

the 3D object recognition results. Section 6 concludes OUS- Thatis—vi, —V; and—vs are also eigenvectors

this paper.

2 TriSI SURFACE DESCRIPTOR

The process of generating a TriSI surface descriptor

includes three modules, i.e., LRF construction, TriSI
generation and TriSI compression.

2.1 LRF Construction

Given a triangular mesh surfageand a set of key-
points{01,02,--- ,0k }, @ set of local surface descrip-
tors {f,, f,,---, f} should be generated to repre-
sent the surface. Here,K denotes the number of
keypoints on the surface. For a given keypoint

of the scatter matrids. We therefore propose a sign
disambiguation technique.
We define the unambiguous vectefsandvs as:
N

3
Vi=Vi- sgn<i;wmz (,Zl (ai; —0x) vl>> . (3
N
\73 = V3~SQI"I<ZW1W2 < (q” *Ok) V3>> ) (6)
i= =1

where sgit-) denotes the signum function that ex-
tracts the sign of a real number. Vecty is then
defined asfz x V1.

Finally, we construct a LRF for the keypoiog
using ok as the origin and the unambiguous vectors
{V1,V2,V3} as the three coordinate axes.

w

87



GRAPP 2013 - International Conference on Computer Graphics Theory and Applications

4 to a PCA subspace to get a more compact feature de-
scriptor. The PCA subspace can be learned from a set
of training descriptor{ f,, f5,---, f1}, whereT is

the number of training descriptors. We calculate the
scatter matrixM as:

St

Spin sheet
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M :_i(fi—T)(fi—T)T, (10)

a / where f is the mean vector of all these training de-
! scriptors.

) ) ] ) o We then perform an eigenvalue decomposition on
Figure 1: Anillustration of the generation of a spinimage. .

(Figure best seen in color.)
MV =VD, (11)

whereD is a diagonal matrix with diagonal entries
equal to the eigenvalue d¥l, V is a matrix with

2.2 TriSl Generation

Given a keypoinby, the local surface and the LRF :

vectors{Vi,V,V3}, we generate three spin images columns equal to the eigenvectorsaf .

{Sl1,Sl2,SlI3} by respectively spinning a sheet about We define thg PCA sub;pace using RIS ElEnvec-

the three axes of the LRF. tors corresponding to the higheseigenvalues. The
We first generate a spin image by spinning a sheet Value ofn i_s chosen such that 95% of the fidelity is

about thev; axis. An illustration is shown in Fig. 1. ~Preservedinthe compressed data.

Given the LRF, each poirg on the local surface is Therefore, the compressed vectigrof a feature

represented by two parameterandp. Here aisthe  descriptorf; is:

perpendicular distance gffrom the line which passes R

throughoy and is parallel tor;. B is the signed per- f.=V'f, (12)

pendicular distance to the plane which goes through

; ; - ; whereV/] is the transpose of the firatcolumns ofV.
ok and is perpendicular 1, that is:

During feature matching, we use the Euclidean
P 5 distance to measure the distance between any two de-
a=\la-0d?- (- @-0)% ()  sriptorsf, andf .

B=vi-(q—0). 8
We accumulate the parameteis, ) of all the 3 FEATURE MATCHING
points onc into aB x B histogram, whera is the PEREORMANCE

number of bins along each dimension of the his-

togram. We further bilinearly interpolate this 2D his- ) )

togram to account for noise. The interpolated his- e tested the performance of TriSI descriptor on

togram is our improved spin imagg;. the Bologna Dgta;et (Tombari et al., 2010). We
We then generate two other spin imags and also compared it with several state-of-the-art descrip-

Sl 3 by following the exact same way we adopted to {Ors including Spin Image (Spinim) (Johnson and

generateSl1. That is,Sl» andSl3 are generated by Hebert, 1999), Normal Histogram (NormHist) (Het-

substituting the; in Equations (7-8) withv, andvs, zel et al., 2001), Local Surface Patcheg (LSP) (Chen

respectively. We finally concatenate the three spin im- @nd Bhanu, 2007) and SHOT (Tombari et al., 2010).

