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Abstract: We improve a method to decompose a 3D object into parts (called kernels, simple-regions and bumps) 
starting from the partition of the distance labeled skeleton into components (called complex-sets, simple-
curves and single-points). In particular, each simple-curve of the partition is here interpreted as a curve in a 
4D space, where the coordinates of each point are related to the three spatial coordinates of the 
corresponding voxel of the 3D simple-curve and to its associated distance label. Then, a split type polygonal 
approximation method is employed to subdivide, in the limits of the adopted tolerance, each curve in the 4D 
space into straight-line segments. Vertices found in the 4D curve are used to identify corresponding vertices 
in the 3D simple-curve. The skeleton partition is then used to recover the parts into which the object is 
decomposed. Finally, region merging is taken into account to obtain a decomposition of the object more in 
accordance with human intuition. 

1 INTRODUCTION 

Object decomposition is of interest to reduce the 
complexity of computer vision tasks such as 
description and recognition. The underlying theory 
is that human object understanding is based on 
recognition-by-component (Hoffman and Richards, 
1984); (Singh et al., 1999). 

Object decomposition can be achieved by 
deriving information from a representation of the 
object. If the surface delimiting a 3D object is used, 
curvature variations along the object boundary can 
be used to identify points through which surfaces, 
separating different object parts, should pass 
(Shamir, 2008); (Cheng et al., 2008). If the skeleton 
is used, its geometrical structure can lead to the 
identification of suitable skeleton subsets 
corresponding to different parts of the object (de 
Goes et al., 2008); (Macrini et al., 2008).  

We favor the latter alternative and refer to the 
skeleton denoted as curve skeleton in (Arcelli et al., 
2011). This is a subset of the 3D object, consists of 
the curves symmetrically placed within the object 
and has the same topology as the object. The 
skeletonization method (Arcelli et al., 2011) is 
related to the medial axis transform (Blum, 1973). 
According to this model, the skeleton is the locus of 
the symmetry points, i.e., the points of the object 

that can be seen as centers of balls bi-tangent to the 
object boundary and included in the object. Skeleton 
points are labeled with the radii of the associated 
balls, and the object can be recovered by the union 
of the balls associated with the symmetry points.  

The skeleton can be computed in the distance 
transform of the object, where object voxels are 
labeled with their distance from the complement of 
the object. Each voxel can be interpreted as the 
center of a ball with radius equal to the distance 
label. A ball is maximal if is not included by any 
other single ball in the object and its center is called 
center of a maximal ball, CMB. The CMBs are 
equidistant from at least two parts of the object's 
boundary, hence they are symmetry points. Any ball 
can be built by applying to its center the reverse 
distance transformation (Borgefors, 1996). The 
object can be recovered by applying the reverse 
distance transformation to its CMBs.  

Full object recovery from the skeleton is possible 
only if the skeleton includes all the CMBs. This 
happens only for objects consisting of parts with 
tubular shape, where the CMBs are almost all 
aligned along symmetry axes of the object. 
However, the CMBs are generally placed along 
symmetry planes and axes. Thus, to have a skeleton 
consisting exclusively of curves, only a subset of the 
CMBs can be included in the skeleton and full object 
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recovery is not guaranteed. This notwithstanding, 
the skeleton has been profitably used for object 
decomposition, whichever is the shape of the object. 

In this paper, we present a decomposition 
method based on skeleton partition and object 
reconstruction, which is the follow up of a method 
introduced in (Serino et al., 2010) and successively 
improved in (Serino et al., 2011). 

2 DECOMPOSITION SCHEME 

We achieve object decomposition via the partition of 
the distance labeled skeleton S. A key role is played 
by the regions recovered by applying the reverse 
distance transformation to the branch points of S, 
i.e., to the skeleton voxels with more than two 
neighboring skeleton voxels. For branch points 
sufficiently close to each other, a single region is 
obtain, which is called the zone of influence of the 
branch points it includes. The zones of influence of 
S allow us to group the branch points that for a 
human observer correspond to a single branch point 
configuration of an ideal skeleton representing the 
object. The zones of influence are also used to 
originate the partition of S. The components of the 
skeleton partition are used as seeds to recover the 
parts into which the object is decomposed. 

2.1 Previous Work 

The decomposition scheme (Serino et al., 2011) 
splits 3D objects in perceptually significant non 
overlapping parts by performing a partition of the 
skeleton into at most three kinds of subsets (called 
simple-curves, complex-sets, and single-points). See 
Figure 1 left and middle left, showing the 3D object 
horse and the partition of its skeleton into simple-
curves, green voxels, and complex-sets, red voxels.  

