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Abstract: A diverse range of faults and errors can occur within a wireless sensor network (WSN), and it is difficult
to predict and classify them, especially post-deployment within the environment. Current monitoring and
debugging techniques prove deficient for systems which contain bugs characteristic of both distributed and
embedded systems. The challenge that faces researchers is how to comprehensively address network, node and
data level anomalies within WSNs through the creation, collection and aggregation of local state information
while minimizing additional network traffic and node energy expenditure. This paper introduces Intellectus
which seeks to develop sensor motes that are both self and environment aware. The sensor node relies on local
information in order to monitor itself and that of its neighborhood, by adding a learning approach based upon
perceived events and their associated frequency.

1 INTRODUCTION

Current monitoring and debugging techniques prove
deficient for systems which contain bugs characteris-
tic of both distributed and embedded systems. Such
bugs can be difficult to track because they are of-
ten multi-causal, non-repeatable, timing-sensitive and
have ephemeral triggers such as race conditions, de-
cisions based on asynchronous changes in distributed
states, or interactions with the physical environment.
Existing debugging techniques for WSN fail to un-
derstand the entire range of WSN anomalies. Primar-
ily they concentrate on data anomalies and often pro-
duce high traffic load within the network as a con-
sequence of their monitoring activity. The challenge
that faces researchers is how to comprehensively ad-
dress network, node and data level anomalies within
WSNs through the creation, collection and aggrega-
tion of local state information while minimizing ad-
ditional network traffic and node energy. Intellectus
seeks to imbue sensor motes such that they are both
self-aware and environment-aware. The sensor node
relies on local information in order to monitor itself
and that of its neighborhood, by adding a learning ap-
proach based upon perceived events and their asso-
ciated frequency. In Intellectus nodes maintain state
information about self and their neighborhood. This
is compiled by recording the occurrence of success-

ful events. Maintaining local information results in
a decrease in energy consumption and network over-
head associated with sending debug information on
the channel. Such periodic exchange of packets con-
sumes more energy and creates additional overhead to
the network. The node continuously listens and learns
what it is happening within itself through event detec-
tion and analysis. This work is novel in that it adopts
a self-detection methodology which is considered as
a local computational process thus requiring less in-
network communication and consequently conserv-
ing energy. This paper introduces Intellectus a scal-
abie and lightweight methodology for monitoring and
debugging WSN. The remainder of the paper is struc-
tured as follows. Section 2 offers a pen sketch of the
state of the art. Section 3 introduces the concept of
monitoring and debugging in WSN post-deployment.
Section 4 and 5 introduces Intellectus and its asso-
ciated approach. Section 7 illustrates the approach
through a case study and Section 8 concludes the pa-
per.

2 RELATED WORK

Significant work on conventional network manage-
ment and debugging tools exists (N. Ramanathan,
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2005), (Min Ding, 2005), (Ann T Ta, 2004). One of
the main challenges is determining how to incorpo-
rate network intelligence for detecting and localizing
anomalies. The literature can be segmented into two
broad approaches: centralized and distributed. The
centralized approach, typically, necessitates access to
more comprehensive network state information avail-
able at a back-end and, are thus, simpler to imple-
ment. The central node can easily become a single
point of data traffic concentration in the network, as
it is responsible for all the fault detection and fault
management. This causes a high volume of mes-
sage traffic and resulting energy depletion. The dis-
tributed approach provides more scalable and respon-
sive anomaly detection. The Distributed approach
(M. Yu, 2007), (Sa de Souza, 2009) fosters the con-
cept of local decision-making, permitting a local node
to make certain levels of decision before communi-
cating with the central node. This approach is pred-
icated on the belief that the more decisions an indi-
vidual sensor can make, the less information needs
to be delivered to the central node (Krishnamachari
B, 2004), (N. Mehranbod, 2004), (Abhishek B.,
2010), (Sa de Souza, 2009), ( Andrew S. Tanenbaum,
2002). A total distributed approach includes node
self-detection, neighbor coordination, and clustering
approaches.Node self-detection schemes (Harte S.,
2005), (Rakhmatov D., 2001), (M. Asim, 2010) iden-
tify possible failures by performing a self-diagnosis.
The anomalies typically detected are binary data of
abnormal sensor reading (Abhishek B., 2010). Fail-
ure detection via neighbor coordination (Min Ding,
2005), (C. Hsina, 2005) represents another example
of fault management distribution. Nodes coordinate
with their neighbors to detect and identify the net-
work faults before consulting with the central node.
This approach may be slow, and is error-prone and
consequently may end up routing into a new neighbor
that has also failed. Clustering approaches (Ann T
Ta, 2004), decompose the entire network into differ-
ent clusters and subsequently distributes fault man-
agement into each individual region. If a failure is
detected, the local detected failure information can be
propagated to all the clusters. Furthermore, random
distribution and limited transmission range capability
of common-node and cluster-heads provides no guar-
antee that every common-node can be connected to
a cluster head. Within Intellectus sensor nodes are
equipped with intelligence in order that they may un-
dertake monitoring and debugging tasks. In Intellec-
tus, a sensor recognizes an event, understands its in-
ternal and external behaviour, identifies its local states
and advises the user-side of this local state.

