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Abstract: Self-organizing multi-agent systems provide a suitable paradigm for agents to manage themselves. We 
demonstrate a robust, decentralized approach for structural adaptation in explicitly modelled problem 
solving agent organizations. Based on self-organization principles, our method enables the agents to modify 
their structural relations to achieve a better completion rate of tasks in the environment. Reasoning on 
adaptation is based only on the agent’s history of interactions.  Agents use the history of tasks assigned to 
their neighbours and completion rate as a measure of evaluation. This evaluation suggests the most suitable 
agents for reorganization (Meta-Reasoning). Our Selective-Adaptation has four different approaches of 
Meta-Reasoning, which are 1) Fixed Approach, 2) Need-Based Approach, 3) Performance-Based Approach, 
and 4) Satisfaction-based Approach along with a Reorganization approach, which needs less data but makes 
better decisions. 

1 INTRODUCTION 

A multi-agent system consists of interacting 
intelligent agents and their environment. Agents can 
be software agents, robots, or humans. Multi-agent 
systems solve problems that are difficult or 
impossible for an individual agent to solve alone. In 
multi-agent systems, interaction between agents is 
one of the important factors, which allows them to 
find each other and exchange information.  

Social interaction and success in jointly solving 
problems determines a desirable structure for the 
organization of agents. The task environment 
contains a stream of tasks requiring some services, 
and agents need to provide these services by 
providing required resources. The number of links 
and the specific connections are designed to 
minimize communication overhead and facilitate 
task completion.   

Autonomous systems, capable of de-centralized 
self-organization, have been proposed as a solution 
for managing complex computing systems that must 
deal with node failure and dynamic problem 
characteristics. Responding to their own history of 
interactions, individual agents exhibit the ability to 
modify the organizational structure. Our adaptation 
method is based on the agents forging and dissolving 
relations with other agents. Agents use the history of 
tasks assigned to their neighbours and the degree of 
successful completion of these tasks as a measure of 

evaluation. The system evaluates existing links for 
possible increase or decrease in the overall 
performance. After finding the target neighbours for 
reorganization, the agent may decide to change the 
two-way relationship with them or replace the target 
agent with another agent for probable improvement.  

Various approaches promote self-organization, 
like reward-based mechanisms for selfish agents, 
stigmergy (indirect coordination through the 
environment), reinforcement mechanisms, and 
cooperative actions of agents (Kota, 2008). Each of 
these approaches has advantages and disadvantages, 
but none of them directly deals with organization 
structure. Self-organized systems are decentralized, 
without any external control. Such autonomic 
systems are more robust as there will not be a single 
point of failure. 

2 PREVIOUS WORK 

Much research exists in self-adapting multi-agent 
systems (Alberola, 2012, Dayong, 2012, Zheng-
guang, 2006). In (Barton, 2008), the network 
structure is composed of agents (having a given skill 
set) and connections between agents.  Tasks 
requiring a set of skills are introduced into the 
system. Agents communicate with other agents 
within n network links in their surrounding network. 
This surrounding network is the agent’s local 
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neighbourhood. A set of agents form a coalition to 
complete each task.  In this model, all completed 
tasks have equal utility, while uncompleted tasks 
have zero utility. Agents attempt to reorganize 
themselves to improve the utility of the system.  
Barton evaluates several approaches in this work.  
The egalitarian approach chooses to establish 
connections to agents, which have relatively few 
connections. The inventory approach connects 
agents possessing a needed skill in the 
neighbourhood.  The structural approach seeks to 
connect to agents with the largest number of 
connections. They examine the behaviours of 
different mentioned methods (Barton, 2008).   This 
differs from our model in that a tree of SIs is not 
considered, and the model permits only one kind of 
relationship between agents.  

  In (Miralles, 2009), the authors structure the 
problem as a set of resources which work together to 
share data.  A separate meta-level is in charge of 
adaptation.  A peer can potentially contact any other 
agent, but typically, it interacts with a small number 
of them.  Agents reorganize in response to changes 
in connection quality or information flow.  Each 
connection is limited in terms of number of units of 
data that can be sent in a time step. 

(Sansores, 2008) present a self-organization rule- 
based approach is used to control the behaviour of 
adapting agents, and reinforcement learning uses 
memory of adaptations.  

Kota et al. (Kota, 2009) represent the task 
environment as a dynamically incoming stream of 
tasks requiring multiple services. There is sequential 
dependency between tasks. Kota represents tasks as 
a tree of service instances (SIs) in which the parent 
SI must be completed before the child SI. The Kota 
model assigns tasks to the agents randomly, and the 
assigned agent utilizes its subordinates, peers and 
acquaintances to accomplish the task. Figure 1 
demonstrates a tree of task dependencies. 

