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Abstract: In this study, an incremental and iterative approach for possibility distributions estimation in pixel-based 
images classification context is proposed. This approach is based on the use of possibilistic reasoning in 
order to enrich a set of samples serving for the initial estimation of possibility distributions. The use of 
possibilistic concepts enables an important flexibility for the integration of a context-based additional 
semantic knowledge source formed by pixels belonging with high certainty to different semantic classes 
(called possibilistic seeds), into the available knowledge encoded by possibility distributions. Once 
possibilistic seeds are extracted, possibility distributions are incrementally updated and refined. Synthetic 
images composed of two thematic classes are generated in order to evaluate the performances of the 
proposed approach. Initial possibility distributions are, first, obtained using a priori knowledge given in the 
form of learning areas delimitated by an expert. These areas serve for the estimation of the probability 
distributions of different thematic classes. The resulting probability density functions are then transformed 
into possibility distributions using Dubois-Prade’s probability-possibility transformation. The possibilistic 
seeds extraction process is conducted through the application of a possibilistic contextual rule using the 
confidence index used as an uncertainty measure.  

1 INTRODUCTION 

An accurate and reliable image classification is a 
crucial task in many applications such as content 
based image retrieval, medical and remote-sensing 
image analysis. An important difficulty related to 
this task stems from the inability, in most situations, 
to have a representative knowledge of different 
thematic classes contained in the analyzed scene. 
This is mainly due to the fact that this task is time-
consuming and to the lack of solid knowledge 
ensuring the representative constraints of the 
available knowledge. Hence, starting from a limited 
initial prior knowledge, an efficient classifier is 
assumed to have the capacity of extracting additional 
knowledge with a high degree of confidence while 
preserving the previously acquired knowledge. 

Focusing the attention on knowledge refining 
type in classification systems as the target of the 
incremental learning process, few approaches can be 
encountered in the literature: incremental-learning 

neural networks for remote-sensing images 
classification (Bruzzone and Fernàndez, 1999) 
where the parameters of the existing kernel functions 
are refined. Refining possibility distributions using 
the incremental-learning fuzzy pattern matching 
(FPM) is also proposed for diagnosis in industrial 
and medical applications (Mouchaweh et al., 2002). 
However, all encountered approaches have some 
limitations: a) The class labelling of each new 
sample is conducted without taking into account the 
importance of the contextual information mainly in 
the context of noisy images classification (Tso and 
Mather, 2009); b) The knowledge refining process is 
done after the addition or classification of each new 
sample which may be a drawback. In order to 
overcome the limitations of the above mentioned 
approaches, an incremental and iterative approach 
for possibility distributions estimation in pixel-based 
images classification context is proposed under the 
closed world assumption. This approach is based on 
the use of possibilistic reasoning concepts in order to 
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enrich the set of samples serving for the construction 
of the initial possibility distributions. 

Each pixel from the analyzed image, I, is 
assumed to belong to one, and only one, thematic 
class from an exhaustive set of M predefined and 
mutually exclusive classes Ω = {C1, C2, ..., CM}. 
Prior knowledge is assumed to be given as an initial 
set of learning areas extracted from the considered 
image and characterizing the M considered classes 
(from the expert point of view). Based on this prior 
knowledge, M class probability density functions 
are, first, estimated using the KDE (Kernel Density 
Estimation) approach (Epanechnikov, 1969) and, 
then, transformed into M initial possibility 
distributions encoding the “expressed” expert 
knowledge in a possibilistic framework. The 
application of the M class possibility distributions on 
the considered image I will lead to M possibilistic 
maps PMI,Cm

, m= 1, ..., M where (PMI,Cm
 encodes 

the possibility degree of different image pixels to 
belong to the thematic class Cm). Based on the use of 
a degree of confidence, the extraction of new 
learning samples is conducted using possibilistic 
spatial contextual information, i.e. applied on 
different possibilistic maps. The extraction process 
is then iteratively repeated until no more new sample 
can be added to the incremental learning process. 

The use of a possibilistic reasoning approach 
increases the capacity as well as the flexibility to 
deal with uncertainty when the available knowledge 
is affected by different forms of imperfections: 
imprecision, incompleteness, ambiguity, etc. Notice 
that, even when the used prior knowledge is perfect, 
the additional knowledge extracted through any 
incremental process may be affected by different 
forms of imperfection (Hüllermeier, 2003).   

