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Abstract: This paper describes a solution to the application of rapid detection of bicycles in low resolution video. In
particular, the application addressed is from video recorded in a live environment. The future aim from the
results in this paper is to investigate a full year of video data. Hence, processing speed is of great concern.
The proposed solution involves the use of an object detector and a search space reduction method based on
prior knowledge regarding the application at hand. The method using prior knowledge utilizes random sample
consensus, and additional statistical analysis on detection outputs, in order to define a reduced search space. It
is experimentally shown that, in the application addressed, it is possible to reduce the full search space by 62%
with the proposed methodology. This approach, which employs a full detector in combination with the design
of a simple and fast model that can capture prior knowledge for a specific application, leads to a reduced search
space and thereby a significantly improved processing speed.

1 INTRODUCTION

Observing road-users is of great interest in Intelligent
Transportation Systems (ITS) and an important tool
in city planning. Detecting and counting bicyclists on
roads are one of the many important aspects in this
context. Cycling is often seen as an important part of
a sustainable transport system, because cyclists do not
pollute, are quite, take little space and cycling have
very positive health effects (Pucher et al., 2010). Bi-
cycle counting has usually been a difficult, expensive
and labor-intensive task for road authorities. Hence,
reliable and cost effective daily report of cyclist flow
and frequencies at locations in a city, enables well
argued decision making by municipalities to initiate
new, or improve existing, infrastructure.

Several sensor technologies exist to measure traf-
fic in general, for example, sensors based on infra-
red beams, passive infra-red, laser scanners, inductive
loop detectors, hoses measuring air pressure and cam-
eras using computer vision (Klein et al., 2006). This
paper focuses on the latter. In particular, it focuses
on designing a rapid bicycle detection framework for
a specific application. The application addressed in-
volves low resolution video, produced from a cam-
era placed at the side of a road. The extension of the
application is to investigate how wind, and potential
windshileds, affect daily bicycling flow. Ongoing wo-

rk is to collect video data over a year, and the aim
is to investigate bicycle flows automatically with the
approach described in this paper. It should be empha-
sized that processing speed is of great concern with
one year of video data in mind.

There are a limit amount of computer vision pa-
pers focused specifically on bicycle detection and
tracking (Ardeshiri et al., 2011). However, there are
techniques proposed for pedestrian detection which
can be tailored towards the task of bicycle detec-
tion. Some proposed methods for bicycle detection
and tracking involves motion detection (Heikkila and
Silven, 1999), top-view mounted stereo cameras (Bel-
bachir et al., 2010), pedal motion (Takahashi et al.,
2010), wheel extraction (Rogers and Papanikolopou-
los, 2000; Ardeshiri et al., 2011) and part based learn-
ing methods (Felzenszwalb et al., 2010; Cho et al.,
2011). Which all have their own merits and flaws
regarding performance in detection and processing
speed.

Approaches to improve detection speed in ob-
ject detection, in general, focus on making improv-
ments in the categories features, classifier, prior
knowledge, cascades, parallel (GPU) implementation
and/or search strategy (Benenson et al., 2012). In
this paper an object detector previously successful in
face detection is utilized (Nilsson et al., 2007). That
object detector addresses features, classifier and cas-
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cades. In order to improve detection speed, this paper
proposes to take advantage of additional prior knowl-
edge, steaming from the particular application of bi-
cycle detection addressed in the paper, as well as the
existing detector, in order to design a practical and
more efficient search strategy.

The paper is organized as follows. The next sec-
tion discusses the bicycle detection application and
the low resolution video data used. Section 2 de-
scribes the object detection framework used for bicy-
cle detection. Section 3 presents the proposed search
space reduction. Section 4 presents experimental re-
sults. Finally, conclusions are presented.

2 BICYCLES IN LOW
RESOLUTION VIDEO

Due to the privacy concerns as well as sensor cost,
low-resolution recordings are preferred and consid-
ered in this work. The video used is collected using
an AXIS 211 surveillance camera collecting a MPG
video of resolution 320×240. The camera placement
is at the side of the road and bicycles to be detected
are in, or close to, profile view. This camera setup
yields video where bicyclists are about 40×40 pixels
in size, see Fig. 1.

