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Abstract: The performance of a classification system depends on various aspects, including encoding techniques. In

fact, encoding techniques play a primary role in the process of tuning a classifier/predictor, as choosing the
most appropriate encoder may greatly affect its performance. As of now, evaluating the impact of an encoding
technique on a classification system typically requires to train the system and test it by means of a performance
metric deemed relevant (e.g., precision, recall, and Matthews correlation coefficients). For this reason, assess-
ing a single encoding technique is a time consuming activity, which introduces some additional degrees of
freedom (e.g., parameters of the training algorithm) that may be uncorrelated with the encoding technique to
be assessed. In this paper, we propose a family of methods to measure the performance of encoding techniques
used in classification tasks, based on the correlation between encoded input data and the corrisponding output.
The proposed approach provides correlation-based metrics, devised with the primary goal of focusing on the
encoding technique, leading other unrelated aspects apart. Notably, the proposed technique allows to save
computational time to a great extent, as it needs only a tiny fraction of the time required by standard methods.

1 INTRODUCTION separately, giving rise to a comparative table that typ-
ically reports all performance metrics deemed rele-
When facing a difficult classification or prediction vant. In presence of enough test data, one may assume
task (e.g., protein secondary structure prediction, facethat statistical significance holds. Hence, it becomes
recognition, fingerprint recognition), the corrispond- viable to assume that, if any changes in the perfor-
ing system must be tuned with great care. Without mance indices were observed, they should depend on
loss of generality, let us consider any such system as athe encoder. According to the selected performance
pipeline, consisting of two cascading parts: an encod- metric, one may also generate a ranking of encoders.
ing module and a classifier/predictor. The encoding Unfortunately, the above strategy has some impor-
module is fed with input data, so to provide the clas- tant drawbacks, the main one being that every per-
sifier/predictor with a properly encoded input data, so formance evaluation is highly time consuming, often
to facilitate the learning task. making unfeasible the test of many different encoding
Choosing a good encoding technique is crucial to techniques. For example, a 10-fold cross validation of
improve the overall performance of a system. How- a system based on neural networks devised for protein
ever, to our best knowledge, no specific methods havesecondary structure prediction usually takes several
been proposed to assess an encoding technique in isohours to complete. Now, assuming that the technique
lation from the corresponding classifier/predictor. In in hand is parametric, finding the optimal value of the
fact, the system is typically considered as a whole, parameter may require weeks or months to complete
and the overall performanceis used as an indirect met-(as, for every value of the parameter, an experiment
ric to asses alternative encodings. This standard ap-should be run). Another drawback is that the encod-
proach has some advantages; in particular, it providesing technique is not assessed in isolation, being part
performance estimates of the final system. For exam-of a pipeline. This introduces some degrees of free-
ple, precision and recall have clear meaning, as well dom that are uncorrelated with the encoder, e.g., the
as ROC curves and Matthews correlation coefficients. parameters of the learning algorithm, thus reducing
It can be used to assess encoding techniques, accordthe confidence about statistical significance of exper-
ing to the following strategy: several systems, which imental results. A trivial solution to this problem is
only differ for the encoding technigque, can be tested to increase the number of trials; however, this ends up
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with incrementing the computational cost of experi- follows:
ments. . .

Taking into account all existing drawbacks, it ap- CX.¥)=[Corr(6,Yp)] T=1...n j=1...m
pears reasonable to look for alternative strategies forwhereX andY are vectors of random variables and
assessing encoding techniques. In this paper, we pro-; andY; are thei-th andj-th component oK andY,
pose a new strategy, able to measure the performanceespectively. Corr(X,Y) is a correlation coefficient
of an encoding technique in isolation from the cor- calculated between two scalar random variables.
responding classifier/predictor. This goal is achieved  When focusing on encoding techniques used in
by using input-output correlation-based metrics. In a classification/prediction task, the independent vari-
particular, we show that the performance predicted by ableX is typically a vector of real values (represent-
these metrics is almost always equal to the actual per-ing the encoded input data), whereas the dependent
formance achieved by the encoders under exam whernvariableY is a simple output encoding for the corre-
put in a real pipeline, while the time needed for the sponding category. For example, given categohies
assessment is typically much smaller than the one re-B, andC, we can encode them using one-hot or nu-
quired by the standard strategy described above. Themeric encoding. In the former case, a possible assign-
remainder of this work is structured as follows: Sec- ment would be:
tion 2 introduces the terminology used, describes the
proposed metrics and shows how to use them for as-

