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Abstract: The paper proposes the use of an efficient hybrid optimization routine by combining Nelder-Mead simplex 
with Particle Swarm algorithm (NMPSO) to synthesize a proportional-integral-derivative (PID) type 
controller. The conceived controller is capable of providing the best possible performance for regulating 
stochastic disturbances under closed loop conditions. A global optimal solution is found by exploiting the 
process output variance expression in terms of its closed loop impulse response coefficients. The results of 
which are used to define an achievable lower bound of the PID performance in terms of the output variance 
of the closed loop system. Several simulation examples drawn from literature are used to demonstrate the 
efficacy of the proposed methodology. 

1 INTRODUCTION 

Controller performance assessment (CPA) has 
gained interest from researchers and academics 
during the last two decades (Harris, 1989; Huang 
and Shah, 1999; Hugo, 2006; Veronesi and Visioli, 
2011). Seminal work conducted by Harris (1989) 
sparked considerable interest in the field. This is 
indicated by numerous CPA methods that have 
emerged. Excellent reviews on the subject can found 
in Jelali (2006) and Qin (1998). CPA is mainly used 
to verify the health of a current control system by 
clarifying whether it is operating optimally within 
certain constraints such as delay time, disturbance 
and process characteristics. In today's competitive 
economic climate it has become crucial for 
controllers to operate optimally in order to reduce 
product wastage and provide minimal output 
variance. In this paper, the structural constraint 
imposed by PID type controllers is the focus as it 
directly impacts on output variance and is widely 
used for industrial control.  
When stochastic disturbances affect the control 
system, it is usually desired to achieve minimum 
output variance (Harris, 1989). For time invariant 
linear discrete time systems with time delay, which 
have no finite zeros on or outside the unit circle, 
minimum variance control (MVC) represents the 

best possible control to alleviate the negative effects 
of stochastic disturbances (Åström, 1979). It is worth 
noting that a practical implementation of the MVC 
algorithm for process control would lead to 
excessive wear on the final control element. This is 
due to its wide bandwidth and noise amplification 
which leads to the aggressive control action (Hugo, 
2006). However these problems are not a deterrent 
when using the algorithm for CPA. A controller 
performance index (CPI) can thus be defined as one 
that compares the current process output to the 
output that would have occurred if some "optimal" 
controller had been applied to the process such as 
the technique proposed by Harris (1989) using 
MVC. The methodology does present a serious 
drawback however since it does not take controller 
structure into consideration. Owing to this 
limitation, the MVC performance benchmark is 
unobtainable and highly optimistic for low order 
controllers such as the PID type (Jelali, 2006). Since 
PID type controllers are commonly used for 
industrial control due to their transparent control 
algorithm and cost versus benefit ratio they provide 
its "achievable" performance is an important task 
(Ko and Edgar, 2004; Sendjaja and Kariwala, 2009; 
Agrawal and Lakshminarayanan, 2003). 
Furthermore, a controller specific performance 
bound provides valuable insight as to whether a 
more advanced control algorithm is required to 
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achieve the desired control objective. A key 
difficulty in characterizing achievable performance 
for a restricted structure controller is the non-
convexity for the resulting optimization problem for 
which no direct and simple global solution is 
possible (Sendjaja and Kariwala, 2009).  

 
In the literature, researchers have proposed using 
gradient-based methods (Agrawal and 
Lakshminarayanan, 2003; Ko and Edgar, 2004) and 
solving a series of non-convex programs using sums 
of squares (SOS) programming (Sendjaja and 
Kariwala, 2009) for determining the optimal 
solution. Recently, the use of DividingRECTangles 
(DIRECT) algorithm was proposed by Veronesi and 
Visioli, 2011. Also, Shahni and Malwatkar, 2011 
suggested using a ring of iterations based on the 
MATHWORKS

® Optimization Toolbox. In this paper 
we propose using a hybrid optimization strategy for 
determining achievable PID performance.  