The low resolution introduces several restrictions
to methods suitable for the task. For example basing
the detection on wheels (Ardeshiri et al., 2011) will
not result in a reliable detector since in many cases the
circular or elliptic shapes are simply not found in the
low resolution image, see for example top left patch
in the right part of Fig. 1. Similarly, basing the de-
tection on pedal motion (Takahashi et al., 2010) is not
reliable since, if visible at all, the pedal motion will be
too few pixels and thereby makes it indistinguishable
from noise. Furthermore, in some cases the cyclists
are in fact gliding by the camera due to gained mo-
mentum before entering field of view. Hence, there
are no pedal motions to be detected. Basing the detec-
tion on a part based system (Felzenszwalb et al., 2010;
Cho et al., 2011) might be a possible way to design
the detector. However, utilizing the default high res-
olution settings will fail in detecting bicycles in low
resolution video. For example, our tests using a part
based detector (Felzenszwalb et al., 2010) trained on
PASCAL VOC (Everingham et al., 2007) bicycle data
applied on the low resolution videos addressed here,
resulted in basically no detections. Furthermore, con-
sidering the amount of available information which
can be used for detection, a part based method can be
considered unnecessary complex in the scenario ad-
dressed in this paper. Hence, in this work the focus is

on rapid single patch detection with the aim for real-
time operation on embedded systems.

Figure 1: Example of image from low resolution (320 ×
240) video with a bicycle to detect and examples of bicycle
patches.

3 BICYCLE DETECTION USING
CLASSIFIER CASCADE

The main bottleneck in the framework is indeed the
detection part. Hence, rapid detection is the main
concern. Using features that can be computed fast
and have desirable properties with regard to illumi-
nation changes, such as Local Binary Patterns (LBP)
(Ojala et al., 1994) or local Successive Mean Quanti-
zation Transform (SMQT) (Nilsson et al., 2005; Nils-
son et al., 2007), are therefore of great interest. Both
consist of binary patterns formed by comparing pixels
within 3× 3 patches. SMQT is expected to be more
robust since it compares with the mean over the entire
patch.

Combining features, such as LBP or SMQT vari-
ants, with a classifier cascade, allows background
regions of the image to be quickly discarded while
spending more computation on promising object-like
regions (Viola and Jones, 2001). An efficient clas-
sifier cascade based on the split up SNoW (Nilsson
et al., 2007), which produces a cascade, is employed
in this paper. It should be noted that the following
search space discussion could be equally valid if an-
other object detector, using similar a scanning win-
dows approach, is used (Viola and Jones, 2001; Dalal
and Triggs, 2005; Zhang et al., 2007; Felzenszwalb
et al., 2010).

The classifier takes a patch of size Mp row pix-
els and Np column pixels as input. The default search
space for the object detector is typically created by re-
sizing the original image with M rows and N columns.
Hence, scanning the image with a sliding window in
the original size results in (M−Mp +1)(N −Np +1)
calls to the classifier. To search for various sizes of
the object the original image is resize to various sizes.
Consider a vector of K resize factors in relation to the
original size

s = [s1,s2, . . . ,K]T , (1)

ICPRAM�2013�-�International�Conference�on�Pattern�Recognition�Applications�and�Methods

454



then the image size at scale k can be found as

Mk = ⌊M · sk +0.5⌋
Nk = ⌊N · sk +0.5⌋. (2)

Note that due to rounding the true scales can now dif-
fer from sk and also be different in M and N. The true
scales factors used are now Mk/M and Nk/N. The
number of calls, Ck, at scale k will be

Ck = (Mk −Mp +1)(Nk −Np +1) (3)

and the total number of classifier calls C with all K
scales will be

C =
K

∑
k=1

Ck. (4)

The results after applying the detector are pre-
dicted positions of bicycles. A single detection vector
d consists of a rectangle box, defined by the top left
point (x1,y1) and the bottom right point (x2,y2), con-
catenated with the corresponding classifier value v as

d =


x1
y1
x2
y2
v

 . (5)

The resulting detections that are overlapping are
merged by a greedy non-maximum suppression.