ages to obtain our TriSI descriptor, that is: The experimental results are presented in this section.
TriSl = {SI1,Sl2,Sl3}. (9) 3.1 Experimental Setup
2.3 TriSl Compression The Bologna Dataset (Tombari et al., 2010) contains

six models and 45 scenes. The models were taken
The dimensionality of the TriSI descriptor i83 and from the Stanford 3D Scanning Repository (Curless
it is therefore too large for an efficient feature match- and Levoy, 1996). The scenes were generated by ran-
ing. For example, iB is set to be 15, the dimension- domly placing different subsets of the models in order
ality of a TriSl is 675. We therefore project the TriSI to create clutter and pose variances. The ground-truth
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Table 1: Tuned parameter settings for five feature descrip- as the level of noise increased from 0.1mr to 0.5mr

tors. However, our TriSI was more robust to noise com-
Support Radius (mr)  Dimensionality  Length pared to the others. It obtained a high recall of about
Spinim 15 15*15 225 0.7 together with a high precision of about 0.7 even
NormHist 15 15*15 225 with a high level noise (with a deviation of 0.5mr),
LSP 15 15*15 225 which is shown in Fig. 2(c). Moreover, the gap be-
SHOT 15 8+2*2*10 320 tween SHOT and TriSI got larger when level of noise
Trisl 15 29*1 29 increased. This validated the strong robustness and
consistency of our TriSI descriptor in the presence of
noise.

transformations between each model and its instances It can also be observed that NormHist and Spinim

in the scenes were provided in the dataset. performed well under a low level of noise (with a de-

We adopt the frequently use&ecall vs 1- yiation of 0.1 mr), as shown in Fig. 2(a). They how-
Precision Curve (RP Curve) (Ke and Sukthankar, eyer failed to work when a medium level of noise

2004) to measure the performance of a feature de-(yith 5 deviation of 0.3mr) was added, as shown
scriptor. If the distance between a scene feature de-j, Fig. 2(b). Thisis because the generation of a
scriptor and @ model feature descriptor is smaller than NormHist or a Spinim requires surface normals which
athreshold, this pair of feature descriptors is consid- e very sensitive to noise. In contrast, LSP was
ered a match. Further, if the two feature descriptors pighly susceptible to noise. It achieved a very low
come from the same physical location, this maich is reca|l and precision even under a low level of noise
considered a true positive. Otherwise, it is considered ith a deviation of 0.1mr), as shown in Fig. 2(a).

a false positive. Given the total number of positives as This is mainly due to the reason that LSP is based on

a priori, the recall and 1-precision are calculated, asin o shape index values of the local surface which are
(Ke and Sukthankar, 2004).A RP Curve can therefore, gyen more sensitive to noise compared to surface nor-