 
The paper is arranged as follows: Section II gives a 
review of the derivation of the objective function as 
given by (Shahni and Malwatkar, 2011). The global 
minimization of which would provide the best 
possible PID control.  It is important to note that 
their derivation is given in terms of the controller 
gains which is later exploited in the subsequent 
sections by the proposed algorithm; Section III 
describes the hybrid optimization algorithm; Section 
IV shows the use of the proposed algorithm to 
determine the global optimal solution; Section IV 
also discusses the simulation experiments that were 
conducted and compares the results to the methods 
of Huang and Shah (1999) and Sendjaja and 
Kariwala (2009). An analysis of the results is also 
given in this section; Section V concludes the study. 

2 PROBLEM FORMULATION 

We consider the typical closed loop single-input 
single-output (SISO) feedback control system shown 
in Figure 1. The process output variable is given 
as ( )y t , with the controller signal denoted by 

( )u t and the disturbance driving white noise being 

represented by ( )a t . t is the sample interval. The 

process output is given as 
 

1 1( ) ( ) ( ) ( ) ( )y t g q u t h q a t    (1)

where 1( )g q and 1( )h q represent the process and 

disturbance transfer functions respectively. The 

symbol 1q  represents the backshift operator. For 

the sake of brevity and convenience, the backshift 
operator 1q  and sample time t  will be omitted in 

the subsequent sections unless circumstances 
necessitate its presence. It is worth noting that the 
control system set-point ( )r t does not vary in this 

study since the focus is for regulating stochastic 
disturbances. Hence for regulatory control of the 
SISO system shown in Figure 1 the transfer between 
y and a  is: 

  
(2)

We make the following assumptions for the closed-
loop system G  (Sendjaja and Kariwala, 2009). 

1. Process (g) and disturbance (h) transfer 
functions are stable, causal and contain no 
zeros on or outside the unit circle except at 
infinity due the time delay. 

2. a is a random white noise sequence. 
The output variance is defined as: 
 

 (3)
 

where       is the H2 norm.  
 
 
 
 
 
 
 
 
 

Figure 1: Discretized single loop feedback control scheme. 

The minimum variance (MV) benchmark can be 
obtained by (Huang and Shah, 1999):  

 
 

(4)

    
where d represents the process delay time and dm is 

the thm  discrete impulse response of the disturbance 
model d . Since we are determining an achievable 
lower performance benchmark for PID type 
controllers, Eq. (4) may not be attainable for this 
controller structure. In order to reduce output 
variance in terms of the PID structure limitation the 
following expression requires solving: 
 

2


( )a t

1( )k q 1( )g q
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(5) 

 
Now the structure of a digital version of the PID 
controller which can be found published in many 
textbooks on process control is (Ko and Edgar, 
2004). 

 
  

(6)

where 
 

 
 

 

 
,       and         represent the proportional, integral 

and derivative gains of the PID controller 
respectively. Eq. (3) can be written as  

 
   (7) 

 
where iG  represents the closed loop impulse 

response system.  Now the thm element of        may 
be defined by                           which gives the 
closed loop impulse response coefficients for the 
system    .    . In this paper the 
number of the closed loop impulse response 
coefficients is limited to 4m d .  This ensures that 
the closed loop impulse response converges and 
computational power is not exhausted unnecessarily. 
It is assumed that since the system converges and 
approximately equals to zero at the thm element; 
              . Eq.(7) can now be written as 

 
 (8) 

 
Once the controller parameters are known the 
coefficients of           can easily be determined using 
the "impulse" function in the MATHWORKS

® 

MATLAB® software package. However determining 
the controller gains that provide a global optimal 
solution is a non-trivial task. Details of the 
optimization algorithm used in this regard are 
discussed in the next section. 