sessing encoding techniques; SectRihreports the A— cl) gt 2 [ 8
results obtained by applying the proposed metrics to r 0 4 0 y 1

a specific problem (i.e., protein secondary structure
prediction); Sectior?? concludes the paper and dis- whereas in the latter case, a possible assignment

cusses about future research directions. would be:
A=1 B=2 C=3
2 CORRELATION-BASED It is worth noting that one-hot encoding can be
METRICS FOR ASSESSING used to turn am-class classification task intm bi-
nary classification tasks, one for each component of
ENCODING TECHNIQUES the Output encoding'

Two correlation matrices will be used exten-
In this section, after recalling and discussing the main sively hereinafter: the input-input correlation matrix
characteristics of of correlation coefficients and cor- C(X,X), denoted a<X, and the input-output cor-
relation matrices, specific metrics are described for relation matrixC(X,Y), denoted a€*Y. Note that
evaluating the correlation between input and output C* is always a symmetric semi-definite positive n
data —under the assumption that inputs are encodedsquare matrix, whereas the number of columns of
according to a specific technique to be assessed. C*Y depends on the chosen output encoding.
More definitions follow, concerning the coeffi-
2.1 Correlation Coefficients and cient_s that have been used in the metrics proposed
! ) . hereinafter. Although some of them are very well
Correlation Matrices known, they are also reported for the sake of com-
pleteness and to clarify the notation used throughout
A correlation coefficient or correlation index is a the paper.
guantitative estimate of the tendency of a variable (the
controlled or dependent variable) to follow the varia-
tion of another variable (the control or independent
variable). In a general setting, correlation does not . . L
imply causal effect; however, assuming that a cause-Also known adinear correlation coeff_|C|ent|t isin-
effect relationship holds between two random vari- tended to measure the strength of a linear relationship

ables, measuring the correlation between them canPetween two variables:

2.1.1 Pearson Product-moment Correlation
Coefficient

give a hint about how strong this relationship is.
: . CouX,Y)
Many correlation coefficients can only be com- PpX,Y) = ————
puted between scalar variables (e.g., Pearson product- vvar(Xjvar(Y)

moment correlation coefficient). In this case, itis re- whereCovX,Y) andVar(X) denote the covariance
quired to deal with correlation matrices, defined as betweenX andY and the variance of, respectively.
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An estimate op(X,Y), sayr, can be obtained from a
sample ofN observations:

__ SLX XM -Y)
V06— X025 (% - Y2
2.1.2 Correlation Ratio

1)

Originally introduced by Fisher (Fisher, 1925) using

another notation, theorrelation ratiocan also be de-
fined as:

whereE(X|Y) denotes thexpected valuef X given
thatY has been observed. Wh¥ncan only assume

discrete values, the correlation ratio can be interpreted

as the ratio between the intraclass dispersiak ahd

its overall dispersion. It can be shown (Lewandowski

et al., 2007) that:

that is,n equals thdinear correlationbetweery and
an unknown function oK. Hence, the correlation ra-

tio can be used to highlight non-linear relationships

between variables. An estimaterpt on a sample of
N observations is:

2 Yyny(Xy—X)?  SSH @)
T 3Ni(X—X)2  SSE

whereny is the number of observations that fall in the

categoryy, SSH= 3, ny(Xy— X)? is the so called “be-
tween sum of squares” ar®iSE= 5N, (X — X)? is
the “within sum of squares”.

2.1.3 Wilks’ Generalized Correlation Ratio

The correlation ratio is a powerful coefficient; how-

ever, it can be used only whehis a scalar. There are

many generalizations of this concept to the multivari-
ate case (see, for example (Rencher, 2002)), that is,

whenX is a vector of random variables.

