
A Self-organizing Multi-Agent System for Combining Method Fragments

Noélie Bonjean, Marie-Pierre Gleizes, Christine Maurel and Frédéric Migeon
Institut de Recherche en Informatique de Toulouse (IRIT), Université de Toulouse, Toulouse, France

Keywords: Method Fragments, Adaptive Multi-Agent System, Method Process.

Abstract: Software systems are becoming more and more complex. A common dilemma faced by software engineers
in building complex systems is the lack of method adaptability. However, existing agent-based methodologies
and tools are developed for particular system and are not tailored for new problems. This paper proposes an
architecture of a new tool based on SME for self-constructing customized method processes. Our approach is
based on two pillars: the process fragment and the MAS meta-model. These two elements are both defined
and considered under a specific agent-oriented perspective thus creating a peculiar approach. Our work is
based on the self-organization of agents, making it especially suited to deal with highly dynamic systems such
as the design of an interactive and adaptive software engineering process.

1 INTRODUCTION

The MAS community has been prolific to define
software engineering methods (Bergenti et al., 2004;
Henderson-Sellers and Giorgini, 2005) in order to
guide designers with respect to the wide range of
MAS properties. Facing the numerous methods, a
development team needs help to execute the relevant
process according to the development context which
is defined by the system under study characteristics
as well as the team capabilities and preferences. Our
goal is to provide new tools for designing complex
systems where the method must be adapted to the de-
velopment context.

Coming from Situational Method Engineering re-
search (Brinkkemper et al., 1998; Henderson-Sellers
and Ralyté, 2010), the aim of decomposing processes
into pieces is to adapt the process to the characteristics
of the business problem and to the level of expertise of
engineer teams (Ralyté, 2004). A process can then be
defined by assembling the pieces of methods, called
fragments, in order to suit the context (the situation)
changes. The Agent-Oriented Software Engineer-
ing (AOSE) community contributed to this research
splitting up methods into fragments and providing
precise descriptions of them (INGENIAS1, PASSI2,
ADELFE (Bernon et al., 2005), TROPOS3...).

We present in section 2 the aim of the SCoRe

1http://ingenias.sourceforge.net/
2http://www.pa.icar.cnr.it/passi/Passi/PassiIndex.html
3http://www.troposproject.org/

model (Self-Combined method fRagments) that we
propose and its architecture in section 3 to automat-
ically build a self-adaptive design process where each
fragment is encapsulated in an autonomous agent.
This approach relies on the self-organization of its
agents, making it especially suited to deal with highly
dynamic systems such as the design of an interactive
and adaptive Software Engineering Process (SEP).
Section 4 briefly presents tests and explains the results
obtained. Finally, section 5 describes related works
before concluding.

2 REQUIREMENTS AND
CHARACTERISTICS OF SCoRe

The contribution of the work lies in the self-
adaptive multi-agent system implementation for self-
composition and self-organization of method frag-
ments. This section presents the challenges.

2.1 Adaptation

While the demand for specific, complex and varied
system continues to grow, current methods in the
MAS domain remain limited and sometimes not well
adapted e.g. (Cossentino et al., 2008). The need for
well-defined guidelines that will make the develop-
ment process more efficient and more effective has
become crucial. Currently, there is no single method-
ology that can be uniquely pointed as ”the best”. Until

288 Bonjean N., Gleizes M., Maurel C. and Migeon F..
A Self-organizing Multi-Agent System for Combining Method Fragments.
DOI: 10.5220/0004261402880293
In Proceedings of the 5th International Conference on Agents and Artificial Intelligence (ICAART-2013), pages 288-293
ISBN: 978-989-8565-38-9
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)



now method adjustments to the specific requirements
and constraints are mixed in ”local” adaptations and
modifications of existing one. In order to succeed
in creating good situational methods, i.e., methods
that best fit given situations, fragment representation
and cataloguing are very important activities. In par-
ticular, the fragments (sometimes addressed as pro-
cess fragments, method fragments or chunks) have
to be represented in an uniform way that includes all
the necessary information that may influence their re-
trieval and assembling.

2.2 Fragment Standardisation

Method fragments are first identified by examining
existing methods. These method fragments are made
according to templates defined by repository design-
ers and standardisation working groups 4. Therefore
the choice of fragments granularity relies on design-
ers. According to the Rational Unified Process, meth-
ods are defined following different levels of granular-
ity (phase, activity and step) which is an important
factor. The ”step” level involves a specific and fid-
dly task but also requires perfect knowledge of meth-
ods and long work. This fragmentation is very fine-
grained and provides a greater number of fragments.
This low level of granularity is useless and inaccurate
when the steps are related and interdependent. On
the other hand, the ”phase” level of granularity could
form huge complete fragments. The coarse-grained
granularity promotes the redundancy issue. The du-
plication of activities or steps may occur with high
granularity. By consequences, an activity or step may
be included in different fragments. The risk that this
happens grows up with the level of granularity. In ad-
dition, the assembling possibilities are therefore min-
imized.