be generated by varying the threshold mals.
We first randomly selected a set of keypoints from
each model (1000 keypoints in our case), and ob- .
tained their corresponding points from the scene. We 3.3 RObUStr_wess to Varying Mesh
then used a feature description method (e.qg., TriSI) to Resolutions
extract a set of feature descriptors. The scene feature
descriptors were finally matched against the model In order to test the performance of these descriptors
feature descriptors to produce a RP Curve. The pa-with respect to varying mesh resolutions, we resam-
rameters for all the five feature description methods pled the noise-free scenes downitg, 1/4 and1/s of
were tuned by a Tuning Dataset which contains the their original mesh resolution. We generated one RP
six models and their transformed versions (obtained Curve for a feature descriptor at each level of mesh
by resampling td/2 of their original mesh resolution  decimation. The RP Curves of these descriptors are
and adding 0.1mr Gaussian Noise). Note that, ‘mr’ shown in Fig. 3.
denotes the average mesh resolution of the six mod- It was found that our TriSI was very robust to
els, which is used as the unit for metric parameters. varying mesh resolutions, and outperformed the other
We also trained the PCA subspace using the TriSI de- descriptors by a large margin under all levels of mesh
scriptors of the six models. The tuned parameter set-decimation. TriSI achieved a high recall of about 0.95
tings for all feature descriptors are shown in Table 1. underl/2 mesh decimation, as shown in Fig. 3(a). It
also achieved a recall of about 0.9 ungfemesh dec-
3.2 Robustnessto Noise imation, as shown in Fig. 3(b). TriSI consistently
achieved a good performance even ungfermesh
In order to test performance of all these descriptors decimation, with a recall of more than 0.8, as shown
in the presence of noise, we added different levels of in Fig. 3(c). It is worth noting that the performance
noise with standard deviations of 0.1mr, 0.3mr, and of TriSI underl/s mesh decimation was even better
0.5mr to the 45 scenes. We generated one RP Curvethan the performance of Spinlm undgz mesh deci-
for a feature descriptor at each noise level. The RP mation, as shown in Figures 3(a) and (c). This clearly
Curves of these five descriptors are shown in Fig. 2. justifies the effectiveness and robustness of the TriSI
It can be observed that our TriSI descriptor descriptor with respect to varying mesh resolutions.
achieved the best performance at all levels of noise, = Moreover, our TriSI descriptor is very compact.
while SHOT achieved the second best performance.As shown in Table 1, the length of a compressed TriSlI
The performance of all these descriptors decreasedin this experiment is only 29. In contrast, the second
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Figure 2: Recall vs 1- precesion curves in the presence eén@a) Noise with a deviation of 0.1mr. (b) Noise with a déeia
of 0.3mr. (c) Noise with a deviation of 0.5mr.
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Figure 3: Recall vs 1- precision curves with respect to vagyyinesh resolutions. (&)2 mesh decimation. (b)/4 mesh
decimation. (c}//s mesh decimation.

shortest length of the other descriptors is 225, which

. ) : Ri = FhiF i, (13)
is larger than the length of TriSI by an order of magni- I

tude. This means that our TriSI can be matched more

efficiently compared to the other methods. ti = 0q — OxiR, (14)

whereog; andog; are respectively the positions of
the corresponding points from andsz, Fsj andFg;
4 3D MODELING are respectively the LRFs of;; andog;.

We calculate a total oN. transformations from
the N; feature correspondences. These transforma-
tions are then grouped into a few clusters. Each clus-
ter center gives a potential transformation between
ands,. We sort these clusters based on their sizes
. . ) and their average feature distances. We verify several
4.1 Pairwise Range Image Registration most likely transformations and choose the transfor-

mation which produce the least registration error be-
Given a pair of range imagelss1,S2} of an object, tweens; andso.
we respectively generate a set of TriSI descriptors for ~ We applied our TriSI based pairwise range image

In order to demonstrate the effectiveness of TriSI for
3D modeling, we used TriSI to perform pairwise and
multiview range image registration.

boths; andsz. We match the TriSI descriptors of registration method to two range images of the Chef
against the TriSI descriptors @b to obtain a set of  model of the UWA Dataset (Mian et al., 2006). Fig.
feature correspondencési, 2, -, Cn. }, WhereN; 4(a) shows the feature matching results between the

is the number of feature correspondences. For eachtwo range images. It is clear that the majority of fea-
feature correspondencg, we can generate a trans- ture matches are true positives. This feature matching
formation(R;,t;) betweens; andsz using the LRFs result further indicates the high descriptiveness of our
and the point positions. That is, the rotation maRjx  TriSI descriptor. Although there are a few false posi-
and translation vectdy are calculated as follows: tives in the feature matching result, they can easily be
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. o . @ . ®) :
Figure 4: Pairwise range image registration results. (ajUfe matching result between two range images of the Chif. (
Pairwise registration result. (Figure best seen in color.)

(@) (b) (©
Figure 5: Multiview range image registration result. (a}if set of 22 range images of the Chef model. (b) Coarsestegi
tion result by TriSI based method. (c) The fine 3D model in thgADataset. (Figure best seen in color.)

eliminated by the process of grouping. As shown in fully constructed, the transformation between any two
Fig 4(b), the alignment between the two range images connected nodes is already available. Based on these

are very accurate. estimated transformations, we transform all range im-
ages to the coordinate basis of the range image at the
4.2 Multiview Range I mage root node. These multiview range images can there-
Registration fore be aligned without any manual intervention.