 

Figure 1: Nodes represent a service instance (SI).  Arrows 
represent a dependency relationship. Each SI has a 
provided service and a computational amount. 

A tuple represents the services (skills) required 
and the amount of computation needed for each of 
the five SIs. Since finishing the task requires 
multiple services, agents pass the task between 

themselves in order to complete all of the services 
required. The task is complete when its entire tree of 
SIs has been executed. 

In the Kota work, agents are known to each other 
with three levels of relationship: (a) acquaintance 
(knowing existence, but having no interaction), (b) 
peer (low frequency of interaction) and (c) superior-
subordinate (preferred interaction). The superior-
subordinate relation is an authority relation as it 
depicts the authority held by the superior agent over 
the subordinate agent. The peer relation is present 
between agents who are equal in authority with 
respect to each other. The type of relationship 
between agents determines both the allocation of SIs 
and the amount of information agents know about 
each other. Structure of the organization regulates 
the interactions between agents. Figure2 shows an 
example of the organizational structure of agents. 

 
 

Figure 2: Example organizational structure. 

In the Kota model, every agent has a fixed 
number of services it can provide and a known 
computational power.  Thus, an agent is of the form 
Ax = <sx,cx> where sxS  (S is the complete list of 
services) and cx is the agent’s capacity in terms of 
computational units in a time step. An agent prefers 
to allocate the subtasks to its subordinate agents as 
subordinate agents give priority to tasks assigned by 
the superior. An agent will always try to  execute  an 

 

Figure 3: Process of assigning a task to an agent. 

SI if it contains the service and available 
computational power.  If it is not possible for the 
agent to execute that SI, it  can delegate  it to one of  
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its neighbours. Figure 3 shows the process of 
assigning a SI.  

Each agent can respond to only one request per 
time-step. Therefore, agents store requests in a 
waiting queue.  Requests in a waiting queue are 
considered in a first-come, first-served basis. Each 
task has a deadline associated with it. If the agent 
spends time on a task that is not finished, it gets 
negative utility equal to the utility of the subtask. If 
it does not attempt the task, there is no penalty as 
there was no wasted effort. Also, each task has an 
estimated amount of required time. The utility of the 
task decreases if it takes more than the estimated 
time. Equation1 shows the relationship between 
utility and time. Here t stands for time.  

 

݀݁݊ݎܽ݁							 ௧ܷ௔௦௞ ൌ ௧௔௦௞ݕݐ݈݅݅ݐܷ݀݁݊݃݅ݏݏܣ
െ ൫ݐ௧௔௦௞

௧௔௞௘௡ െ ௧௔௦௞ݐ
௥௘௤௨௜௥௘ௗ൯					  

(1) 

 

When an agent is consistently looking for 
another agent to perform a given service, it is 
motivated to reorganize to form a direct relationship 
with an agent providing that service. This process is 
called adaptation. This process seeks continuously 
to improve the profit of the system. Agents can 
adapt only locally and change only their own links. 
Though based on local adaptation by the agents, the 
method should lead to the benefit of the organization 
as a whole. The Adaptation process consists of two 
main parts, named Meta-Reasoning and 
Reorganization. Meta-Reasoning asks: ‘How many 
agents should be considered by agentx for 
reorganization?’ and ‘Which agents should be 
selected among its neighbours?’ The number of 
agents considered for reorganization at time t, kt, is 
computed as showed in Equation2. 

݇௧ ൌ ݔܽ݉

ە
ۖ
۔

ۖ
ۓ
1
ሺܮ௫ െ ݈௫ሻ

ܴ

௫ݏݐݍܿܽ ∗
݄ܿܽ݊݃݁݀௫,௧ିଵ

݇௧ିଵ

								 (2) 

In this Equation, Lx is the computational capacity 
of the agentx, lx is the current load on the agent and 
R is the reorganization load coefficient, denoting the 
amount of computational units consumed by an 
agent while changing a single relation. acqtsx 
represents the number of acquaintances of agentx, 
changedx,t−1 denotes the number of changed relations 
of agentx in the previous iteration and kt−1 denotes 
the k value used in the previous iteration. Based on 
Equation 2, at least one of the agentx’s neighbours is 
considered for reorganization in each iteration. The 

second term, which is 
ሺ௅ೣି௟ೣሻ

ோ
, indicates that 

reorganization can consume the remaining 

computational capacity of agentx in current iteration, 
regardless of the need for that much reorganization. 

The third term, which is ܽܿݏݐݍ௫ ∗
௖௛௔௡௚௘ௗೣ,೟షభ

௞೟షభ
, 

estimates the number of relations which should be 
considered for reorganization based on the history of 
past iterations.  