2.3 Complexity

Currently, ten AOSE methods are fragmented, each
one composed of approximately twenty fragments.
Such fragments constitute the root constructs of the
method itself and they have been extracted by consid-
ering a precise granularity criterion: each group of ac-
tivities (composing the fragment) should significantly
contribute to the production/refinement of one of the
main artefacts of the method (for instance, a diagram
or a set of diagrams of the same type). Following this
assumption, fragments obtained from different meth-
ods are based on a similar level of granularity.

Besides, to design a process manually means
studying for the compatibility of each fragment with

4http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/

the others i.e. approximately twenty thousand possi-
ble combinations. Although this number can be de-
creased by the knowledge and the know-how of pro-
cess engineers, the work remains long and irksome.
It is why we propose to design the system SCoRe to
self-combine and self-organize fragments.

2.4 User Requirements

In our approach, a new complete process is self-
designed contingent on a situation. A complete pro-
cess enables engineers to visualise all activities and to
have a whole view of the process. SCoRe focuses on
adaptation during process execution. At every step,
the development team is advised by SCoRe on its next
fragment choice according to the running features. If
the features evolve, this advice may therefore differ
from the following fragment initially suggested.

The studied solution is based on the fragments
agentification in order to self-design an adaptive pro-
cess which can deal with the complexity mainly due
to the huge number of fragments. Indeed, a com-
plex system cannot currently be designed without bug
caused by designers. Assisting the designer during
the system utilization would reduce the number of
bugs and make the system most suitable to the cur-
rent situation. The adaptation is therefore required.
As for components assembling, the fragments com-
bination needs features. In our approach, they corre-
spond to MAS Metamodel Elements (MMME). Two
fragments are therefore combined if one produces the
MMME required by another one.

3 ARCHITECTURE OF SCoRe

The general structure of the Self-Combined method
fRagments (SCoRe) proposed is described in this sec-
tion, before detailing the behaviors and the interac-
tions of the agents composing it.

3.1 SCoRe Components

We consider a method process as a set of assem-
bled method fragments which are linked through their
own required or produced MMMEs. Establishing a
method process consists in combining some of the
fragments taking into account the user-defined objec-
tives and knowledge.

The main goal of SCoRe is to suggest a tailored
process. For that, SCoRe learns the context to ap-
ply on fragments, in order to sustain this evolution.
SCoRe acts without relying on a model of the pro-
cesses,i.e. it is only able to take into account the de-

A�Self-organizing�Multi-Agent�System�for�Combining�Method�Fragments

289



signers’ knowledge and objectives, and to observe the
evolution of the running process on which MMMEs
are available, in order to decide which fragments to
add. The best possible running process is therefore
designing according to a context.

3.1.1 Users’ Objectives and Knowledge

In order to design a tailored process, SCoRe requires
some information about the wanted system and about
the users. Actually, these informations enable to se-
lect fragments which make up the suggested pro-
cess. On the one hand, the user has to give his/her
knowledge about the known technologies, methods
and paradigms. On the other hand, the user has to de-
scribe briefly the intended system by defining the field
of application, the phase corresponding to the initial
and final work product and the type of system. Figure
1 shows an example of the both kind of characteristics
but it is not an exhaustive list.

Figure 1: Example of characteristics.

3.1.2 Context

The context is a set of elements external to the activity
of an entity. It describes the environment wherein the
entity evolves. Moreover, the context has an influence
on the process of fragments selection.

In processes under construction, the context is
made up of users’ objectives and knowledge, avail-
able fragments and the elements included in the run-
ning process.

3.1.3 Agents

SCoRe is composed of four distinct kinds of
agents, following a perception-decision-action lifecy-
cle, which cooperate according to the adaptive multi-
agent systems theory described in (Capera et al.,
2003). The basic idea underlying this cooperation
consists, for every agent, in always trying to help
the agent which encounters the most critical situation
from its own point of view.

Figure 2 gives the structure of SCoRe designing
a method process. The different types of agents in-
volved are shown, as well as the links modelling the
existing interactions between them. Actually, SCoRe
is made up of the following agents:
� MAS Metamodel Element (MMME): required

or produced by a Running Fragment, its aim is
to choose which fragment it will be linked to. A
MMME is connected with all the waiting frag-
ment and the Running Fragments which are in-
cluded in the running process and which produce
or consume it.