We applied our TriSI based multiview range im-
age registration method to 22 range images of the

Given a set of range images1,s2,--- SN} 0f @0 chef model of the UWA Dataset. Fig. 5(a) shows the
object, we generate a set of TriSI descriptors for eaChinitiaI set of range images, and Fig. 5(b) illustrates

range image. Obnce (tjhelTriSIhdescriptofrs are Oblt‘_"‘inecj’our registration result. It is clear that our TriSI based
we use a tree based algorithm to perform multiview ey achieved a highly accurate alignment without
range image registration. We first select the range im- ;e of any priori information (e.g., the image order
ages; which has the maximum surface area as the , iyitia| nose of each image). A visual comparison
root node of the tree. We then use the aforementionedy orveen the coarse registered range images and the
pairwise registration method to matshwith the re- — jgina| fine 3D model shows that the registration re-
maining range Images n :he search space. hOnce 8sult is almost identical to the original model, as shown
range images; is accurately registered with, the j, Figres 5 (b) and (c). This result further demon-

range images; is added to the tree as a new node gyates the effectiveness of our TriSI based method.
and removed from the search space. The arc b_etweer]t is expected that the registration results can further
the two nodes represents the rigid transformation be- be improved by using a global registration algorithm
tweens; andsi. Once all range images have been e.g., (Williams and Bennamoun, 2001). ’
matched withs;, the algorithm proceeds to the next ’ '

node. This process continues until all range images in

the search space are added to the tree. Once the tree is
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5 OBJECT RECOGNITION

To further evaluate the performance of our TriSI de-
scriptor, we used TriSI to perform 3D object recogni- g
tion on the UWA Dataset (Mian et al., 2006). The Py
UWA Dataset is one of the most frequently used g
datasets. It contains five models and 50 real scenes. 8
Our 3D object recognition algorithm goes through gn 40| —e—Tensor
two phases: offline pre-processing and online recog- © 30| ——Spinim
nition. During the offline pre-processing phase, we @ 20| —=—EM
extract our TriS| descriptors from a set of randomly 10|~ VD-LSD !
selected keypoints from all models. We also index —e—TriS|
these TriSI descriptors usingkad tree structure for % 6 70 75 80 8 90
efficient feature matching. During the online recogni- Occlusion (%)

tion phase, we first extract TriSI descriptors from a set Figure 6: Recognition rates on the UWA Dataset.

of randomly selected keypoints in a given scene. We

then match the scene descriptors against the model

descriptors using the-d tree. The feature matching 6 CONCLUSIONS

results are used to vote for candidate models and to

generate transformation hypotheses. The candidatdn this paper, we presented a distinctive TriSI local

models are then verified in turn by aligning them with descriptor. We evaluated the descriptiveness and ro-

the scene using a transformation hypothesis. If the bustness of our TriSI descriptor with respect to dif-

candidate model is aligned accurately with a portion ferent levels of noise and mesh resolutions. Experi-

of the scene, the candidate model and transforma-mental results show that TriSl is very robust to noise

tion hypothesis are accepted. Subsequently, the scen@nd varying mesh resolutions. It outperformed all

points that correspond to this model are recognized existing method. We also used our TriSI descriptor

and segmented. Otherwise, the transformation hy-for both pairwise and multiview range image regis-

pothesis is rejected and the next hypothesis is verifiedtration. TriSI achieved highly accurate registration

by turn. results. Moreover, we used TriSI based method to
We conducted our experiments using the same perform 3D object recognition. Experimental results

data and experimental setup as in (Mian et al., 2006) revealed that our method achieved the best recogni-

and (Bariya et al., 2012) to achieve a rigorous compar- tion rate. Overall, our TriSI based method is robust

ison. The recognition rates of our TriSI based method to noise, occlusion and varying mesh resolutions. It

are shown in Fig. 6 with respect to varying levels outperformed the state-of-the-art methods.

of occlusion. We also present the recognition results

of Tensor (Mian et al., 2006), Spinlm (Mian et al.,
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