4 REDUCED SEARCH SPACE
USING PRIOR KNOWLEDGE

Prior knowledge regarding positions and scales where
bicycles reasonably can occur are of particular inter-
est in this bicycle application. Hence, information
about the lane (Aly, 2008; Bao et al., 2011) or geo-
metric layout (López et al., 2010) are of interest. With
the application in mind, it is known that the camera is
placed on the side of the road and it is assumed that
it is observing a fairly straight piece of a path/road.
However, there is no information about the position
of the lane, distance between the camera and the lane,
or the focal length used. The prior knowledge that
the bicycle is traveling on a lane and that it is geo-
metrically constrained is employed, but no attempt to
extract information about the lane or geometric lay-
out is performed. Rather, the intention is to utilize the
(full search space) detector initially and use those de-
tections in an analysis to reduce the search space and
further utilize this information to reduce the search
space for the detector. The following analysis utilizes
the full detector results before performing non maxi-
mum suppression. This since non maximum suppres-
sion will reduce the number of inliers (several correct

detections on a bicycle would be merged), which is
undesired in the following analysis.

The way these detections, see Eq. (5), are used
are as follows. The top center coordinates, xtc =
(x1 + x2)/2 and ytc = y1, as well as the bottom center
coordinates, xbc =(x1 + x2)/2 and ybc = y2, are calcu-
lated from each detection. The reason to use both top
and bottom centrum points instead of the center points
of the detection is that information about the scale can
be captured. Additionally, note that the width of a de-
tection, w = x2 − x1, is directly related to the scale
index k.

Utilizing line models, on the detected top and bot-
tom positions, is the first step to reduce the search
space. Due to false positives from the object detec-
tor, which can be seen as outliers in position, there
is a need to perform some kind of robust estima-
tion. For example, robust estimators might be the
Iterative Reweighed Least Square (IRLS) (Lawson,
1961; Burrus et al., 1994), Quantile Regression (QR)
(Koenker and Bassett, 1978; Koenker, 2005) or RAN-
dom SAmple Consensus (RANSAC) (Fischler and
Bolles, 1981). In this paper RANSAC, with a thresh-
old value θ to identify if a points fits well, is utilized
for line fitting using Total Least Square (TLS) (Golub
and Van Loan, 1980) error. The standard way of cal-
culating the number of iterations for RANSAC in this
case is

log(1− p)
log(1− f 2)

(6)

where p is the probability of finding an uncontami-
nated sample and f is the fraction of inliers. This es-
timate is overly optimistic due to the amount of inlier
noise present in the application at hand. Therefore, an
additional parameter, g, the probability that the inliers
chosen produce a good model, is introduced yielding
more realistic estimate of the number of iterations

log(1− p)
log(1− f 2g)

. (7)

The result from the RANSAC fit will be two lines
in the centrum of the inlier top and bottom points. In
order to find the upper and lower boundaries of the
inliers, additional investigation is required. For the
sake of the argument lets consider the top line only.
It is desired to move the top line upward to the up-
per boundary of the inlier points. To perform this ac-
tion all points above the line are considered and their
orthogonal distance to the line is collected in a set.
Utilizing this set and finding the τth quantile qτ, for
a properly chosen τ, is used to move the inception of
the line by adding the quantile multiplied with an ad-
ditional margin factor b, that is b ·qτ, to the inception.
Similarly, the bottom line is moved downwards by in-
vestigating the orthogonal distances of the points un-
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der the bottom line. Thus, these operations will yield
two lines with the purpose to capture the area in which
the bicycles occur.