Let us first define the “within sum of squares ma-

trix”, E, and the “between sum of squares matrkt?,

L. 1 .7
z leyixyi - z Xy Xy,
y i= y 'y

1 T

1
H = Xy XT — =X XT
gny

YN
whereN is the total number of samplas; is the num-
ber of samples that fall in categoyyxy.is the mean of

Xy. X
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all the samples in categogyandx.. is the mean over
all the samples. Let us define the vector of non-null
eigenvalues oE~1H as

(A, A2,...,As) = eig(E"1H)
whereA1 > A2 > ... > As. We can now defingVilks’
Lambdaas:

n 1
M

from which we calculat&Vilks’ generalized?:
na=1-A

2.2 Devising Correlation-based Metrics
for Assessing Encoding Techniques

Be X arandom variable whose samp|és the encod-
ing of thei-th training sample taken from a training set
of N labeled data instances. Accordingly, the samples
yi of the random variabl¥, are the output encoding
of the label associated with.

After selecting a particular correlation coefficient,
CX andC*¥ must be evaluatéd Unfortunately, these
correlation matrices contain too many data to be used
directly as a metric for assessing the performance of
an encoding technique. For this reason, a procedure
for extracting one or more synthetic values from these
matrices must be devised.

According to this view, we define eorrelation-
based metri@as a method for extracting one or more
synthetic values from the input-input and input-output
correlation matrices, with the goal of predicting the
performance of the encoding technique under test. In
symbols:

m(E) :=m(C*Y,C%)
whereE represents the encoding technique. The di-

mension of the metric vectan(E) is determined by
the output encoding used to calcul@®”; i.e.:

m; (E) = m(c}}",C%)
where thesynthetic value i{E) is a function of thgj-
th column of the input-output correlation matixY

and of the input-input correlation matri@X. Using
the output encodings recalled in Subsection 2.1 let us
now define two kinds of metrics:

o if the output encoding isne-hot m;(E) extracts
information from the correlation between the in-
put encoding and thgth label. The correspond-
ing metric is aone-hot metricdenoted am;.

1Except for the case of the generalized correlation ratio.
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o if the output encoding isumeric m(E) has only
one component; hencey(E) = m(E). We call
this metric anumeric metricdenoted aghym.

In order to obtain a valich; (E), this function should
obey two basic rules:

e |Input-output Correlation: if two encodings have
the sameC* andc}”, except for a specific)”,
then the one that has the higher input-output cor-
relation will also perform better than the other.

Input-input Correlation: if two encoding have
the sameC* andcX”, except for a single, then

the one with higher input-input correlation will
perform worse than the other (in so doing, the re-
dundancy of input encoding components can be
properly taken into account).

In practice, two different synthetic value functions
have been devised:

2.2.1 Max-sum Segment Function

s

Msde}7.C) = (1-B) 3 16 +B, max &Y (3
where:
aCX
_2
n(n—1) i;j;rl

Notably, CX is the mean value of the input-input
correlation matrix (as it is symmetric), andis a pa-
rameter that regulates the dependence@t) from
CX.

To understand whynyss defines a metric foE,
we should consider the following cases:

O<a<l1

n n CIX

e CX =0, we infer the absence of redundancy in
the input encoding (in other words, total indepen-
dence holds). In this case, the valuemfssis
s, |ctY], so it equals the sum of the correla-
tion values between each component of the input
and thej-th output. If no redundancy in the input
encoding is observed, the value of the synthetic
function grows with each component of the input-
output correlation.

e CX =1, we observe that the components of the
input encoding are completely correlated with
each other (in other words, total redundancy
holds). This means that the same information
can be obtained by just removing all the com-
ponents but one. In particular, we preserve the
one that maximizes the input-output correlation:

max—1_ nCli".

e 0 < CX < 1, we expect the synthetic value be
somewhere in the middle between total redun-
dancy and total independence of the input encod-
ing components. For this reasangssassumes a
value in thesegmentefined by the two extreme
points described above, moving toward one end or
the other, depending on the value®f.

2.2.2 Multiple Determination Coefficient

Mind(@",C%) = /@7 (©9) 1) @)

When correlation is computed using Pearson’s
formula, the term under square root is tmeiltiple
correlation coefficient R but mme can be calculated
for anyCX that is positive definite. This function can
be seen as a weighted scalar product of the input-
output correlation vectoeXY. The inverse of the
input-input correlation matrix has the role of weight-
ing the various components of the input-output vector
in order to take into account redundancy between the
components of the input encoding.