Simple-curves, complex-sets, and single-points 
were used to build respectively simple-regions, 
bumps and kernels. Kernels are a sort of main bodies 
of the object, from which simple-regions and bumps 
protrude. Object parts were built in two steps. The 
first step involves reverse distance transformation. 
The second step performs an expansion with the aim 
of assigning the object voxels not yet recovered by 
the reverse distance transformation to the regions to 
which they are closer. See Figure 1 middle right, 
where kernels and simple regions for the horse are 
shown in red and green, respectively. 

A one-to-one correspondence exists between 
partition components and object parts. However, in 
some cases the number of parts may be not in 

accordance with human intuition. For example, 
some protrusions may be seen as negligible details 
that do not deserve to be represented by individual 
parts of the decomposition; similarly, two kernels 
linked to each other by a simple-region may be 
interpreted as constituting a unique main body, if the 
linking simple-region is scarcely elongated. Thus, it 
may be preferable to give up the one-to-one 
correspondence and favor a decomposition more in 
accordance with human perception. To this aim, 
criteria for merging bumps and simple-regions to 
their adjacent kernels were also suggested, so as to 
obtain a decomposition of the object into a smaller 
number of perceptually significant parts. See Figure 
1 right, where the decomposition obtained after 
merging is shown. The two kernels and the simple-
region in between them have been merged into a 
unique component, the torso of the horse.  

 

 

Figure 1: From left to right: the object horse; simple-
curves (green) and complex-sets (red) of the skeleton; 
decomposition into kernels (red) and simple-regions 
(green); decomposition after merging. 

2.2 New Ideas 

To our opinion, kernels and bumps are regions 
whose description would not benefit of a further 
subdivision into simpler parts. In fact, kernels are 
almost convex bodies and bumps are elementary 
protrusions. In turn, a simple-region, though having 
the corresponding simple-curve as its unique 
symmetry axis, may still be interpreted as having an 
articulated structure. In fact, the surface separating a 
simple-region from the complement of the object 
may be characterized by curvature variations. In 
addition, also the thickness of a simple-region, 
measured in planes perpendicular to its associated 
simple-curve, may significantly change. Thus, in this 
paper we suggest an alternative decomposition 
scheme that allows us to subdivide simple-regions 
into smaller entities, called basic-regions, which are 
characterized by absence of significant curvature 
variations along the object boundary and by 
thickness that is either nearly constant or evolves in 
an almost monotonic manner.  

We partition the skeleton as in (Serino et al., 
2011). Then, we divide the simple-curves into 
segments, each of which consisting of voxels that 
are aligned along straight lines and whose distance 
values are either all equal or change in a monotonic 
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way. In fact, curvature changes along the boundary 
of a simple-region are reflected by curvature 
changes along its associated simple-curve. In turn, 
thickness changes in a simple-region are reflected by 
changes in the distance values of the voxels in the 
associated simple-curve. Subdivision of each 
simple-curve is obtained by resorting to polygonal 
approximation in a 4D space, where any skeleton 
voxel is mapped into a point whose coordinates are 
related to the three Cartesian coordinates and the 
distance value of the skeleton voxel. After all 
simple-curves have been subdivided into straight-
line segments, we build the regions into which the 
object is interpreted as decomposed. In particular, 
regions corresponding to simple-curves will result to 
be divided into a number of basic-regions, each of 
which characterized by constant or monotonically 
changing thickness and by absence of significant 
curvature changes along the boundary. 

3 THE METHOD 

We use binary voxel images in cubic grids. The 
333 neighborhood of a voxel p includes the six 
face- the twelve edge- and the eight vertex-
neighbors of p.  

The distance between two voxels p and q is the 
length of a minimal path from p to q. If the weights 
3, 4 and 5 suggested in (Borgefors, 1996) are used to 
measure moves from p towards its face-, edge- and 
vertex-neighbors along the path, the <3,4,5>-
distance is obtained. 

The distance transform DT of an object P is a 
multi-valued replica of P, where voxels are labeled 
with their distance from the complement of P. We 
compute DT by using the <3,4,5>-distance. 