After finding the value of kt, agentx randomly 
picks ݇௧ agents from the list of its neighbors 
including its peers, subordinates and acquaintances 
for reorganization. In the Reorganization part of the 
Kota method, agentx evaluates its relations with 
considered agents in the Meta-Reasoning part. This 
evaluation considers changing those relations to 
another type of relation in order to increase profit. 
Figure 4 shows the possible actions between two 
agents, dependent on the current relationship. Then 
agentx evaluates the utility of each of the possible 
actions. After calculating the utility of each action, 
agentx selects the best reorganization action. 

 

Figure 4: Diagram of Possible Actions. 

One of the deficiencies of the Kota method is the 
lack of a suitable task scheduling algorithm; tasks 
are assigned to agents randomly. Randomly 
assigning tasks increases the load on the assigned 
agent when it cannot provide needed capabilities. 
Figure 3 shows the process of finding a capable 
agent in such a case. This approach adds 
communication cost to the system and keeps the 
assigned agent busy finding a capable agent. 
Therefore, an intelligent way of task scheduling is 
needed in order to improve the profit and reduce the 
cost. Other deficiencies include randomly choosing 
neighbours for reorganization and complex method 
for evaluating possible actions. 

3 OUR MODEL 

In this research, we adopt the structural constraints 
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 of the Kota research (Kota, 2009), but focus on the 
deficiencies of its model. In our method, Selective-
Adaptation, each agent selects agents among its 
neighbours based on different approaches. The 
adaptation part of Selective-Adaptation method is 
composed of two parts which are Meta-Reasoning 
and Reorganization. The relation of an agent and its 
neighbours is based on the two-way task passing. 
Most of the time agents utilize the capabilities from 
their neighbourhood subordinates and peers; 
however, there are some cases in which agent’s 
needs are not fulfilled using its peers and 
subordinates. Therefore, an agent passes the request 
back to its superior. Its superior is in charge of 
finding a suitable agent for this request. Figure 3 
summarizes the task passing mechanism; it shows 
how an agent and its neighbours cooperate in 
executing different parts of tasks. 

We term service-providing agents (which are not 
currently connected as a peer or superior/subordinate) 
as outsideHelpers. Since the goal of adaptation is 
promoting relations with agents who are useful to it, 
we need to consider outsideHelpers. In this model, we 
use the term neighbours for peers and subordinates of 
agentx. In our system, an agent’s activities includes 
executing tasks, management (communications, 
evaluation of neighbours, task passing and updating 
neighbour information) and reorganization. Load 
refers to the computational units used to perform an 
agent’s duties. 

3.1 Meta-Reasoning 

In Meta-Reasoning, each agent determines the 
number of agents from its neighbourhood which 
should be considered for reorganization. 
Determining this number is critical because 
evaluating too many agents wastes the resources of 
the current agent. In addition, the agent needs to find 
out which neighbours to consider for reorganization.  
Meta-Reasoning used in this research is a history-
based process and utilizes different approaches 
namely Fixed approach, Need-Based approach, 
Performance-Based approach and Satisfaction-based 
approach. We discuss these approaches in the 
following subsections. 

3.1.1 Fixed Approach 

In the Fixed approach, agents have an opportunity to 
evaluate their relationship with their neighbours in 
all iterations. Our experiments show that the cost of 
reorganization is one of the most important factors 
that affect profit of the system.  In order to increase 
the profit, each agent needs the most useful 

neighbours. The best neighbours are the ones that 
result in a higher utility for the system. In order to 
make reasonable decisions about reorganization, the 
reorganization load coefficient, R, has been defined 
(Kota, 2009). Evaluating many relationships might 
exhaust the resources of the agent. Thus, agentx has 
to restrict the set of its neighbours to consider for 
reorganization. Agent resources include 
computational capacity (which is used in each cycle 
and does not roll over to next iteration) and 
computational power. These types of resources are 
distinct.  Computational capacity must be consumed 
in each iteration or it is lost.  Computational power 
represents a separate resource which can be saved 
between iterations (like gasoline for a car). Agents 
are recharged with computational power every d 
time steps.  Agents use the recharge interval to 
estimate how much of the resource can be consumed 
in any iteration.  Since fuel costs are not negligible, 
the use of fuel should be wisely monitored. This 
amount is kept in InitialComp variable. Since agents 
execute their assigned tasks first in each iteration 
and then they go to the reorganization phase, the 
remaining computational capacity of each iteration 
after executing tasks can be used on reorganization. 
By dividing the amount of remaining computational 
power by R, the number of agents that can be 
considered for reorganization is determined and 
stored in kt. Equations 3 and 4 show the process of 
determining kt. In these equations, i stands for 
current iteration and RemComp indicates the 
remaining power of iteration. 