3 MONITORING AND
DEBUGGING WSNs

Monitoring and debugging WSNs in post-deployment
demands the ability to monitor connectivity and
topology change control. Connectivity is affected by
changes in topology due to mobility, the failures of
nodes, attacks and dynamic environmental factors.
Connectivity information also helps in understand-
ing how sensor networks operate. However, obtain-
ing connectivity information efficiently within wire-
less sensor networks is inherently difficult. Firstly,
the connectivity is unpredictable, and secondly as the
connectivity link can vary over time, nodes need to
send information to the central controller periodically,
via multiple hops. The instability of the link between
nodes leads to constant changes to the routing path.
In addition to variable link qualities, nodes may dy-
namically fail and reboot. These bugs are difficult to
diagnose because their only externally visible charac-
teristic is that no data is seen at the sink, from one or
more nodes. Neither of these situations would nec-
essarily be detected by existing debugging and fault
detection tools. Such tools do not address changing
or newly created topologies that occur during the ini-
tial deployment of a sensor network. Individual nodes
do not necessarily know anything about their local
topology, and rarely know anything beyond their lo-
cal topology. Such situations demand a new tool that
can aid in the sighting and placement of nodes in an
environment.

4 INTELLECTUS
ARCHITECTURE

Intellectus from the Latin verb intellego (I understand,
perceive) is a methodology which focuses on the sen-
sor nodes ability to adapt throughout its life. Intellec-
tus is a methodology that in part supports WSN Man-
agement. WSN management requires, (see figure 1):

� Sensor Node Management (Intelligent Sensor
Node) - sensor node management requires plan-
ning, organizing and controlling of its own ac-
tions. Sensor motes study the observable actions
involved in all phases of its life and catalogue the
frequency of various events in order to construct
a profile of its current and past life and how it
is changing with respect to time and social con-
text. At every instance, the sensor node gains new
knowledge that can later be used in its state deter-
mination.
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Figure 1: Overview of the Architecture of the entire Intellectus System.

� Network Management - necessitates the aggre-
gation of sensor node local decisions as a ba-
sis for controlling and improving the overall net-
work. The system will need a generalized global
overview of the network as a whole and this will
reside on the user-side where there is more capac-
ity for computation.Global states are created from
spatial and temporal correlation among decisions
deriving from individual nodes. From this model
the user will be empowered to deduce the overall
health of the network.

This paper focus in Intellectus on a single node and
presents a methodology by which the node controls its
own actions and takes decisions based upon its local
state.

5 THE MONITORING AND
CONTROLLING PROCESS

5.1 Sensor Node Life Cycle Milestones

The life of each sensor node may be fragmented into
discrete divisions called milestones. Each milestone
represents a fragment of time where extra control is
needed in order to effectively monitor the completion
of activities. A sensor node life cycle is primarily a
collection of sequential milestones. All milestones
can be mapped to the following life cycle structure:

� Start of the milestone.

� Collect events in working-memory (self-memory
system, see section 5.2).

� Execute Intellectus monitoring and controlling
process group (see section 5).

� Close the milestone with a local decision and up-
date of the message header accordingly.

Milestones form part of a generally sequential process
designed to ensure proper control of the sensor node
life cycle and the attainment of the desired monitor-
ing and debugging outcomes. It is an iterative pro-
cess, where only one milestone is executed at any
given time and the execution for the subsequent mile-
stone is carried out as work progresses on the current
milestone and deliverables. This approach is useful
in largely undefined, uncertain, or rapidly changing
environment such wireless sensor network.