3 EXPERIMENTAL RESULTS

3.1 Domain: Protein Secondary
Structure Prediction

We have tested correlation-based metrics in the
field of protein secondary structure prediction (SSP),
which characterises itself as a complex learning prob-
lem. This research field is particularly suitable for
assessing the proposed metrics, as various encoding
techniques have been proposed in literature, and ex-
perimental results show that the performance of a sec-
ondary structure predictor is highly dependent on the
adopted encoding technique.

Moreover, the standard strategy (i.e., k-fold cross
validation) appears not suitable due to the following
computational problems:

e secondary structure prediction is typically per-
formed with ensembles of stacked multilayer neu-
ral networks (see, for instance, (Jones, 1999)). As
each neural network embodies hundreds of input
neurons and tens of hidden layer neurons, assess-
ing a single encoding technique by means of a
standard strategy, orspecificsetting of aspecific
architecture, is computationally expensive (from
hours to days of training, depending on the avail-
able computing power);
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Table 1: Parameters for 10-fold cross validation.

| Parameter] Value

Complete dataset 3326 non redundant (j 25%) sequeng

Total test sequences700 at random

Hidden layer neuronsg 75

Max iterations| 1000

Momentum| 0.1

Learning rate| 0.001

Validation % | 10% (of the training set for each fold)

Stop after| 30 iterations without improvements

e the prediction task is typically turned into a clas- Taple 2: Performance evaluated with 10-fold cross valida-

sification task by splitting the target protein into tion (WS =window siz

fixed-length slices obtained by means of a sliding
window. In doing so, each encoding becomes in
fact parametric, the parameter being the size of the
sliding window. Hence, the problem of finding an
optimal window size grows linearly with the num-
ber of values that the parameter can take. In other
words, the adopted standard strategy (e.g., based
on k-fold cross validation) must be repeated for
each value of the parameter.

3.2 Experimental Settings

Experiments have been performed using five differ-
ent encoding techniques: One Hot on the primary
structure (PSOH), Blosum Score Matrix (Henikoff
and Henikoff, 1992) (SCMA), PSI-BLAST Position-
Specific Scoring Matrix (Altschul et al., 1997)
(PSSM), Frequencies (Rost, 1996) (FREQ), and Sum
Linear Blosum (SLBL). For each encoding, six dif-
ferent window sizes have been tested (1, 5, 9, 13, 17,
and 21), for a total of 30 different settings.

The overall indices have been calculated with 10-
fold cross validation on a multilayer neural network,
using the parameters shown in Table 1. Table 2 shows
accuracy (calle@@s in the field of secondary structure
prediction), SOV (Rost et al., 1994) and Matthews
correlation coefficients for every setting.

Using the parameters shown in Table 3, three dif-
ferent correlation-based metrics have been calculated:

e Multiple Determination Metric (MDM) correla-
tion matrices are calculated using Equation 1,
whereas the synthetic value is evaluated accord-
ing to the function defined by Equation 4.

es

[(Enc_[WS[ Qs [SOV[ G [ G [ G

1 (513
5 1622
9 |64.6
13 | 66.4
17 | 66.1
21 | 65.9

PSOH

34.5
55.4
59.4
61.4
60.5
59.6

13.0
33.7
40.5
43.9
44.3
43.3

255
24.9
29.8
32.0
33.3
315

14.0
35.7
38.9
40.2
39.7
38.8

1 (521
5 1621
9 | 66.0
13 | 66.8
17 | 67.6
21 | 67.0

SCMA

36.9
55.2
60.8
62.1
62.8
61.7

13.6
33.2
41.7
45.0
46.6
45.8

16.2
254
31.4
34.8
36.3
35.2

145
35.0
40.1
40.6
41.2
40.9

1 |56.5
5 1681
9 | 714
13 | 72.6
17 | 725
21 | 723

FREQ

42.4
60.8
65.0
67.2
66.6
66.7

31.0
53.5
59.6
62.3
62.7
62.3

30.6
47.6
52.9
55.0
55.7
56.0

29.2
48.8
52.2
53.3
53.0
52.7

1 |583
5 169.0
9 | 723
13 | 745
17 | 74.7
21 | 74.7

SLBL

45.6
63.6
68.0
71.2
71.4
71.1

33.3
54.4
61.0
64.4
65.3
64.7

31.0
48.3
53.9
58.1
58.4
58.2

31.5
50.5
54.0
55.2
55.4
55.3

1 |57.2
5 169.0
9 | 721
13 | 74.0
17 | 74.0
21 | 73.9

PSSM

43.2
62.7
66.7
69.2
69.1
69.1

31.9
55.0
61.2
64.2
64.0
64.0

27.4
48.4
53.8
57.2
57.8
57.1

30.3
50.3
53.6
54.7
54.6
54.5

metrics.