� Waiting Fragment (WF): its purpose is to inte-
grate its instances (running fragment) in a process
once it is in an adequate situation. They are linked
to the MMMEs and a set of context.

� Running Fragment (RF): it aims at finding its
localization inside the running process. A RF is
linked with the MMMEs encompassed in the run-
ning process that it produces or requires.

� Context (C): related to a fragment, it aims at
evaluating its relevance according to the MMMEs
already involved in the running process and the
users’ objective and knowledge. The context
agent is related to a fragment for which it eval-
uates its relevance to be added in the running pro-
cess.

Figure 2: Example of agents and their relationships in
SCoRe.

3.2 General Behavior of SCoRe

3.2.1 Prerequisite

Some prerequisites are necessary for the execution of
SCoRe. Actually, in order to help the fragments se-
lection in SCoRe, the user has to fill in two forms
about its objectives and its knowledge. Firstly, the
user completes its knowledge that will be mainly used

ICAART�2013�-�International�Conference�on�Agents�and�Artificial�Intelligence

290



to select fragments. Secondly, the user characterizes
the wished system. From the ticked fields, the initial
and final MMMEs are extracted. Actually, according
to user’s knowledge and the initial and final phase se-
lected, MMMEs are included in the running process
by SCoRe.

3.2.2 Starting of the Running Process
Construction

When the user provides the prerequisite items, Wait-
ing Fragment agents and their Context agents are cre-
ated. They know each other; however the Waiting
Fragment don’t know the others Waiting Fragment,
and their associated Context don’t know each others.

Besides, the MMMEs corresponding to users’
problem are created with the acquaintance of the
available Waiting Fragments. They are then included
in the running process. The construction of the run-
ning process starts therefore with the MMMEs. These
MMMEs are said initial and final. While a MMME
aims at being linked to at least two fragments, i.e. one
which produces it and one which consumes it, an ini-
tial, respectively final, MMME aims at being linked
to at least one fragment which consumes it, respec-
tively produces it. The initial and final MMME start
the running process construction by interacting with
all the waiting fragments.

3.2.3 Running Process Construction

As it is shown in figure 2, an agent communicates
as follow. The first agent interactions correspond to
the initial and final MMME looking for a fragment.
When a waiting fragment receives a message from a
MMME agent, it solicits their own contexts. The con-
text self-evaluates itself. Then it answers by giving its
relevance to the waiting fragment which sends it to the
MMME in turn. According to the different answers,
one of the requesting MMME selects a waiting frag-
ment. The selected waiting fragment is then ready to
create a running fragment. The created running frag-
ment is added in the running process. Being related to
input and output MMMEs, when a running fragment
is added in the running process, it links itself to the
MMMEs already present in the running process. If
one of its MMMEs is missing, the running fragment
creates it. Then, the created MMME agent is added in
the running process. The MMME agents request the
waiting fragment agents until to be satisfied.

Next sections will provide a more detailed de-
scription of these agents behaviors and interactions.

3.3 General Behavior of the Agents

An agent that intervenes in an AMAS is composed
of different parts that produce its behavior: skills,
aptitudes, the interaction language, world represen-
tations, Non Cooperative Situations, and criticality
and/or confidence.

For an agent, criticality represents the degree of
non-satisfaction of its own goal. It enables an agent to
determine the relative difficulty of agents in its neigh-
borhood. Evaluation methods and calculation of the
criticality are specific to each type of agent. The con-
fidence of an agent is an internal measure that pro-
vides information on the reliability of the decision on
actions intended.

These notions guide the SCoRe agents behavior
and will be presented in the following subsections.

3.3.1 The MMME Agents

The MMME agents represent the links between run-
ning fragment agents. Their individual goal is to be
incorporated in the running process. The MMMEs
behavior is represented by an automaton with two
states: non incorporated and incorporated. The non
incorporated state corresponds to a MMME linked to
at least one running fragment which respectively pro-
duces or consumes it. In this state, it is looking for
a relevant fragment to which it can be linked by re-
questing all waiting fragments. The relevant waiting
fragments answer it by giving their confidence. The
confidence of the waiting fragment agent provides in-
formation on its reliability proposition. The most rel-
evant fragment will be chosen by the MMME agent
for being a potential fragment to be added in the run-
ning process and the MMME agent updates its confi-
dence.

The MMME agents evaluate their own criticality
and cooperate to choose the most relevant fragment
according to the criticality of the ones suggested.