5.2 Intellectus Events and Track Events
Process

Wireless Sensor Networks (WSNs) are fundamentally
reactive systems. Reactive systems are computer sys-
tems that are mainly driven by events. Their progress
as a computer system depends on events, which may
occur unpredictably and unexpectedly at any instance,
in almost any order, and at any rate. Indeed, the com-
putations of sensor nodes are only performed as a re-
action to certain events otherwise the node remains
in a power conserving sleep mode. WSNs need to
be able to react to a variety of events in an appropri-
ate way. Since the handling of events is one of the
primary tasks of a sensor node, Intellectus provides
expressive abstractions for the specification of sensor
events and their associated reactions.

Intellectus Events:=<Reboot>|<Internal>|<Network>;
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In Intellects, events are categorized as either re-
boot, internal and network activities.

� Reboot Events: represent all events and states
concerned with the reboot of a sensor node, for
example the 3-tuple made of events (Boot, Radio
Start, Serial Start).

� Internal Events: represent all events and states
concerned with the internal activity of the sensor
mote, like an internal timer that expires every few
seconds, one such example would be the 2tuple of
events (Timer fired, Read Temperature Done).

� Network Events: represent all events and states
concerned with the network or external activity of
the sensor motes. For the Collection Tree Protocol
(CTP) this is the 3-tuple (Receive, Snoop Receive,
Intercept Receive).

The Intellectus methodology adds to the event-action
paradigm of the sensor mote the logic necessary to
support its behavior. Intellectus adopts a discrete
coding mechanism for such events, IntellectusEvent-
Code. Its implementation is an enumeration variable
comprising of integer values; all elements of the enu-
meration is associated with a specific event. The enu-
meration variable is the implementation of the Intel-
lectusEventCode, which enables the labeling of dis-
crete events.
1 enum {
2 FSM_BOOT = 0x00,
3 FSM_RADIO_CONTROL = 0x01,
4 FSM_EVENT_n = 0x03,
6 ....
7 };

An event is characterised by its frequency, order
and type. By keeping track of events coded with In-
tellectusEventCode and their associated frequency, it
is possible to create prior knowledge about the ”life”
of the sensor nodes. This knowledge takes the form of
specific patterns that help in the design of the sensor
node classifier. At each milestone each node tracks
its events and their associated order of occurrence.
Evidence represents the frequency of events in the
current milestone while experience is the frequency
of past events (in the immediately preceeding mile-
stone). From the track events process (see Figure 1) a
given node is able to summarize the current and past
local states and understand its role within the network
(see section 5.3). The sensor node knowledge base for
storing and retrieving information includes the self-
memory system comprising of:

� Working Memory used to collect and make
available internal, reboot and network events. It
offers a buffer for the collection of on-line events
in each milestone.

� Short-memory, from short-memory Intellectus
calculates current observations (evidence) and
past observations (experience) of the immediately
preceeding milestone (see section 5.3).

5.3 Intellectus Role

The role of a given sensor within a network is a key
factor, which, can effect its local state and strongly
influence its behavior. Two adjacent nodes can play
very differing roles within a network and yet be ex-
posed to the same environment but interpret and react
to it in different ways. Within the Intellectus method-
ology each sensor node can take one of three distinct
roles at a given instance: root, router and leaf. A node
is aware of its role and changes to this role during
the network life. The Intellectus adopts a hierarchical
organization conforming to a tree like data structure.
The roles can be characterized as follows:
� Root Node: receives data via messages from the

collection tree using a Receive interface. .
� Router Node: the router node is an inner node

of the tree, it is any node of a tree that has child
nodes. The router node utilizes an Intercept in-
terface to receive and update a packet. A col-
lection service signal Intercept event is generated
when it receives a packet for forwarding.

� Leaf Node: the leaf node is an external or leaf
node, it is any node that does not have children
and thus is, any node that does not use both the
Receive interface and the Intercept interface.

Each Intellectus node, at a given instance, has one
clear role based on interface and event activity. Of
course during the network deployment a sensor node
may change its role in the network reflecting topology
change.