3 HYBRID OPTIMIZATION 
ALGORITHM 

The basis of integrating the Nelder-Mead (NM) 
simplex routine and Particle Swarm Optimization 
(PSO) is merely to combine their distinct 
advantages. It will be shown later that this proves to 
yield an efficient search routine capable of 
determining high quality solutions for the problem 
discussed in the previous section. This section 
introduces the individual search procedures of NM 
and PSO, followed by a description of the hybrid 
NMPSO. 

 
3.1  Nelder-Mead Simplex Search Method 
 
The Nelder-Mead simplex algorithm (Nelder and 
Mead, 1965) is a widely used numerical method for 
solving nonlinear unconstrained optimization 
problems. This computationally compact 
optimization routine can be invoked in MATLAB® 
Optimization Toolbox 5.0 using the function 
"fminsearch".  The optimization function attempts to 
minimize a real-valued function ( )f x  using only 

function values without any derivative information 
(explicit or implicit) (Lagarias et al., 1998). Four 
key scalar operations form the basis of rescaling the 
simplex based on the local behavior of the objective 
function. These are: reflection (  ), expansion (  ), 

contraction (  ) and shrinkage ( ). Through these 

procedures the simplex can successively improve 
itself and approach on the optimum. Universal 
choices used in the standard NM algorithm are 
(Lagarias et al., 1998): 
 

1, 2, 0.5, 0.5        
 
A review of the steps to the search routine as 
described by Lagarias et al. is given below: 

 
1. Initialization. The minimization of function 

( )f x for nx begins with a generation of 

vertices located at points in n . The simplex 
points are generated around the initial guess 

0x of 1n   points for n -dimensional vectors x . 

For 2n  , three points construct a triangle and 
3n  , four points generate a tetrahedron and so 

forth. Iteration k  begins by ordering and 

labeling these vertices as ( ) ( ) ( )
1 2 1...k k k

nf f f    , 

where ( )k
if denotes ( )( )k

if x . ( )
1

kf is referred to 

PK

 0 1 2 ...iG G G G G

IK
DK

( ) ( )T
i iVar y G G

( 0,1,..., )mG m  
iG

i miG G

min ( ) min( )
PIDPID

T
mi mi

kk
Var y G G

miG

1 2
1 2 3

11PID

k k q k q
k

q

 



 




1 P I Dk K K K  

2 ( 2 )P Dk K K  

3 Dk K

2

2
min ( ) min

PID PIDk k
Var y G
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as the best function value and ( )
1

k
nf   as the worst 

function value. Similarly ( )
1

kx is referred to as 

the best point and ( )
1

k
nx  as the worst point in n . 

At each step in the iteration, the algorithm 

discards the current worst point ( )
1

k
nx  , and 

replaces it with another point into the simplex. 
For the sake of convenience, superscript k is 
omitted. 

 
2. Reflection. A reflection point rx is computed 

from  
 

 (9) 
 

where
1

n i

i

x
X

n
   is the centroid of the n best 

vertex points except 1nx  . Evaluate ( )r rf f x . 

If 1 r nf f f  , accept the reflected point rx and 

terminate the iteration. 
 

3. Expansion. If 1rf f , compute the expansion 

point, 
 (10)

 
 

 Evaluate ( )e ef f x . If e rf f , accept ex and 

terminate the iteration, otherwise if 

e rf f accept rx and terminate the iteration. 

 
4. Contraction. If r nf f  generate contraction 

between X and the better of 1nx  and rx .  

 
a. An outside contraction is performed if 

1n r nf f f    and computed by 

 
 (11)

 
Evaluate ( )c cf f x . If c rf f , accept cx and 

terminate the iteration, otherwise go to shrink  
operation in step 5. 

 
b. An inside contraction is done if 1r nf f  and 

calculated by 
 

1 1( ) (1 )cc n nx X X x X x               (12) 

 

Evaluate ( )cc ccf f x . If 1cc nf f  , accept 

ccx and terminate the iteration, otherwise go to 

shrink  operation in step 5. 
 