e Correlation Ratio with Max-Sum Segment syn-
thetic value function (CR-MSShput-input cor-
relation matrix is calculated with Pearson coeffi-
cient, input-output correlation matrix using Equa-
tion 2, whereas the synthetic value is evaluated
according to the function defined by 3.
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| Parameter] Value

Complete datase]

t Same as cross validatio

Total runs

10

10000

Samples per run

Table 3: Parameters used to calculate correlation-based

n
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e Wilks’ Correlation Ratio Metric (WCRMo cor-
relation matrices are required, as Wilks' general-
ized correlation ratio is already a scalar value.

Table 4: Performance measured with MDM.
| Enc. [WS[mMuwm[ M [ me | mc |

in2.2.

3.3 Assessment of Correlation-based
Metrics

The performances estimated with the proposed met-
rics have been compared with those measured using
10-fold cross validation. In particular, Spearmapés
correlation coefficient has been used to understand to
which extent the ranking generated by a correlation-
based approach predicts the ranking found by running

Table 5: Performance measured with CR-MSS.

[ Enc. [WS] Mwm [| M | me [ me |
T | 40| 50| 230] 240

5 | 240]|| 230| 73.0| 840

o | 330]|| 350/ 8L.0| 92.0

PSOH | 13 | 420 430/ 940/ 104.0
17 | 440]| 480/ 101.0| 112.0

21 | 540]| 53.0| 104.0| 112.0

1 [ 50 50 230] 27.0

5 | 230]|| 230| 73.0| 86.0

o | 350]|| 350/ 8L.0| 96.0
SCMA | 13| 430 43.0| 940/ 109.0
17 | 480 480/ 101.0| 117.0

21 | 530]| 53.0|104.0| 122.0

1 | 200] 100 160] 18.0

5 | 96.0| 44.0| 480| 53.0

o | 1240| 650/ 60.0| 61.0

FREQ | 13 | 1450 77.0| 71.0| 690
17 | 1580 850| 780| 740

21 | 166.0| 900| 81.0| 77.0

1 | 580] 90| 380] 42.0

5 | 198.0| 44.0| 1200/ 137.0

gL | 9 |2400] 680 1370] 1620
13 | 283.0| 850/ 158.0| 187.0

17 | 313.0| 101.0| 169.0| 208.0

21 | 335.0| 115.0| 174.0| 224.0

1 [ 570] 10| 37.0] 39.0

5 | 196.0|| 5201170/ 1280

o | 241.0|| 8001390/ 146.0

PSSM' 13 | 2800 96.0| 164.0| 162.0
17 | 303.0| 107.0| 177.0| 171.0

21 | 316.0| 116.0| 183.0| 175.0

T 1 80 50] 50| 80
5 | 230 || 16.0| 15.0] 23.0
9 | 240 || 220|220 27.0
PSOH | 13 | 2800 || 25.0| 24.0] 28.0
17 | 30.0 || 28.0| 24.0| 30.0
21 | 31.0 || 30.0| 27.0| 32.0
1T 80| 50| 60| 80
5 | 230 || 18.0| 17.0] 24.0
9 | 250 || 24.0| 21.0] 28.0
SCMA 1 13 | 27.0 | 27.0| 23.0] 29.0
17 | 20.0 || 29.0| 25.0| 31.0
21 | 30,0 || 30.0| 27.0| 32.0
1 [12.0 || 10.0] 10.0] 13.0
5 | 300 || 30.0| 28.0] 32.0
9 |330 | 380|330/ 36.0
FREQ | 13 | 350 || 41.0| 36,0/ 38.0
17 | 37.0 || 430 37.0| 39.0
21 | 38.0 || 44.0| 39.0| 40.0
1 (150 || 14.0] 13.0] 16.0
5 | 330 | 35.0| 32,0/ 35.0
9 | 360 || 42.0| 36.0] 39.0
SLBL | 13 | 3800 || 450 39.0 | 40.0
17 | 39.0 || 47.0| 41.0| 42.0
21 | 40,0 || 48.0| 42.0| 43.0
1 160 || 16.0] 14.0 | 17.0
5 |330 | 37.0| 33.0/ 35.0
9 | 360 || 43.0| 37.0| 38.0
PSSM1 13 | 37.0 || 45.0| 40.0] 39.0
17 | 39.0 || 47.0| 41.0| 41.0
21 | 200 || 480 42.0| 42.0 7.