5.4 Key Performance Indicator KPI
Calculation

Change control is the process of reviewing all changes
in node behaviors (between current and the immedi-
ately proceeding past state), controlling the nature of
these changes, and reflecting such changes as updates
to the state of node. Intellectus utilizes Key Perfor-
mance Indicators (KPI), internal node indicators, as
a means of providing effective and efficient mecha-
nisms by which to control and manage changes in the
pattern of events. KPIs assist in identifying, docu-
menting and controlling changes in the life cycle of a
sensor node. And accomplish two main objectives:
� Establish a method by which to consistently iden-

tify changes to the past life cycle of the node,
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and to assess the value and effectiveness of those
changes.

� Provide mechanisms for the continuous validation
of the life cycle of a node by considering the im-
pact of each change.

For each milestone and each node a set of KPIs asso-
ciated with given events will be calculated. The set
selected are simple to implement and yet sufficient,
and not needlessly burdensome in terms of memory
usage, computational overhead and associated energy
depletion, and support effectively the necessary de-
termination of local state (see section 5.5). Intellectus
Internal events are those events and states concerning
the internal activity of a sensor node, like an inter-
nal timer that expires every few seconds. The KPI of
the internal event group is calculated as follows: MI
(Mean Internal), MID (Mean Internal Deviation) and
IDR (Internal Deviation Relative). The Internal is a
summation of Internal events (e.g. Timer and Read
Temperature) during the past periods of time (past
milestones). In general, P(Timer) is the probability
of occurrence of Timer event in a milestone.

Internaln =
n

å
i=1

(P(Timer)i +P(ReadT )i) (1)

The MI is an average of internal events during the
node ’s life cycle. Past periods are obtained as a sum-
mation of past milestones.

MIn =
å

n
i=1 Internali

å
n
i=1 timeSloti

(2)

MID shows how much variation or ”dispersion”
exists from the average MI (or expected value). A low
deviation indicates that the data points tend to be very
close to the mean, whereas high deviation indicates
that the internal events deviate significantly from the
mean. Changes to the normal node behavior invari-
ably manifests itself by high MID values and this will
be used to check its own behavior and in formulating
decisions regarding local states.

MID = (
n

å
i=1

Internali)� (
n�1

å
i=1

MIi) (3)

IDR is the difference between Internal in two con-
secutive milestones. The variation between Internal
evidence in two consecutive milestones.

IDR = (
n

å
i=1

Internali)� (
n�1

å
i=1

Internali) (4)

While MID shows a variance between current inter-
nal events and all internal events in past milestones,
in contrast IDR shows a variance between current in-
ternal events and the previous milestone.

Network group events capture network activity of the
sensor motes, akinned to the interfaces (e.g. Receive
or Intercept ) of Collection Tree Protocol (CTP). The
KPI of network group are divided into two cate-
gories based upon the role of the sensor within the
network:

� Router Role: uses the Intercept interface to cap-
ture the frequency of Intercept event. Thereafter
the node calculates: MNI (Mean Network Inter-
cept), MNID (Mean Network Intercept Deviation)
and NIDR (Network Intercept Deviation Relative)
calculated in an analogous manner for Internal
event group but with Intercept event frequency.

� Root Role: uses Receive interface to capture the
frequency of Receive events. The node thereafter
calculates: MNR (Mean Network Receive),
MNRD (Mean Network Receive Deviation) and
NRDR (Network Receive Deviation Relative)
calculated as for Internal event but with Receive
event frequency.

Internal and Network KPI analysis examines the dif-
ference between what was done in the past and what
was executed, progressive elaboration is made and de-
tails of the change are discovered over time.

5.5 Determine Local States

The Intellecus methodology is based on the simple
state that only sensor nodes with their local informa-
tion can provide the correct monitoring or debugging
information to the sink. Each node can determine and
distinguish between six local decisions based on evi-
dence, experience, role and KPIs. A high level char-
acterization of the rules used to determine such states
is as follows:

� Reboot State; the node is rebooted. In the
working-memory the reboot event appears:

Reboot:= (Frequency of Reboot Events )>0;

� High Internal and Low Network Activity State;
the node has low network activity but it is not iso-
lated from the network. The MID (see section 5.4)
increases but there are still network events in the
sensor node:

High Internal:= IDR>0 and MID>0 and
(Evidence: Frequency of Network Events>0;

� Isolated State; the node has no network events. It
is isolated from the rest of network.