௜݌݉݋ܥܴ݉݁										 ൌ ௜݌݉݋ܥ݈ܽ݅ݐ݅݊ܫ െ  ௜         (3)݀ܽ݋݈
										݇௧ ൌ ௜݌݉݋ܥܴ݉݁ ܴ																											⁄ (4) 

 

The number of agents to be considered for 
reorganization, kt, should be divided between 
neighbours and outsideHelpers of agentx. For this 
division, we use the fraction wf to determine the 
proportion of agents in each category based on 
Equation 5 and 6.   

ݏݎ݁݌݈݁ܪݐݑܱ݉ݑ݊ ൌ ݉݅݊ ൜
ሻݎ݁݌݈݁ܪ݁݀݅ݏݑ݋ሺݐ݊ݑ݋ܿ

w୤ ∗ numAgents
    (5) 

ݏݎ݋ܾ݄݃݅݁ܰ݉ݑ݊ ൌ k୲ െ  (6)    ݏݎ݁݌݈݁ܪ݁݀݅ܵݐݑܱ݉ݑ݊

We found that the system reached highest profit 
when wf=0.3. Thus, 30 percent of agents we consider 
for reorganization are from outsideHelpers and the 
rest are agentx’s neighbours. Figure 5 shows the 
pseudocode of the Fixed approach algorithm. The 
strategy of agentx in selecting the most suitable 
outsideHelpers and most suitable neighbours is 
different. Agentx calculates earned utility of its 
neighbours and ranks them by this attribute. The 
more utility they have earned, the better rank they 
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have. Agentx tries to replace some of its inefficient 
neighbours, but makes a stronger link with 
acquaintances which were helpful in the past. 

Fixed Approach 
1. kt=agentx. calcNumAgents(); 
2. numOutsideH= agentx.calcNumOutsideH(wf); 
3.numNeighbors=kt- numOutsideH; 
4.OH= agentx.findBestOutsideH(numOutsideHelper); 
5.N=agentx.findWorstNeighbors(numNeighbors); 
6.AgentsToConsider= agentx.combine(OH,N); 

Figure 5: Pseudocode of Fixed-Approach. 

3.1.2 Need-Based Approach 

In the Need-Based approach, at each iteration, agentx 

estimates the number of links it needs to reorganize 
using two parameters from past iterations: 1) the 
number of relations considered for reorganization, 
and 2) the number of relations changed in past 
iterations. By dividing the number of relations 
changed by the number of relations considered, 
agentx can estimate how many of its past predictions 
have been accurate. Therefore, kt estimates the 
number of agents which need to be considered in the 
current iteration (t) based on Equation 7. After 
deciding the number of agents to be considered, (kt), 
agentx needs to divide kt between its neighbours and 
outsideHelpers using equations 5 and 6. 

݇௧ ൌ
∑ ஼௛௔௡௚௘ௗோ௘௟௔௧௜௢௡௦೔
೟షభ
೔స೟ష೓

∑ ஼௢௡௦௜ௗ௘௥௘ௗோ௘௟௔௧௜௢௡௦೔
೟షభ
೔స೟ష೓

∗  (7)   ݏݎ݋ܾ݄݃݅݁ܰ݉ݑ݊

By testing different values for wf, the system reaches 
the highest profit where wf=0.3. Neighbours and 
outsideHelpers get their rank based on their earned 
utility for agentx. Figure 6 shows the pseudocode of 
this approach. 

NeedBased Approach 
1.kt=agentx. calcNeedBasedNumAgents(); 
2.numOutsideH= agentx.calcNumOutsideH(wf); 
3.numNeighbors=kt- numOutsideH; 
4.OH= agentx.findBestOutsideH(numOutsideH); 
5.N=agentx.findWorstNeighbors(numNeighbors); 
6.AgentsToConsider= agentx.combine(OH,N); 

Figure 6: Pseudocode of Need-BasedApproach. 

3.1.3 Performance-Based Approach 

In the Performance-Based Approach, we utilize a 
measure of performance to decide which agents to  
consider for reorganization. Each task in the system 
has an assigned utility. When an agent is assigned a 
task, this agent can earn the whole utility of the task. 
Therefore the possible utility agentx can earn would 
be sum of the utilities of all tasks it has been 

assigned as shown in Equation 8. Sometimes agents 
cannot earn that amount of possible utility due to the 
features like deadline violation and slowness in 
completing tasks.  The amount of utility earned in 
comparison with the possible utility available can be 
a good measure of performance for agents.  
 