5. Shrink. Evaluate f at the n  points 

1 1( )i iv x x x   , 2,..., 1i n  . The vertices 

of the simplex at the next iteration is 

1 2 1, ,..., nx v v  . 

 
The algorithm is terminated until a stopping criterion 
is satisfied. An example of a possible terminating 
criterion can be maximum number of iterations. In 
the case of equal function values being evaluated, 
the points need to be ordered according to tie-
breaking rules. Further details of these rules can be 
found in (Lagarias et al., 1998). The main 
shortcoming of this search methodology is that it can 
only find local minimums which depend entirely 
upon the initial simplex starting point 0x .To find 

different local minimums, the algorithm must start 
with different and appropriate initial simplex 
guesses. 

 
3.2 Particle Swarm Optimization 

Algorithm 
 

The PSO technique, developed by Kennedy and 
Eberhart (1995), is a computational based 
optimization technique for dealing with problems in 
which a best solution can be represented as a point 
or surface within an n-dimensional search space. 
The PSO concept is based on an analogy of the 
social interaction that exists in flocking birds and 
swarming bees. The technique, much like a genetic 
algorithm (GA), is stochastic in nature and is 
population based. However a major difference 
between the PSO and GA is that the latter employs 
genetic operators which filter out poor performing 
individuals through natural selection. A key 
distinguishing feature of the PSO is that all 
individual particles are retained where members of a 
group tend to follow the lead of the best in the 
group. Each particle or agent also has a memory to 
remember the best position that it has visited and the 
knowledge of how the other agents around it have 
performed. The procedure of PSO is reviewed 
below. 

 
1. Initialization. Randomly generate agents within 

the search space in which each particle 
represents a potential solution. Each particle is 
assigned an initial random velocity. 

1 1( ) (1 )r n nx X X x X x        

( ) ( ) (1 )1 1x X x X X X x X xe r n n            

1 1( ) ( ) (1 )c r n nx X x X X X x X x            
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2. Velocity Update. Each agent flies through the 
search space dynamically adjusting its velocity 
and positional trajectories. These adjustments 
are based on the personal experiences of the 
agent in question, plus its knowledge of how its 
companions have performed. The agents 

position and velocity for the 
thi  particle within 

an n -dimensional space are updated by the 
following equations: 

 (13)
 

( 1) ( ) ( 1)
, , ,
k k k

i n i n i ns s v    (14)
 

pi ,...,2,1  
qn ,...,2,1  

 
With regards to (13) and (14):  ( )

,
k

i nv = velocity of 

agent i at iteration k,  = constriction factor, 1c = 

cognitive acceleration, 2c  = social acceleration, 

()rand = random number between 0 and 1, 

pbest =p-best of agent i, gbest = g-best of the 

group, ( )
,
k

i ns  = current position of agent i at iteration k, 

p = number of agents, q=number of dimensions to 
the optimization problem.  Some popular variants of 
the PSO algorithm include the inertia weight and the 
constriction actor approach. In this study we have 
used Clerc’s Type 1 constriction factor algorithm to 
limit each agent’s velocity (Clerc, 1999). This 
ensures a robust global convergence as each agent’s 
velocity trajectory decreases when approaching the 
best solution (Clerc, 1999). The constriction factor is 
computed by  

 

 (15)

 

where, 1 2( , )c c  .  

It is worth noting that  must be greater than 4 to 
ensure a proper value for . A commonly used 
value for   is 4.1 which gives a constriction factor 
constant of 0.7298  . This constant multiplier 
value was used in all the experiments.  