The k-th layer of DT is the set of voxels having a 
distance value d such that (k-1)3<dk3 (Svensson 
and Sanniti di Baja, 2002). Except for the first layer 
that includes only voxels with distance label 3, any 
other layer in DT includes voxels that are 
characterized by up to three different values. The 
value of a voxel p in the k-th layer depends on 
whether its closest neighbors in the (k-1)-th layer, 
i.e., the neighbors from which p received distance 
information, are face-, edge- or vertex-neighbors of 
p. In Figure 2, a 3D object and a section of its 
distance transform are shown, where the voxels 
belonging to the same distance layer have been 
colored with the same color. 

The polygonal approximation of the simple-
curves in the partition of the skeleton S is computed 
by using a split type algorithm (Ramer, 1972). Given 

an open curve, the extremes of the curve are taken as 
vertices of the polygonal approximation. To identify 
the other vertices, we consider the straight line 
joining the extremes of the curve and compute the 
Euclidean distance from such a straight line of all 
points of the curve; the point with the largest 
distance is taken as a vertex if such a distance is 
greater than an a priori fixed threshold  (to be set 
depending on the desired approximation quality). 
Any detected vertex divides the curve into two 
curves, to each of which the same splitting 
procedure is applied. The splitting process is 
repeated as far as points are detected having distance 
larger than the threshold from the straight lines 
joining the extremes of the curves to which the 
points belong. 

 

  

Figure 2: A 3D object, left, and a section of the <3,4,5>-
distance transform, right.  

To perform polygonal approximation by taking 
into account simultaneously changes in geometry 
along the simple-curves and changes in distance 
value of their voxels, we should represent the curves 
in a 4D discrete space, where the coordinates are the 
three Cartesian coordinates and the distance value of 
the voxels of the 3D simple-curves. A simple-curve 
in the 3D skeleton consists of voxels adjacent to 
each other (each voxel has exactly two neighbors in 
the curve, with the exception of the extremes of the 
curve having only one neighbor), but may result in a 
sparse set of points when passing to the 4D 
representation. To have a connected set also in the 
4D discrete space, we exploit the fact that the 
algorithm (Arcelli et al., 2011) is based on the 
<3,4,5> distance transform, where layers are easy  to 
detect, and adjacent skeleton voxels belong to the 
same layer or to layers whose indexes differ by one. 
Thus, we use the index of the layer to which a voxel 
belongs in place of its distance as the 4th coordinate 
of the corresponding point in the 4D space.  

Given three points A, B and C in the 4D space, 
the square of the Euclidean distance d of point C 
from the straight line AB can be computed as: 

d2 = ||AC||2 - PABC * PABC / ||AB||2 
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Figure 3: From top left to bottom right: an input object; its skeleton (different colors denote different distance labels); 
vertices (black voxels) found on the skeleton by the 4D polygonal approximation; object decomposition. 

where ||AB|| is the norm of the vector AB, and PABC 
is the scalar  product  between vectors AB and AC. 
Points with d> are taken as vertices of the 
polygonal approximation. Once vertices have been 
detected in the 4D space, we go back to the 3D 
skeleton representation and mark the skeleton voxels 
corresponding to the found vertices. 

An example is given in Figure 3, showing an 
input object, top left, and its skeleton, top right. 
Different colors are used to show the different 
distance labels of the skeleton voxels. Though the 
skeleton is a straight-line segment in the 3D space, 
its voxels have different distance labels due to the 
fact that object thickness changes along the object. 
The 4D polygonal approximation is applied to the 
skeleton after the distance labels of the skeleton 
voxels have been replaced by the layer indexes. 
Vertices (black voxels in Figure 3 bottom left) are 
found in the skeleton, which divide the skeleton into 
four segments each of which corresponds to a 
portion of the object characterized by monotonically 
changing width (Figure 3 bottom right).  

We have experimentally found that the threshold 
value =20 is adequate to originate a polygonal 
approximation sufficiently faithful to the original 
curve and is, at the same time, able to prevent an 
excessive fragmentation of the curve. Such a 
threshold value has been used for the examples 
shown in this paper as well as for all other objects 
we have been working with. The vertices are shown 
in black in Figure 4 top left for the running example. 
The found vertices divide each simple-curve into a 
number of consecutive segments, each of which 
corresponding to a part of the simple-region 
associated with the whole simple-curve, which is 
characterized by absence of significant curvature 
variations along the object boundary and by 
thickness that is either nearly constant or evolves in 
an almost monotonic manner. 

Consecutive segments share a common vertex, 
called hinge. We assign the same identity label to all 
voxels in a segment, except for the hinges to which 
we assign a unique identity label. The two extremes 
of any simple-curve are ascribed the identity labels 
of the two segments they belong to.  