ݕݐ݈݅݅ݐܷ݈ܾ݁݅ݏݏ݋݌	 ൌ 	∑ ொ	∈		ሻ௧௔௦௞݇ݏܽݐሺݕݐ݈݅݅ݐܷ݀݁݊݃݅ݏݏܣ 		(8) 

݁ܿ݊ܽ݉ݎ݋݂ݎ݁݌ ൌ
∑ ௘௔௥௡௘ௗ௎௧௜௟௜௧௬೔
೟షభ
೔స೟ష೓

∑ ௣௢௦௦௜௕௟௘௎௧௜௟௜௧௬೔
೟షభ
೔స೟ష೓

          (9) 
 

Equation 9 shows the measure of performance. 
for each agent based on its history of earning utility. 
In this equation i stands for any previous iteration, 
and t indicates current iteration. The history variable, 
h, indicates the number of past iterations to consider 
and is in the range of [1, t-1], where h=t-1 considers 
the history of all iterations so far, and h=1uses only 
the history of the last iteration. In this approach, 
agentx, finds the performance for all of its 
neighbours and outsideHelpers. Then agentx selects 
wi ratio of its worst neighbours in terms of 
performance along with wo ratio of its best 
outsideHelpers in terms of their performance. For 
setting the values of wi and wo, we tested the system 
with different values and compared the results. In 
this case, system reaches highest profit in wi=0.25 
and wo=0.15, which means that 25 percent of least 
efficient neighbours of agentx along with 15 percent 
of best outsideHelpers have been selected. If agentx 

does not have any outside helpers, it just considers 
its neighbours for reorganization. Figure 7 shows the 
Performance-Based approach. 

Performance-Based Approach 
1.s1=agentx.leastEffecient(neighbors,wi); 
2.if count(outsideHelpers)>0 
3.           outsideH= agentx. findOutsideHelpers(); 
4.           s2=agentx.mostEffecient(outsideH,wo); 
5.           agentsToConsider= agentx.combine(s1,s2); 
6.else 
7.          agentsToConsider= s1; 

Figure 7: Pseudocode of Performance-Based Approach. 

3.1.4 Satisfaction-Based Approach 

In the Satisfaction-Based approach, agents decide on 
the adaptation based on satisfaction. As we 
mentioned earlier, the relation of an agent and its 
neighbours is based on subtask passing. Each agent 
is satisfied with a relation when the corresponding 
agent is able to service most of the agent’s requests; 
the stronger neighbourhood in terms of providing 
requests, the more satisfied agent is. When an agent 
accepts a subtask request, it means that it has the 
potential to accomplish that subtask. To compare 
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agents in the neighbourhood, we define a measure of 
satisfaction as shown in Equation 10.  
 

݊݋݅ݐ݂ܿܽݏ݅ݐܽݏ ൌ
∑ ௡௨௠	௣௥௢௩௜ௗ௘ௗ	௥௘௤௨௘௦௧௦೟షభ
೔స೟ష೓

∑ ௡௨௠	௥௘௤௨௘௦௧௦೟షభ
೔స೟ష೓

   (10) 

 

In this equation, i stands for iteration and t 
indicates current iteration. Variable h is in the range 
of [1, t-1] as before. In satisfaction based approach, 
agentx calculates the satisfaction of all its neighbours 
and its outsideHelpers. Based on this measure, 
agentx selects wi ratio of its least satisfactory 
neighbours to be considered for reorganization. If 
there are any outsideHelpers, agentx needs to select 
wo ratio of its most satisfactory outsideHelpers for 
reorganization too. Values of wi and wo are set same 
as Performance-Based approach. Figure 8 illustrates 
the pseudocode this approach. 

Satisfaction-Based Approach 
1.s1=agentx.leastSatisfactory(neighbors,wi); 
2. if count(outsideHelpers)>0 
3.         outsidH= agentx. findOutsideHelpers(); 
4.         s2=agentx.mostSatisfactory(outsidH,wo); 
5.         agentsToConsider= agentx.combine(s1, s2); 
6. else 
7.          agentsToConsider= s1; 

Figure 8: Pseudocode of Satisfaction-based Approach. 

For all approaches, we need to set the value of h. 
Our experiments show that considering total number 
of past iterations (h=t-1) is too much history and 
considering the history of last iteration (h=1) may 
give a little insight about the past. We tested 
different values for h and our experiments show that 
in h=10 system reaches highest profit.  

3.2 Reorganization 

The second part of our Selective-Adaptation 
approach is Reorganization. Reorganization enables 
an agent to change its relations with some of its 
neighbours (kept in AgentsToConsider list) which 
are identified in the MetaReasoning step.  