Isolate:= IDR>0 and MID>0 and
(Evidence: Frequency of Network Events)==0;

Intellectus�-�Intelligent�Sensor�Motes�in�Wireless�Sensor�Network

129



Figure 2: Node 4 - Dynamic Topology.

� Not Receiving (or Intercepting) State; the node
no longer does receives (or intercepts) messages
from its sub-tree nodes. In the working-memory,
the network events have frequency zero in the cur-
rent milestone.

Role Root, Look Evidence:
NotReceive:=(Frequency of Receive Event)==0;

Role Router, Look Evidence:
NotInterc:=(Frequency of Intercept Event)==0;

� Good Network Activity State; the message re-
ceived (or intercepted) increase. The NRDR (or
NIDR) increasing (see section 5.4).

Role Root, Look Evidence:
Good:=(Frequency of Receive Event)!=0 and
NRDR>0;

Role Router, Look Evidence:
Good:=(Frequency of Intercept Event)!=0 and
NIDR> 0;

� Not Receive (or Intercept) Messages from Node
X; the node does not receive (or intercept) mes-
sages from a specific node. The NRDR (or NIDR)
decreases (see section 5.4) and the frequency of
messages received (or intercepted) from a specific
node is zero.

Role Root, Look Evidence:
Not Receive ID:= NRDR< 0 and MNRD <0;
Network ID:=(Search for Node ID with
Frequency of Messages Received)==0;

Role Router, Look Evidence:
Not Intercept ID:= NIDR<0 and MNID<0;
Network ID:=(Search for Node ID with
Frequency of Messages Intercepted)==0;

Intellectus incorporates spatial correlation across lo-
cal states associated with given nodes in determin-
ing potential faults and global network states. Us-
ing the spatial correlation information from multiple
nodes can result in a higher-fidelity model or better
estimates from sensor local state, and hence, more ac-
curate and robust fault detection.

5.6 Closing Process

A milestone is generally concluded and formally
closed with two deliverables: a) an update of the per-
manent memory with a new state and role of the sen-
sor node, b) an update of the header message of the
next message to be sent to the user-side thus commu-
nicating efficiently its local state. Detailed description
as to how the user-side fuses inputs from the collec-
tive of sensors in order to extract information pertain-
ing to the overall wellness of the network is beyond
the scope of this paper.

6 CASE STUDY

The Intellectus methodology has been evaluated
through the use of the TOSSIM simulator (Philip
Levis, 2003). In order to evaluate network change,
faults are injected into a number of topologies. By
way of illustration we will consider topology A, com-
prising of 12 nodes. This represents the ground truth
which helps us better understand the performance
of Intellectus. Each node executes a simple data-
collection application of TinyOS. The test was run
for 3.5 min. Each node engages in delta reporting
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Figure 3: Dynamic Topology I.

whereby it will only report to the central controller
what has changed in its local states. Figure (2) shows
the local states of node 4. In topology (A) in the initial
configuration, node 4 is a router node and intercepts
only one node (node 7). A topology change is sub-
sequently dynamically injected into the network re-
sulting in topology (B). In the new topology, Node
4 becomes a router of seven nodes (nodes 3, 6, 7,
8, 9, 10 and 11). In topology (B), dynamic connec-
tivity results in an increase in network activity. In
fact, the node registers an increase in network activ-
ity as new links are created. Caused by changes in
topology, such links are not stable and disconnected.
Node 4 in topology (B) fails to intercept the ”Inter-
cept New Nodes 3,6,7,8,9,10 and 11” states due to lo-
cal link changes that create discontinuity in intercept-
ing such messages. During the unstable links prior to
milestones [442-539] , node 4 reported the local states
”Not Intercepted Nodes 3, 6,7,8,9,10 and 11”. In the
successive milestones post [442-539], the node 4 de-
termines its local state to be ’Good network activity’.
Correlations of local states associated with different
nodes are used in computing the change within the
network and thereafter global network states. Spatial
and temporal correlations can provide a global view
of the network and thus assist with overall network
monitoring.

7 CONCLUSIONS

Failures are inevitable in wireless sensor networks
due to inhospitable environments and unattended de-
ployment. Therefore, it is necessary that network fail-
ures are detected in advance and appropriate measures
are taken to sustain network operation. Intellectus
provides a framework through which to address net-
work, node and data level anomalies, future work will
access the Intellectus algorithm in a broader range of
topology change scenarios.
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