In the next section, a brief review of basic 
concepts of possibility theory is introduced. The 
proposed iterative approach will be detailed in the 
third section. Sections 4 and 5 are devoted to the 
experimental results obtained when the proposed 
approach is applied using synthetic as well as real 
images. 

2 POSSIBILITY THEORY 

Possibility theory was first introduced by Zadeh in 
1978 as an extension of fuzzy sets and fuzzy logic 
theory to express the intrinsic fuzziness of natural 
languages as well as uncertain information (Zadeh, 
1978). In the case where the available knowledge is 
ambiguous and encoded as a membership function 
into a fuzzy set defined over the decision set, the 

possibility theory transforms each membership value 
into a possibilistic interval of possibility and 
necessity measures (Dubois and Prade, 1980).  

2.1 Possibility Distribution 

Let us consider an exclusive and exhaustive universe 
of discourse Ω = {C1, C2,..., CM} formed by M 
elements Cm, m = 1, ..., M (e.g., thematic classes, 
hypothesis, elementary decisions, etc). 
Exclusiveness means that one and only one element 
may occur at time, whereas, exhaustiveness refers to 
the fact that the occurring element belongs to Ω. A 
key feature of possibility theory is the concept of a 
possibility distribution, denoted by , assigning to 
each element Cm a value from a bounded set 
[0,1] (or a set of graded values). This value (Cm) 
encodes our state of knowledge, or belief, about the 
real world representing the possibility degree for Cm 
to be the unique occurring element.  

2.2 Possibility and Necessity Measures 

Based on the possibility distribution concept, two 
dual set measures, the possibility Π and the necessity 
Ν measures are derived. For every subset (or event) 
A, these two measures are defined as follows: 
 

 m
Cm

( ) max π(C )
A

A


   (1)

 

 m
Cm

N( ) 1 ( ) min 1 π(C )C

A
A A


      (2) 

where, Ac denotes the complement of A.  

2.3 Possibility Distributions Estimation 
based on Pr-  Transformation  

A crucial step in possibility theory applications is 
the determination of possibility distributions. Two 
approaches are generally used for the estimation of a 
possibility distribution. The first approach consists 
on using standard forms predefined in the 
framework of fuzzy set theory for membership 
functions (i.e. triangular, Gaussian, trapezoidal, 
etc.), and tuning the form parameters using a manual 
or an automatic tuning method.  

The second possibility distributions estimation 
approach is based on the use of statistical data where 
an uncertainty function (e.g. histogram, probability 
distribution function, basic belief function, etc.); is 
first estimated and then transformed into a 
possibility distribution 
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As we consider, in this study, that the available 
expert’s knowledge is expressed through the 
definition of learning areas representing different 
thematic classes, i.e. statistical data, we will focus 
on the second estimation approach. Several Pr- 
transformations are proposed in the literature. 
Dubois et al. (Dubois and Prade, 1983) suggested 
that any Pr- transformation of a probability 
distribution function, Pr, into a possibility 
distribution, , should be guided by the two 
following principles:  

 The probability-possibility consistency 
principle.  

 

( ) Pr( ),     A A A      (3)
 

 The preference preservation principle  
 

Pr( ) Pr ( ) ( ) ( ),    ,  A B A B A B         (4) 

The transformation Pr-suggested by Dubois et 
al., is defined by: 

     
M

m m j m
j=1

π(C )= ( C )= min Pr( C ),  Pr( C )      (5) 

In our study, this transformation is considered in 
order to transform probability distributions into 
possibility distributions.  

2.4 Possibilistic Decision Rules 

2.4.1 Maximum Possibility Decision Rule  

The decision rule based on the maximum of 
possibility is certainly the most widely used in 
possibilistic classification/decision making 
applications. This rule is based on the selection of 
the elementary decision Am0 

= {Cm0
}   with the 

highest possibility degree of occurrence: 

(R1): Decision = Am0
 if and only if 

  Π(Am0
) = maxm=1, ..., M[Π(Am)] (6) 

2.4.2 Maximum Confidence Index Decision 
Rule  

Other possibilistic decision rules using uncertainty 
measures are also developed. The most frequently 
encountered rule (proposed by S. Kikuchi et al. 
(Kikuchi and Perincherry, 2004)) is based on the 
maximization of the confidence index Ind for each 
event A  

Ind : 2


 → [-1, +1],  
A→ ( ) ( )  N( ) –  1Ind A A A   , A     

(7) 

where 2


 denotes the power set of 
 

Notice that restricting the application of this 
measure to events having only one element Am = 
{Cm} results in the following interesting property: 

 

Ind(Am) = (Am) + N(Am) -1                         

m n
m n

= π(C ) – π(C )max


                   (8) 

 

This means that Ind(Am) measures the difference 
between the possibility measure of the event Am 
(which is identical to the possibility degree of the 
element Cm) and the highest possibility degree of all 
elements contained in /Am (i.e. the complement of 
Am) (figure 1).  