In this phase, agentx evaluates all of the possible 
types of relation for each member of 
AgentsToConsider and changes the relations in order 
to achieve a higher utility. For each agenti in this list, 
agentx takes the best action among possible actions 
based on the current relationship and a measure 
computed from some evaluation functions. Figure 4 
demonstrates possible actions for two agents based 
on their current relation. Figure 9 shows the 
pseudocode of the reorganization part. 

Reorganization changes the current relation type 
Rc to a new relation type Rn. Note that if the 

 
 

Reorganization Part 
1.for agenti in agentsToConsider 
2.     possible=agentx.findPossibleActions(agenti); 
3. desiredAction=agentx.evaluate(possible); 
4. if desiredAction !=no-Action 
5. agentx.takeAction(agenti, desiredAction); 

 

Figure 9: Pseudocode of Reorganization part. 

selected action is “NoAction” then Rn =Rc (which 
means that relation will not change and this action 
does not have utility and cost). The most important 
part of the reorganization approach is evaluating the 
utility of possible actions and choosing the best one.  

Kota method’s evaluation function uses 
parameters like:1) the number of subtasks assigned 
by agentx to agenty, 2) the number of subtasks 
delegated by agentx to agenty, 3) the total number of 
time-steps that agentx existed, 4) the number of time-
steps that agentx and agenty had a superior-
subordinate relation or peer relationship, 5) the 
number of time-steps out of the total time that agentx 

had waiting tasks, 6) the total number of subtasks 
agentx assigned to other agents and 7)the 
communication cost due to the delegations from by 
agentx to agenty. Kota method’s evaluation function 
is overly complex. Selective-Adaptation needs less 
data but makes good decisions.  

The profit of an agent from the action actd is 
calculated using Equation 11. Based on Equation 11, 
the profit of each action consists of two terms, 
Utility and Load. This equation is used for both 
forming and removing a relation. In forming a 
desirable relation, the sign of Utility is positive. As 
any new relation adds some load to the agent, the 
sign of Load is negative. The signs are reversed in 
the case of removing a relation. 

 

ௗሻݐሺܽܿݐ݂݅݋ݎܲ				 ൌ ݕݐ݈݅݅ݐܷ ൅  (11)               ݀ܽ݋ܮ

௙௢௥௠௜௡௚ோ௘௟௔௧௜௢௡ݕݐ݈݅݅ݐܷ				 ൌ
௎ೃ೙ା௎ೌೡ೒ಿ೐ೢಲ೒೐೙೟

ଶ
      (12) 

 

In forming a relation, to estimate the utility for 
agentx in the process of changing the relation with 
agenty (from Rc to Rn), two terms are used: 1) the 
average utility agentx earned from agents which were 
in the same relation type as Rn which is called ܷோ೙ 
and 2) the average utility agentx earned from agenty 
which is called	ܷ௔௩௚ே௘௪஺௚௘௡௧. Equation 12 shows 
this approach. For example, if agentx wants to make 
a peer relation with agenty, it calculates the average 
earned utility of its peers so far (ܷோ೙) along with the 
average utility earned form agenty (ܷ௔௩௚ே௘௪஺௚௘௡௧). 
This equation says that for having relation type (Rt) 
with agent (ay), the experience of agentx from that 
type of relation (Rt) and the history of functionality 
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of agent (ay) affect the decision. In a case of 
removing a relation, for calculating Utility, we use 
the Equation 12 too, but the value of  ܷ௔௩௚ே௘௪஺௚௘௡௧ 
will be set as zero. The second term of Equation 11 
is Load and includes different types of loads as 
shown in Equation 13. M is the management load of 
having a new relation, C is the communication cost 
and R is the reorganization load coefficient. 

 

ݐ݊݁݃ܣ݄ܿܽܧܱ݊݀ܽ݋ܮ						 ൌ ܯ ൅ ܥ ൅ ܴ	          (13) 

We used the general term M and C in Equation 
13, however, the management load and 
communication cost depends on the type of relation 
between two agents. Each agent estimates the 
amount of M and C based on its history of this type 
of relation if known. Table1 summarizes all the 
loads that agentx (ax) experiences in changing a 
relation with agent ay. 

Table 1: Loads and Costs of ax related to different 
relations. 
 

 M C R 

ax is peer of ay Mpeer Cpeer Rpeer 

ax is subordinate of ay - Csubordinate Rsubordinate

ax is superior of ay Msuperior Csuperior Rsuperior

3.3 Task Scheduling 

One of the deficiencies of the Kota method is its 
inefficient task scheduling algorithm as it assigns 
tasks to agents randomly. Random task assignment 
increases the load on the assigned agents when they 
are not capable. In this case, the assigned agent 
needs to go to the process of finding capable agent 
as depicted in Figure3.  