3.3 Hybrid Nmpso  

The task of the hybrid search is to find the absolute 
best set of controller parameters that satisfy the 
objective function under certain constraints. In order 

to ensure positive values of the controller parameters 
the following inequalities are considered: 1 0k  , 

2 0k  , 3 0k  . Values that violate these constraints 

are penalized with a very large number resulting in a 
poor cost function. It is worth noting that for a PI 
controller the search space is given by two 
dimensions ( 2n  ) whereas for a PID controller 
three dimensions ( 3n  ) are created. Hence for a PI 
controller each agent has a starting point of 

0 [0;0]x   and for a PID controller the agent’s 

initial position is given by 0 [0;0;0]x  . During the 

PSO routine of the hybrid search the fitness function 
defined by Eq. 8 is minimized and the best controller 
parameters are saved. If after several unsuccessful 
consecutive attempts the PSO algorithm fails to 

improve on the current gbest position then the 

search automatically switches over to the NM 

optimization. The gbest  position found by the PSO 

algorithm is used as the starting point for the NM 
search. The same fitness function (Eq. 8) is used for 

the NM search. If a better gbest  is found then this 

new point is used in the PSO search and the 
procedure is repeated until convergence is reached. 
If the NM search is unsuccessful in determining a 
better position then the algorithm terminates when a 
terminating condition such as maximum number of 
iterations is satisfied. The procedure for the hybrid 
NMPSO search is presented in Figure 2.  

It should be noted however that the proposed 
algorithm is applied to known system transfer 
functions. Thus the assumption is made that the 
algorithm is applied on accurate models of process 
and disturbance dynamics. Several examples 
showing the effectiveness of the hybrid NMPSO 
routine is given the next section. 

4 ILLUSTRATIVE EXAMPLES 

4.1 Preliminaries for the Experiments 

Several simulation examples taken from literature 
are used to verify the usefulness of the proposed 
algorithm. These examples were taken from 
(Sendjaja and Kariwala, 2009; Ko and Edgar, 2004 
and Agrawal and Lakshminarayanan, 2003). All 
simulations were conducted using the PC based test 
platform with specifications given in Table 1. 
Process ( g ) and disturbance ( h ) transfer functions 

used in the simulation models are shown in Table 2. 

( 1) ( ) ( ) ( )
, , 1 , , 2 ,[ () ( ) () ( )]k k k k

i n i n i n i n n i nv v c rand pbest s c rand gbest s         

2

2

2 4
 

    
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1. Initialization. Generate a 
population of size p  with each 

agent having a starting point 

0 [0;0]x   for PI or 0 [0;0;0]x   for 

PID. 
 

Repeat  
 

2.  PSO method. Apply PSO to randomly 
generate p  number of particles in 

the n -dimensional search space. 
2.1 Fitness Function. Using the 

agent’s current position 
compute its fitness 
according to Eq. (8). 
Agents that violate the 

constraints: 1 0k  , 

2 0k  , 3 0k  are penalized 

with a large fitness 
factor. 

2.2 Selection. Select the global 

best; gbest  from the 
population. 

2.3 Velocity Update.  Apply 
velocity and position 
updates to each agent 
using Eqs. (13) and (14). 

2.4 Stall. If after several 
successive attempts the 
algorithm does not improve 

on gbest , go to Step 3 
otherwise go to Step 2. 

 
3. NM method. Simplex generated 

around initial point given 

by gbest . 
3.1 Fitness Function. Evaluate 

each simplex point 
function using Eq. 
(8).Order simplex points 
from lowest function value 

( )
1

kf  to highest
( )

1
k

nf  . 

3.2 NM operators. Compute 
reflection (  ), expansion 

(  ), contraction (  ) or 

shrinkage ( ) according 
to Eqs. (9)–(12). 

3.3 Global update.  If a lower 
global minimum is found 

update position for gbest  
and go to Step 2. 

 
Otherwise continue until some 
termination condition is satisfied. 

 
Figure 2: Hybrid NM-PSO algorithm. 