The incorporated state is reached when the
MMME agent is linked with at least two fragments:
one consumer and one producer. The initial or final
MMMEs provided by the designer have only to be
linked respectively to at least one producer and one
consumer.

3.3.2 The Waiting Fragment Agents

Each waiting fragment agent has an associated set of
context agents. Their goal is to be integrated in a
process once it is in an adequate situation. For that,
when a waiting fragment agent receives requests from
MMMEs which are looking for a fragment, it for-
wards the request to its context agents, if the wait-

A�Self-organizing�Multi-Agent�System�for�Combining�Method�Fragments

291



ing fragment agent considers itself as a potential so-
lution. A waiting fragment agent considers itself to be
solution if the requesting MMME belongs to its own
required or provided MMME. Then, the waiting frag-
ment agent waits the answer from its context agents.
It updates its confidence and sends it to the MMME.

Moreover, a waiting fragment agent can be se-
lected to be inserted in the running process. Informed
by the MMME agent, the waiting fragment agent cre-
ates a running fragment agent and sends the informa-
tion to its context agents as a feedback.

3.3.3 The Running Fragment Agents

A running fragment agent is created by a waiting frag-
ment agent and is introduced on time in the process.
Its aim is to be incorporated in the running process.
Its behavior changes according to its current state and
its perception. The current state of a running fragment
agent corresponds to non incorporated and incorpo-
rated. Actually, a running fragment agent is said in-
corporated when all the required MMMEs are in the
incorporated state and at least one of the provided
MMMEs is incorporated. Otherwise its state is non
incorporated and the running fragment agent makes
links with each MMME agent existing in the running
process on which a link is physically possible. More-
over, when the running fragment agent is inserted in
the running process, it adds the required or produced
MMMEs which are missing in the running process.

3.3.4 The Context Agents

The goal of the context agents is to represent a situa-
tion leading to a specific method process. They aim at
selecting the fragment to add in the current situation
to reach the objectives. When such an agent finds it-
self in its triggering situations, it notifies the waiting
fragment agent, by submitting its confidence accord-
ing to its own knowledge.

In order to know when the fragment is relevant, a
context agent relies on two different sets of informa-
tion. First, a collection of input values represents the
set of user and system characteristics. This element
enables the context agent to know if it has to be trig-
gered or not. Besides, a context agent possesses a set
of forecasts, which describes the impact of the action
proposed on the satisfaction of the both user and sys-
tem characteristics. Moreover, a context agent pos-
sesses a set of metrics, which describes the impact of
the action proposed on the running process (Bonjean
et al., 2012). Those input values are modified during
the life of a context agent. According to its behav-
ior, from different feedback that it receives, a context
agent adjusts its confidence.

Finally, the behavior of a context agent is repre-
sented by an automaton. Each state relates its current
role in the MAS. A total of three different states exist:
disabled, enabled and selected. The context agent can
switch from a state to another thanks to the messages
it receives from other agents in the system. A disabled
context agent considers itself non-relevant in this spe-
cific situation. An enabled context agent thinks that it
is relevant and potentially deserves to be selected. It
then computes its confidence and sends it to the corre-
sponding waiting fragment agent. Finally, a selected
context agent is validated by a waiting fragment agent
and its associated fragment is added in the running
process.

4 RESULTS AND ANALYSIS

The conducted tests focus on the functional adequacy
and the dynamic adaptation to specific situation. The
first test has been carried out with known method pro-
cesses to show the correctness of SCoRe. We show
that Score enables to compose a known method back
from its fragments. Concerning adaptability test, we
conducted them with fictive processes. Combining
known methods are very complex task. Until now, the
inter-operability and semantic matching of fragments
from different known methods stay an important chal-
lenge. Actually, in this problem, some works base
on standardisation of fragments notion and of their
description. For this reason, we simulate methods.
Therefore we used fictive processes which have been
simplified. Actually, they are defined in the following
way. They are composed by four fragments while a
known method is made up of approximately twenty
fragments. These tests show how SCoRe is able to
adapt itself: on the one hand, how SCoRe adapts it-
self to a context and on the other hand, how SCoRe
adapts itself to design a new tailored method process.

5 RELATED WORKS

Apart from application field, several recent works
exploit the lessons of adaptive self-organizing natu-
ral and social system to enforce self-awareness, self-
adaptability, and self-management features in dis-
tributed system.