Task Schedulling 
1. CCList=findCompCapacityAgents(); 
2. QLList=findQueueLengthAgents(); 
3. SSList=findServicesSimilairity(Task); 
4. suitableAgent=findSuitableAgent (CP,QL,SS); 

Figure 10: Pseudocode of Task Scheduling Approach. 

Random assignment also adds communication 
cost to the system and keeps the responsible agent 
busy finding a capable agent among its neighbours. 
It wastes resources which the agent could use on 
executing tasks. Therefore, an intelligent way of task 
scheduling is crucial. In Selective-Adaptation, the 
system tries to find the most suitable agent for task 
assigning. Pseudocode of Task Scheduling is 
outlined in Figure 10.To find the most suitable agent 
for each task, we consider: 1) computational 
capacity of agents, 2) queue length of agents (how 

busy the agents are) and 3) similarity of services 
(how many of the services needed for the task can be 
provided by the agent).The most desirable agent is 
the one which has the highest computational 
capacity and similarity of services. In addition, it 
needs to have a small queue length because if the 
system assigns a task to a busy agent, the task may 
wait a long time for execution. Since the goal of the 
system is to reach a higher profit, wasting time in the 
queue while there are other agents in the system 
which can execute the task is not reasonable. The 
length of the queue is determined by the summation 
of the cycles required of each task in the queue. 
Finding the most suitable agent is the duty of the 
findSuitableAgent function in line 4 of the 
pseudocode depicted in Figure 10. This function 
aims to find an agent which is the best based on the 
rank of Equation 14. 
 

௜݇݊ܽݎ ൌ ଵߙ ∗ ௜ܥܥ ൅ ଶߙ ∗ ௜ܮܳ ൅ ଷߙ ∗ ܵ ௜ܵ     (14) 

In the Equation 14, CC stands for computational 
capacity of each agent, QL indicates queue length 
and SS stands for similarity of services. An agent 
which gets the highest rank will be selected as the 
most suitable agent. Our experiments reach the 
highest profit when these terms had an equal effect 
  .(3 ߙ =2 ߙ =1 ߙ)

3.4 System Evaluation  

We evaluate the effectiveness of models based on 
the performance of their organization based on 
Profit, which is the summation of the profits of all of 
the individual agents. We examine the amount of 
profit per iteration using Equation 15 in order to 
determine if any improvement is achieved. Thus, for 
finding the profit we need to compute the amount of 
utility has been earned and total cost of that 
iteration. The earned utility by a given agent will be 
found using Equation 1. 

  

Profit ൌ UtilityEarned	– TotalCost           (15) 
 

TotalCost ൌ ReorgCost ൅ CommCost													(16) 

For finding TotalCost, Equation 16 will be used. 
Equation 16 shows that costs in the system include 
reorganization cost and communication cost. 
Reorganization cost includes evaluating 
relationships and changing relationships. The 
process of assigning a task to an agent requires 
sending and receiving messages to/from that agent. 
Therefore, these processes also require inter-agent 
communication which adds to the total cost of the 
organization. 
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4 EXPERIMENTS AND RESULTS 

As we mentioned earlier Selective-Adaptation 
method has four different approaches namely Fixed, 
Need-Based, Performance-Based and Satisfaction-
Based. In our experiments, we show the behaviour 
of each of these approaches, plus Kota method; for 
each one, we averaged the results for 100 
simulations of 1000 iterations. Note that for 
simplicity, we just use the name of approaches of the 
Selective-Adaptation in the figures, so when in a 
figure we write Fixed approach we mean Fixed 
Approach of Selective-Adaptation method. 

4.1 Profit over Time 

As can be seen from Figure 11, results show the 
behaviour of different approaches of Selective-
Adaptation and Kota method.  

 

Figure 11:  Profit of different approaches over Iteration. 

An identical reorganization part is used in all 
Selective-Adaptation approaches; therefore the 
different profit over time comes from their Meta-
Reasoning approaches. It seems that just using 
history of past iterations in the Need-Based approach 
is not effective as this approach has the worst 
performance among all methods. Fixed approach’s 
overall profit is better than Kota because it utilizes 
an intelligent way of selecting neighbours for 
reorganization.  Among all methods of Figure 11 
Performance-Based and Satisfaction-Based 
approaches have better performance. Their 
behaviour proves these approaches exploit more 
applicable Meta-Reasoning approach. Since 
Satisfaction-based approach outperforms all other 
approaches, results suggest that using this approach 
of Selective-Adaptation helps the system reaches 
higher performance. 