A process in two steps, following a strategy 
similar to that suggested in (Serino et al., 2011), is 

accomplished to build kernels, bumps and simple-
regions into which the object is decomposed. 
Partition components are assigned identity labels 
and are interpreted as seeds for region growing. In 
the first step, the reverse distance transformation 
with identity label propagation is applied to the 
seeds. Care is taken to ascribe to the proper regions 
the voxels that, being at the same distance from 
different seeds, receive different identity labels and 
to guarantee that the surfaces separating adjacent 
regions are almost planar. The second step is done to 
achieve complete recovery of the various regions, 
since the skeleton of a 3D object generally does not 
include all CMBs. Thus, object voxels that have not 
been recovered by the reverse distance 
transformation are assigned the identity label of the 
region to which they result to be closer. 

Since we aim at a decomposition where simple-
regions are articulated into basic-regions, during the 
first step we propagate the labels assigned to the 
segments and hinges identified by polygonal 
approximation, rather than the labels ascribed to the 
simple-curves. Voxels that can be recovered by 
region growing applied to more than one 
segment/hinge receive the unique special identity 
label used for all hinges. Let us call hinge-regions 
the connected components of recovered voxels with 
the label of the hinges. Voxels of the hinge-regions 
have to be re-distributed between the adjacent 
regions. This is done during the second step by the 
same process used to complete recovery of all 
regions. Distance information is used to ascribe to 
the voxels not recovered by reverse distance 
transformation or belonging to hinge-regions the 
identity label of the regions to which they are closer. 
See Figure 4 top middle.  

The final step of the process is devoted to 
merging to the adjacent kernels those bumps and 
simple regions that are perceived as not individually 
meaningful. 

A simple-region is considered as a whole for 
merging, even if the region is articulated into basic-
regions. In fact, in our opinion the articulation of a 
simple-region into basic-regions has to be taken into 
account only to distinguish objects in the same class. 

The relevance of a region R, considered for 
merging to an adjacent kernel, is computed in terms
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Figure 4: From left to right, skeleton partition (vertices of the polygonal approximation are in black), decomposition before 
merging and decomposition after merging. 

of two measures, as suggested in (Serino et al., 
2011). These are respectively the ratio between the 
volume of R and the volume of the compound region 
that would be obtained as result of merging, and the 
ratio between the visible portion of the surface of R 
(measured by the number of voxels in the surface of 
R having at least one face-neighbor in the 
background) and the non visible portion of the 
surface of R (measured by the number of voxels in 
the surface of R having at least one face-neighbor in 
the adjacent kernels). Two thresholds,  and , are 
used for the above two ratios. In this work, the 
values =1.2 and =2 have been used. For the 
running example, the final decomposition is shown 
in Figure 4 top right. 

The decomposition after merging can be used to 
identify the class to which an object belongs, in 
terms of the number of kernels, bumps and simple-
regions, and of their spatial relationships. Moreover, 
by taking into account the possibly existing basic-
regions, the decomposition can be used to 
distinguish objects in the same class. If necessary, 
the decomposition before merging can also be used 
to derive information on the more or less articulated 
structure into basic-regions of those simple-regions 
that have been merged to the adjacent kernels. A few 
examples for the object horse in different poses are 

given in Figure 4. 
The suggested method has been tested on several 

3D images from publicly available shape 
repositories, e.g., (Shilane et al., 2004), producing 
generally satisfactory results. A few examples of the 
performance of our method can be appreciated in 
Figure 5. 

4 CONCLUSIONS 

A method to decompose a 3D object, starting from 
the partition of its skeleton into complex-sets, 
single-points and simple-curves, has been presented. 
Simple-curves are interpreted as curves in the 4D 
space, where the coordinates of each point are 
computed in terms of the Cartesian coordinates and 
the distance values associated to the skeleton voxels.  

A polygonal approximation is done in the 4D 
space to subdivide simple-curves into straight-line 
segments. Straightness of segments regards both 
geometric curvature along the 3D simple-curves and 
distribution of distance values along the curves. The 
same threshold value has been used for polygonal 
approximation for all tested images. The elements of 
the skeleton partition are used as seeds to 
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Figure 5: Skeleton partitions, where vertices found on the simple curves are shown in black, and corresponding 
decompositions before and after merging. 

recover the parts (kernels, bumps and simple-
regions) into which the object is decomposed. 
Simple regions may be articulated into basic-
regions, due to the polygonal approximation done on 
the simple-curves. Merging is also accomplished to 
obtain a more stable final decomposition, whose 
parts agree with human perception.  
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