While the two lines capture an area in which the
bicycles occur, it is also desired to investigate the
scales of the detections inside this area. The differ-
ent scales found within the area is captured in a his-
togram hk. A threshold γh on the normalized his-
togram hk/∑K

k=1 hk is introduced in order to remove
potential false positives, with scales not representa-
tive of bicycle size, within the area of concern. In
this way, scales can potentially be removed from the
search space. The remaining scales are further inves-
tigated with respect to the positions within the area
and their minimum and maximum columns values are
used as an additional boundary. Hence, each scale
considered is now enclosed in position by four lines.
Thus, the found reduced search space have potential
to reduce significant amount of classifier calls which
is desired from a processing speed perspective. Fur-
thermore, the number of false positives within a frame
can be lowered with this reduced search space.

5 EXPERIMENTS

MPG video recorded during daytime (8 hours) of
resolution 320 × 240 is used for training. Bicycles
are marked and used as positive samples. Negative
samples are extracted from the background and in-
creased in a bootstrapping manner. An example of
a video frame can be found in Fig. 2. The patch

Figure 2: Example of image from video.

size used is Mp = 32 and Np = 32. The full search
space for the classifier cascade is built up by repeat-
edly downsizing with a scale factor of 1.2, that is
s =

[
1, 1

1.2 ,
1

1.22 , . . .
]

until Mk < Mp or Nk <

Np. This approach leads to K = 12 scales and 167281

classifier cascade calls in the full search. An exam-
ple of the full detector results from a 30min video
are visualized in Fig. 3. Note that a vast amount of

Figure 3: Bicycle detections as red boxes from 30min video.

detections are correct on the lane, but there are also
false positives below and above. The mid top and bot-
tom points from detections used in the analysis can be
found in Fig. 4

Figure 4: Top (blue) and bottom (red) points from object
detector.

In the first search space reduction step, the
RANSAC line fitting with parameters p = 0.99999,
f = 0.5, g = 0.1 and θ = 50 are performed on the
top and bottom points. This results in lines following
the center of the inliers, see Fig. 5. Following the es-
timate from RANSAC is the statistical analysis with
quantiles described in the previous section. The pa-
rameters used are τ = 0.85 and b = 2.2 in order to
move the intercept, see Fig. 6. Utilizing the two lines
capturing an area of bicycle occurrence, the scale of
the detections inside the area are investigated and the
histogram hk and threshold γh = 0.001, described in
the previous section, is utilized, see Fig. 7. The result
from the histogram analysis is that, in this scenario,

ICPRAM�2013�-�International�Conference�on�Pattern�Recognition�Applications�and�Methods

456



Figure 5: Top line (white) and bottom line (yellow) after
RANSAC fit.

Figure 6: Top line (white) and bottom line (yellow) after
moving to outer boundary.
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Figure 7: Normalized histogram of scales from points
within the area defined by two lines found in Fig. 6.

the scales k = 6,7, . . . ,12 can be omitted. The remain-
ing scales enclose possible positions by the two lines
found from RANSAC and the two vertical lines as
described in the previous section, see an example for
one scale in Fig. 8.

Figure 8: Example of one scale and corresponding four
lines enclosing potential positions for detection.

In the scenario addressed, the reduced search space
results in 65014 classifier calls compared to the full
search of 167281. Hence, the speach space be re-
duced by 62% by employing the proposed method.
The processing speed is directly related, since a posi-
tion check with four lines could be considered neg-
ligible in comparison to the classifier, to the num-
ber of classifier calls. This will lead to a similar ex-
pected processing time reduction. This will have a
great practical impact when considering of a year of
video data.

6 CONCLUSIONS

The paper addresses the application of bicycle detec-
tion in a specific scenario, aiming at investigating a
year of video data. The paper utilizes an object de-
tector in combination with a search space reduction
method based on prior knowledge about the applica-
tion. The object detector, based on local SMQT fea-
tures and split up SNoW Classifier, is trained on bicy-
cles and non-bicycles. The results from the detector is
further analyzed, using RANSAC and statistical anal-
ysis, and a search space reduction is presented. Given
the application addressed, is was possible to show that
only around 38% of the full search space needs to be
investigated and thereby a significant improvement in
processing speed can be achieved.
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