 

Figure 1: Confidence indices associated with different 
decisions (Am0

: event having the highest possibility 

degree, Am1
: event with the second highest possibility 

degree). 

The decision rule associated with this index can be 
formulated by: 

(R2): Decision = Am0
  iff   

Ind(Am0
) = max[Ind(Am)] , m=1, ..., M (9) 

This decision rule associated with (R2) can be 
more severe by accepting the decision making only 
when the index value Ind(A) exceeds a predefined 
threshold S (called possibilistic confidence 
threshold): 

    (R2- Rejection): Decision = Am0
 iff 

m m0

m0

( ) max[ ( )],  m=1, ..., M

( )    S

Ind A Ind A

Ind A


 

Decision= Rejection if Ind (Am) < S,  

(10) 

3 POSSIBILISTIC SEEDS 
EXTRACTION RULES 

In this study, the following possibilistic seeds 
extraction rules are proposed and evaluated: 

A. Pixel-based extraction rule: 

This seeds extraction rule considers that a pixel 
 

Ind(Am0
) Ind(Am1

) 

Ind 
+1 -1 

0

(Cm
0
)-(Cm

1
) 

(Cm
1
)-(Cm

0
) 
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P0I is a possibilistic seed if its highest confidence 
index value exceeds the threshold S[0,1]: 

P0I is a possibilistic seed if  
Cm0

 Ind(Am0
) ≥ S (11) 

B. Contextual-possibilistic extraction rule: 
This rule duplicates the pixel-based extraction 

rule but with the major difference of using, for each 
pixel P0, the contextual-based possibility distribution 

0P =[
0P (C1), 

0P (C2), …, 
0P (CM)] instead of 

the pixel-based possibility distribution P0
=[P0

(C1), 

P0
(C2), …, P0

(CM)]. where 
0P (Cm), m = 1, 2, …, 

M, is extracted from the mth possibilistic maps by 
the application of a smoothing filter. In this study, 
the mean smoothing filter is used; this leads to: 

P m ,Cm0
P (P )0

1(C ) (P)I

V

PM
N



    (12) 

where V(P0) refers to the considered contextual 
neighborhood of the pixel P0 and N is Card(V(P0)). 

Using 
0P a contextual confidence index Ind  can 

be computed for each class Cm. The extraction rule 
considers that a pixel P0I is a possibilistic seed if  

P0I is a possibilistic seed if  Cm0
 

Ind (Am0
)= P0
 (C m0

)-
m m0

 max
 0P (C m) ≥ S (13) 

Using the learning zones, the initial estimation of 
the class probability distribution functions are 
established. The application of the Pr- Dubois-
Prade’s transformation allows obtaining the initial 
possibility distributions (figure 3). 

Using the learning zones, the initial estimation of 
the   class   probability   distribution   functions   are 

established. The application of the Pr- Dubois-
Prade’s transformation allows obtaining the initial 
possibility distributions (figure 3). 

4 ITERATIVE POSSIBILISTIC 
REFINING APPROACH  

As previously detailed, the samples initial set U0, 
considered by the expert, is used in order to estimate 
the probability distribution functions of different 
thematic classes, which in turns are transformed into 
possibility distributions through the application of 
the Pr- Dubois-Prade’s transformation.  

At iteration “n”, the application of the 
possibilistic seeds extraction rule produces the 
additional set of seeds Un+1. This seeds set is then 

used to enrich the samples set U = Uk used 

for the possibility distributions estimation (figure 2). 
The seeds enrichment process is then iteratively 
repeated until no more seeds are added.  

5 EXPERIMENTAL RESULTS  

5.1 Simulated Data 

For the experimental evaluation purpose, a 96×128 
pixel synthetic image composed of two classes 
{C1,C2}, is generated(figure 3). Pixels from C1 and 
C2 are generated as two Gaussian distributions 
G(m1=130, σ1=15) and G(m2=100, σ220).  