Some approaches of components agentification
have been developed. They aim at allocating com-
ponents to agent properties such as autonomy and in-
teraction. (Hara et al., 2000) proposes an extension
of ContractNet protocol for finding components in li-
braries. A function which deals with request as mes-

ICAART�2013�-�International�Conference�on�Agents�and�Artificial�Intelligence

292



sage is added in the components stored in libraries as
an agent. The agents have knowledge about speci-
ficity of the component and its ability to answer a
need. Our proposition has the same goal with a view
to distribute fragments research and their adaptation
and their composition. This allocation of reuse pro-
cess enables some assembling strategies for instance.

Besides, Web Services represent today’s reference
standard technology for the set up of distributed sys-
tems that need to support machine-to-machine inter-
action among heterogeneous applications distributed
over a network. The automatic composition and adap-
tation of services has been explored using a variety of
AI planing engines (Rao and Su, 2005).

In (Thomas et al., 2009), a set of workflow frag-
ments are composed in ad hoc wireless mobile envi-
ronments. This approach designs dynamically con-
struction of custom, context-specific workflows in re-
sponse to unpredictable and evolving circumstances
by exploiting the knowledge and services available
within a given context. For that, a graph made up
of all workflow fragments is built up before explor-
ing and pruning it. As presented approaches, ours
is based on current data base of fragments and on
MAS metamodel elements. The way to integrate the
method fragment in the process is different because
in running development, our approach can take into
account process adaptation according to development
context.

6 CONCLUSIONS AND FUTURE
WORKS

This paper presents SCoRe architecture, an adaptive
multi-agent system, which designs a tailored process
by combining fragments together. Each agent com-
posing the adaptive multi-agent systems follows a lo-
cal and cooperative behavior, driven by the use of
their confidence. The four different kinds of agents,
composing the SCoRe system, were defined in order
to self-design and self-combine a tailored method pro-
cess without relying on the method engineer. The re-
sulting behavior of the SCoRe system is the ability
to design process and adjust the proposed process ac-
cording to the characteristics of application domain
and users profile. This first prototype allowed to en-
hance our experience on practical problems such as
metamodel compatibility, parameters composition or
fragments adaptation to specific field.

However, there is still room from improvements
for incoming interoperability and for evaluating the
designed process.

REFERENCES

Bergenti, F., Gleizes, M., and Zambonelli, F. (2004).
Methodologies And Software Engineering For Agent
Systems: The Agent-oriented Software Engineering
Handbook.

Bernon, C., Camps, V., Gleizes, M.-P., and Picard, G.
(2005). Engineering Adaptive Multi-Agent Systems:
The ADELFE Methodology . In Agent-Oriented
Methodologies , pages 172–202.

Bonjean, N., Chella, A., Cossentino, M., Gleizes, M.-P.,
Migeon, F., and Seidita, V. (2012). Metamodel-Based
Metrics for Agent-Oriented Methodologies. In Inter-
national Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS).

Brinkkemper, S., Saeki, M., and Harmsen, F. (1998). As-
sembly Techniques for Method Engineering.

Capera, D., Georgé, J.-P., Gleizes, M.-P., and Glize, P.
(2003). The AMAS Theory for Complex Prob-
lem Solving Based on Self-organizing Cooperative
Agents. In International Workshop on Theory And
Practice of Open Computational Systems, pages 389–
394.

Cossentino, M., Fortino, G., Garro, A., Mascillaro, S., and
Russo, W. (2008). Passim: A simulation-based pro-
cess for the development of multi-agent systems. In-
ternational Journal on Agent Oriented Software Engi-
neering (IJAOSE).

Hara, H., Fujita, S., and Sugawara, K. (2000). Reusable
software components based on an agent model. In
Proceedings of the Seventh International Conference
on Parallel and Distributed Systems: Workshops, IC-
PADS ’00.

Henderson-Sellers, B. and Giorgini, P. (2005). Agent-
oriented methodologies.

Henderson-Sellers, B. and Ralyté, J. (2010). Situational
method engineering: State-of-the-art review. J. UCS,
pages 424–478.

Ralyté, J. (2004). Towards situational methods for infor-
mation systems development: Engineering reusable
method chunks. Procs. 13th Int. Conf. on Information
Systems Development. Advances in Theory, Practice
and Education, pages 271–282.

Rao, J. and Su, X. (2005). A Survey of Automated Web
Service Composition Methods. pages 43–54.

Thomas, L., Wilson, J., Roman, G.-C., and Gill, C. (2009).
Achieving coordination through dynamic construc-
tion of open workflows. In Proceedings of the
10th ACM/IFIP/USENIX International Conference on
Middleware, Middleware ’09.

A�Self-organizing�Multi-Agent�System�for�Combining�Method�Fragments

293