experiments by means of actual predictors (see Table

Results show how Wilks’ correlation ratio metric

Tables 4, 5, and 6 show the performances esti- and multiple determination metric are almost com-
mated using the above metrics. Note that, dependingPletely correlated with the experimental results ob-
on the selected output encoding, the metric that eval- tained by running 10-fold cross validation. This result
uates the input encoding technique gives rise to eithermakes them suitable for identifying the best encoding
a Sing|e value (numeric metrin’huno or to a vector of technique amonga .SGt of candidates, without the need
values (one-hot metriegy,, me, andm), as discussed 10 run time-consuming tests.

As for Table 8 highlights the speed-up obtained by
using the proposed approach versus 10-fold cross val-

idation (whose settings are reported in Table 1). Re-
sults clearly show that the latter strategy can be 300
times slower than the former.
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Table 6: Performance measured with WCRM. Table 8: Time required to run the experiments described
[(Enc (WS mwm [ M [ me [ m | 2 |
1 | 13.0 50l 501 80 | Strategy | Averagetime| Speed-up|
5 | 34.0 || 19.0| 16.0| 24.0 10-fold x-val ~90 -
PSOH 9 | 40.0 || 22.0| 20.0| 28.0 MDM ~8 10x
13 | 440 || 28.0| 22.0| 29.0 CR-MSS ~5 18x
17 | 46.0 || 30.0| 24.0| 31.0 WCRM ~0.3 300x
21 | 51.0 || 28.0| 26.0| 32.0
1 | 120 50| 6.0 8.0 efficient than a standard approach based on repeat-
5 | 35.0 || 18.0| 17.0| 24.0 edly training and testing classifiers or predictors with
9 | 420 | 24.0| 21.0| 28.0 different encodings. No apparent drawbacks have
SCMA 13 | 46.0 || 27.0| 23.0| 29.0 been identified so far with the proposed strategy, as
17 | 48.0 || 29.0| 25.0| 31.0 the rankings obtained with correlation-based metrics
21 | 50.0 || 30.0| 27.0| 32.0 almost perfectly fit the ones obtained with standard
1 | 21.0 || 10.0]| 10.0| 13.0 strategies. Moreover, a very high speed-up has been
5 | 51.0 || 30.0| 28.0| 32.0 achieved, making a step further in the task of finding
FRE 9 | 58.0 || 38.0| 33.0| 36.0 an optimal encoding for specific and complex learn-
Q 13 | 61.0 || 41.0| 36.0| 38.0 ing problems.
17 | 63.0 || 43.0| 37.0| 39.0 Future research directions are: i) applying the pro-
21 | 65.0 || 44.0| 39.0| 40.0 posed metrics to encoding techniques frequently used
1 | 26.0 || 14.0] 13.0] 16.0 in well-known and complex learning tasks; ii) de-
5 | 560 || 35.0| 32.0! 35.0 vising rules aimed at selecting the right metrics ac-
9 63.0 || 42.0| 36.0| 39.0 cording to the specific encoding to be assessed; and
SLBL 13 | 66.0 || 45.0| 39.0| 40.0 iii) studying the possibility of using correlation-based
17 | 68.0 || 47.0| 41.0| 42.0 metrics in a framework for feature selection and ex-
21 | 69.0 || 48.0| 42.0| 43.0 traction.
1 {290 || 16.0| 14.0| 17.0
5 | 57.0 || 37.0| 33.0| 35.0
PSSM 9 | 63.0 || 43.0| 37.0| 38.0 REFERENCES
13 | 66.0 || 45.0| 40.0| 39.0
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Table 7: Spearmaniss. research 25(17):3389-3402.
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