  

Figure 2: Iterative possibilistic refining approach. 
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Figure 3: Synthetic image with learning zones and initial 
possibility distributions (two Gaussian generated thematic 
classes).  

5.2 Possibilistic Seeds Extraction Rules 
Evaluation 

The proposed iterative approach is applied to the 
analyzed image using each of the two proposed seeds 
extraction rules. Two configurations have been tested: 
in the first one, only the pixel value is taken into 
account (no neighborhood) while in the second one, a 
3x3 pixel window centered on each pixel is 
considered as the local spatial possibilistic context. In 
figure 4 and 5, for both configurations, the number of 
correctly selected as well as erroneously selected 
seeds are given for the previously mentioned 
extraction rules as a function of the possibilistic 
confidence threshold S[0,1] after convergence. 

As our main target is to obtain a full truthiness of 
the class membership for all the selected seeds, it 
seems clear that restricting the extraction rule to 
only pixel-based possibilistic knowledge level does 
not fit into the targeted objective. On the other hand, 
the contextual possibilistic seeds extraction rule 
fulfills the aforementioned objective. An important 
constraint, targeted by the proposed approach, 
consists in having a fixed possibilistic confidence 
threshold for different class distributions. Therefore, 
it seems natural to fix the threshold into the mean 
confidence interval value, i.e. S = 0.5. Having a risk 
margin interval [0.45, 0.55], it seems that the 
contextual possibilistic extraction rule never 
produces erroneously extracted seeds (this result has 
been verified using a huge amount of generated 
images with different parameters and repeated for 
several statistical distributions realizations).  

 

Figure 4: Number of correct and erroneous selected seeds 
for the pixel-based extraction rule.  

 

Figure 5: Number of correct and erroneous selected seeds 
for the contextual-possibilistic rule. 

5.3 Iterative Refining Approach 
Behavior  

In this section, the quality of the refined possibility 
distributions is evaluated. Considering the expert 
knowledge as being expressed through learning 
areas delimitation, i.e. through statistical data, the 
obtained results are illustrated in figure 6, where 
three possibility distributions (PD) are plotted for 
each considered case: the reference (representing all 
the class pixels in the image), the initial and the 
refined possibility distributions. 

A close analysis of the obtained results shows that 
the refined possibility distributions fulfil the targeted 
objective and converge towards reference possibility 
distributions. Possibilistic pixel-based classification, 
using the maximum rule, is applied to this synthetic 
image in three cases: the first case without possibility 
distributions refining, the second case after refined 
possibility distributions and the third one is the 
optimal case (using the reference possibility 
distributions). The calculated classification error rate 
in the first case is (20.5%), in the second case is 
(17.3%), and in the optimal case is (16.4%). As it is 
clear, the classification error rate decreases after the 
refining of the possibility distributions. 
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Figure 6: Initial, refined, and reference possibility 
distributions. 

5.4 Medical Application 

The proposed approach is applied on a set of two 
mammographic images composed of two classes 
(figure 7) tumor and normal tissue. This set is 
extracted from the MIAS image database 
(Mammographic Image Analysis Society). In order 
to show the performance of the proposed approach, 
possibilistic pixel-based classification is applied to 
these mammographic images in two cases: the first 
case shows classification results according to the 
maximum rule, without possibility distributions 
refining while the second one gives classification 
results through refined possibility distributions.  

 

Figure 7: (a) Set of two mammographic images composed 
of two classes, (b) Contour extracted before possibility 
refining.distribution refining, (c) Contour extracted after 
possibility distribution refining. 

A visual analysis of the obtained results shows 
that the proposed approach allows better description 
of the small details in areas of tumor, so having a 
good detection of the region of interest. This is due 
to the positive effect resulting from integrating new 
possibilistic seeds in the possibility distribution  

6 CONCLUSIONS 

The proposed approach consists on the use of an 
initial knowledge expressed by the expert, 
transforming this knowledge into an initial 
probability density functions, and then using 
Dubois-Prade’s transformation to obtain possibility 
distributions. The application of contextual 
possibilistic reasoning allows enriching the expert’s 
initial knowledge by taking into consideration a lot 
of pixels belonging to the class and fulfilling the 
conditions during the incremental learning. The 
target of the proposed approach is to construct 
possibility distribution (to be used for pixel-based 
classification purposes) through a statistical iterative 
estimator exploiting contextual possibilistic 
knowledge.  
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