4.2 Effect of Task Scheduling 

As discussed Selective-Adaptation method benefits 
from intelligent way of task scheduling. Figure 12 

shows the effect of task scheduling on the various 
Selective-Adaptation approaches. As can be seen, 
the task scheduling leads all of the approaches reach 
higher profits. 

 
 

 
 

 
 

 
 

Figure 12: Effect of task scheduling. From top to bottom 
a)Fixed, b)Need-Based, c)Performance-Based and 
d)Satisfaction-based approaches of Selective-Adaptation. 

4.3 Shocks to the System 

The aim of the adaptation method is to determine  
and apply changes in the organization structure in 
order to improve the performance. Adaptation needs 
to respond to changes in the environment in a self-
organized manner. In order to see the behaviour of 
adaptation facing unpredicted events, we impose 
shocks upon the system. 
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4.3.1 Agent Shock Experiment 

Agents are associated with particular sets of 
services. These sets can be overlapping; that is, two 
or more agents may provide the same service.  
 

 
 

 
 

 
 

 
 

Figure 13: Effect of Agent Shock. From top to bottom 
a)Fixed, b)Need-Based, c)Performance-Based and 
d)Satisfaction-based Approaches of Selective-Adaptation.  

Different tasks require different amounts of time, 
and the load requirement is not uniform; therefore 
agents use a queue to store tasks which are waiting 
for service.  

In our experiment with agent shock, every 200 
iterations 1/5 of the agents are disabled. Because of 
this, disabled agents’ peers and subordinates bear 
more load. They need to distribute disabled agents 
queue among other agents which are capable of 
performing the tasks. After 15 iterations, new agents 

will be added to the system to replace the disabled 
agents. New agents (which need to be incorporated 
into the organization structure) are added as 
acquaintances to all other agents. Figure 13 shows 
the effect of Agent Shock on different methods. As 
we discussed earlier, main goal of adaptation is 
continuously improve the profit of the system. 
Therefore, in these experiments after passing shock 
periods, there are improvements due to adaptation in 
comparison with the case without adaptation. We 
show that adaptation handles unexpected shocks to 
the system and compensates for the perturbations.  

4.3.2 Task Shock Experiment 

Tasks have some patterns in the dependency links 
between the SIs. In this way, the dependencies 
between the SIs may follow some frequent orderings 
(resulting from the dependencies internal to a pattern 
occurring in several tasks). For the shock test, we 
defined four different patterns between tasks. Every 
200 iterations, we change the pattern to see the 
effect of the shock. Each agent creates its 
neighbourhood based on the needed capabilities. In 
the case of changing the pattern, agents must adapt 
to the lack of capability among their neighbours. In 
such a case, the profit of the system decreases as it 
can be seen in Figure14, Agents’ queues become 
longer and all of the agents are busy with passing 
tasks in order to find suitable agents for their 
assigned tasks. After some iterations utilizing 
adaptation, the system compensates for what it lost 
during shock time by making new neighbourhood 
based on the new pattern. Improvements due to 
adaptation are easily distinguishable. As mentioned 
earlier, the difference between various approaches of 
Selective-Adaptation is in the adaptation part. 
Therefore if we disable the adaptation part, all the 
approaches of Selective-Adaptation have the same 
behaviour; Figure 13 and Figure 14 illustrate this.  

5 CONCLUSIONS 

In this paper, we propose a new method of 
adaptation which is called Selective-Adaptation. We 
demonstrate a robust, decentralized approach for 
structural adaptation organizations. Our adaptation 
method is based on the agents forging and dissolving 
relations with other agents. Agents use the history of 
past iterations as a measure of evaluation. This 
method consists of two parts namely Meta-
Reasoning and Reorganization. In the Meta- 
Reasoning, every iteration each agent selects some 
of  its  neighbours   for   reorganization based  on 
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(a)                                                                            (b)    

 
(c)                                                                         (d)

Figure 14: Effect of Task Shock. a)Fixed, b)Need-Based, c)Performance-Based and d)Satisfaction-based Approaches of 
Selective-Adaptation. 

approaches: 1)Fixed approach, 2)Need-Based 
approach, 3) Performance-Based approach, and 4) 
Satisfaction-based approach. After selecting 
neighbours, the agent tries to find all of the possible 
actions between itself and target agent based on the 
current relationship between them. Then, the agent 
evaluates all of the possible actions and selects the 
best one in terms of its estimated utility. This 
method can successfully handle unexpected shocks 
to the system, along with showing higher profit in 
comparison with other existing methods of self-
organization. Possible future work includes 
restricting agents’ resources like the amount of 
memory agents can use for keeping information 
about others and considering network bandwidth. 
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