When NMPSO algorithm fails to improve on the 
current solution after ten consecutive attempts it 
automatically terminates and the best solution is 

saved. The maximum number of iterations is set to 
100 as an additional exit condition. The swarm 
parameters used are: 1 2 2.05c c  with population 

size of 20p  .  Table 3 and Table 4 give the results 

of the minimum variance PI and PID respectively 
for the proposed method. The overall performance 
of the NMPSO search is compared to that of the 
SOS programming method of Sendjaja and Kariwala 
(2009) and MV lower bound (Huang and Shah 
1999). It is worth noting that the proposed NMPSO 
optimisation algorithm provides accurate repeatable 
solutions. Each example shown in Table 2 was 
tested for ten trial runs and the results indicate the 
stability and consistency of the proposed search 
algorithm. The stochastic nature of the PSO is useful 
in determining globally optimal regions within the 
search space whilst the NM provides a finer search 
in locally optimal regions. The proposed algorithm 
is efficient and has the ability to find high quality 
solutions in relatively short times even though the 
algorithm written in MATLAB® has room for 
considerable improvement. 

Table1: Test PC platform specifications. 

Processor 
Intel ® Core™ i5  CPU 650 @ 
3.20GHz 

Motherboard XCPI x64 

RAM 4.00 GB 

Software 
MATHWORKS®MATLAB®  7.10.0  

(R 2010a) 

 

4.2 Discussion of Results 

The proposed method is applied to find the lower 
bound of the minimum variance PI/D for several 
examples taken from literature. Some significant 
observations for the examples are given below. 

1. With regards to the results provided in Table 3 
it is surprising to note that example 3 took the 
shortest time (29.9 seconds) to solve even 
though the process transfer function has the 
largest dead time from the set of experiments.  
Overall results for the time taken indicate that 
PID controller's takes longer time to solve. 
This is expected since the PID controller adds 
another dimension to the problem as an 
additional variable ( 3k ) is involved. 
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Table 2: Simulation models used in the experiments. 

Example g  h  

1 
50.2

11 0.8

q

q




 

1
1 1(1 )(1 0.4 )q q  

 

2 

12

1

0.08919

1 0.8669

q

q





 
1

0.08919

1 08669q
 

3 

28

1

0.5108

1 0.9604

q

q





 
1

0.5108

1 0.9604q
 

4 
6

11 0.8

q

q




 

1

1 1 1

1 0.6

(1 0.5 )(1 0.6 )(1 0.7 )

q

q q q



  


  

 

5 
6

11 0.8

q

q




 

1

1 1 1 1

1 0.2

(1 )(1 0.3 )(1 0.4 )(1 0.5 )

q

q q q q



   


   

 

6 
6

11 0.8

q

q




 

1

1 1 1 1

1 0.6

(1 )(1 0.5 )(1 0.7 )(1 0.6 )

q

q q q q



   


   

 

7 
5

1

0.1

1 0.8

q

q




 1 1 1

0.1

(1 )(1 0.3 )(1 0.6 )q q q    
 

8 
3

1

0.1

1 0.8

q

q




 1

1

1 q
 

9 
6

1

0.1

1 0.8

q

q




 1 1

0.1

(1 )(1 0.7 )q q  
 

10 
3

1

0.1

1 0.8

q

q




 

1 2

0.001

(1 )(1 0.2 )q q  
 

 

2. The proposed algorithm gives solutions that are 
in agreement with the SOS programming 
method of Sendjaja and Kariwala (2009) for 
all the cases shown in Table 5. The 
dimensionless values provided in Table 5 
represent the closed loop variance. As noted 
by Sendjaja and Kariwala (2009) the 
controller structure imposes severe 
limitations on controller performance as 
shown in examples 6, 7 and 9 for PI control. 
This indicates for these cases that the MV 
lower bound presents a highly optimistic 
benchmark for a low order PI control 
structure.  There are no controller structure 
limitations for examples 2, 4 and 10 
operating under PID control as there is little 
difference between MV lower bound and 
PID-MV for these examples. 

3. Improved achievable lower bounds are given by 
the proposed NMPSO algorithm when 
compared to the SOS programming method 
for examples 3 and 6 for PI control and 
examples 1, 7, 8 and 9 for PID control. 

Table 3: NMPSO simulation results for minimum variance 
PI controller. 

Example 1k  2k  Iterations 
Time taken  

(s) 

1 1.1175 -0.9891 23 49.49 

2 0.3246 -0.3257 19 34.05 

3 0.0333 -0.0334 19 29.90 

4 0.0248 -0.0250 19 45.96 

5 0.2101 -0.1880 31 78.03 

6 0.2499 -0.2274 19 65.70 

7 2.8056 -2.5376 27 64.77 

8 3.4225 -2.9821 35 59.52 

9 2.2861 -2.0495 35 67.91 

10 3.3609 -2.9233 24 51.97 

Table 4: NMPSO simulation results for minimum variance 
PID controller. 

Example 1k  2k  3k  Iterations 
Time 
taken  

(s) 

1 2.8724 -4.4735 1.7873 47 114.56 

2 1.8485 -3.4099 1.5627 47 110.00 

3 0.0367 -0.0369 0.000 101 135.01 

4 0.1383 -0.2598 0.1220 61 168.31 

5 0.7382 -1.2336 0.5322 47 162.55 

6 0.8743 -1.4796 0.6487 68 236.25 

7 8.4515 -13.869 5.9375 62 161.29 

8 6.6043 -9.4092 3.4838 54 100.23 

9 8.5550 -14.389 6.295 83 187.76 

10 6.2277 -8.7216 3.1414 59 124.83 

5 CONCLUSIONS 

A hybrid optimization routine which combines the 
efficient global and local search capabilities of PSO 
and NM respectively has been proposed. The 
methodology was used to determine achievable 
lower performance bounds for restricted structure 
PI/D controllers. It is obvious that the achievable 
PI/D performance bounds can be employed in a 
performance monitoring context to evaluate the 
performance of PI/D controllers operating in real-
world control loops. Future work will include 
streamlining the hybrid NMPSO algorithm for use 
on real-world process control loops. This would 
include the use of a suitable online system 
identification procedure to work in conjunction with  
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Table 5: Performance comparison of proposed methodology for minimum variance PI and PID controllers. 

Example 
MV 

(Huang and 
Shah, 1999) 

PI controller 
SOS programming method 

(Sendjaja and 
Kariwala,2009) 

(lower bound, upper bound) 

PID controller 
SOS programming method 

(Sendjaja and 
Kariwala,2009) 

(lower bound, upper bound) 

Proposed 
NM-PSO method 

(PI-MV) 

Proposed 
NM-PSO method 

(PID-MV) 

1 2.9427 (3.5154, 3.5186) (3.0730, 3.0730) 3.5179 3.0679 

2 0.0310 (0.0313, 0.0314) (0.0310, 0.0310) 0.0314 0.0310 

3 3.0112 (3.1703, 3.1706) (3.0492, 3.0495) 3.1502 3.0493 

4 3.4004 (3.4408, 3.4408) (3.4065, 3.4065) 3.4399 3.4059 

5 11.9528 (17.7044, 17.7477) (13.6341, 13.8243) 17.7414 13.7207 

6 58.3406 (122.4089, 123.6037) (83.5605, 89.6983) 117.4932 85.9108 

7 0.2978 (0.5856, 0.5884) (0.4278, 0.4278) 0.5608 0.4166 

8 3.0000 (3.7002, 3.7050) (3.2093, 3.2093) 3.7030 3.1923 

9 0.3144 (0.5949, 0.5968) (0.4288, 0.4288) 0.5964 0.4199 

10 0.0023 (0.0027, 0.0027) (0.0024, 0.0025) 0.0027 0.0024 

 

the proposed algorithm to determine minimum 

variance PI/D controllers. 
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