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Abstract: Most P2P networks are used for file-sharing applications. These forms of applications mainly rely on key-
word searching to locate file resources on the peers. Whilst this querying is suitable for many data-intensive
applications, it is not suitable for applications where data changes over short periods of time, also known as
time-critical applications. We investigate the use of timestamps on a peer’s knowledge about an application to
create queries so that other peers may reply with more up-to-date information to keep the peer’s knowledge
up-to-date. We propose means to synchronise peers to provide them with a shared, independent clock so that
they utilize timestamps. To show that a peer’s knowledge about a time-critical application affects the perfor-
mance of other peers, we carried out experiments to show information propagation over a P2P network and
use various metrics to evaluate our approach.

1 INTRODUCTION

Information propagation is the distribution of in-
formation between peers and is one of the major
challenges in (pure) peer-to-peer (P2P) networks be-
cause there are no servers to direct messages among
the peers. Therefore protocols have been devel-
oped to help facilitate this. Most of these proto-
cols are suitable for data-intensive applications be-
cause of their ability to locate resources through the
use of keywords. These protocols include flooded
request and document routing (Taylor and Harrison,
2008) which have been used in commercial applica-
tions, such as Gnutella (Taylor and Harrison, 2008).
While keyword-searching allows peers to retrieve re-
sources themselves, the disadvantage of this is the
peers are acting “selfishly”—they will not voluntarily
contribute resources to assist other peers. Wu (2009)
looks into how faster peers share their bandwidth with
slower peers so that all peers complete the download
of resources at the same time.

This research focus on real-time applications
where it is important that each peer has a shared
view of the global information. Instead of peers shar-
ing files with each other, they will share information
about a common, but independent, application with
each other to keep each peer’s perception of the appli-
cation up-to-date. To evaluate the performance of the
application over P2P networks, the applications them-

selves must reflect the performance of each peer in
terms of how their knowledge of the application will
affect other peers. Therefore, we will use computer
games as the domain. Computer games have differ-
ent types of data-intensive and time-critical properties
and the performance of a game is dependent on the
abilities of each player (peer) within the game. How-
ever this does not mean our proposed solution is lim-
ited to one domain. The games will be encoded as
rules—when certain conditions are met, then an ac-
tion takes place. The purpose of this is two-fold: the
information requirements of the rule can be checked
to make sure the rule is legal to fire, if not then the
peer will have to perform other actions (most likely
query other peers) to make the rule legal and most do-
mains can be encoded as a set of rules. Our proposed
solution is thus impartial to any rule-based domain.

Although we mainly mention peers, this is a syn-
onym for agents. Generally speaking, a peer is only
responsible for handling messages to and from oth-
ers whereas agents can make decision for themselves
within their environment as well as communicate with
other agents. Although our primary focus is on P2P
research, when dealing with applications, agents are
required to evaluate the current situation of the ap-
plication as well as neighbouring peers to make de-
cisions on how to continue executing the application.
This is especially important when running automated
tasks like our experiment in Section 4. Therefore,
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when we mention peer, we don’t necessarily mean
just the messaging handled by a generic peer, but
the inclusive body of the application, agent and peer
working together to handle application execution, de-
cision making and message handling.

To further explain the proposed research, this doc-
ument has been laid out in the following sections;
Section 2 covers related work in sharing knowledge
over P2P networks; Section 3 looks into our proposed
solution in how peers join a network and contribute
information to other peers; Section 4 describes our
experiment to show how knowledge accuracy affects
the performance of peers; Section 5 looks into how we
evaluated our experiment and its results and Section 6
concludes the document with how our current evalua-
tion turned out with regards to our proposed solution
and what we aim to accomplish in the future.

2 RELATED WORK

Since our chosen domain is computer games, we will
cover existing work regarding games on P2P net-
works and how it differs from our work. Neumann
(2007) provides a survey regarding the issues related
to gaming and P2P, namely game-state management.
Most games use the client/server architecture because
the server acts as the manager for all events and states
within a game. Without this manager, players would
not be able to know the current status of the game en-
vironment. Current frameworks tackle this with the
use of interest management (Bharambe et al., 2008;
Fan et al., 2007) which works by making players be
only interested in other players depending on their
virtual distance. For example, if two players are in-
teracting in the game, then they are both interested in
sharing data with each other since they will see the
results of the other player’s actions. Other techniques
similar to interest management; for example, zoning
(partitioning a game world for close players to com-
municate within) has also been looked at with the use
of frameworks (Glinka et al., 2007). The biggest is-
sue with these kinds of frameworks is they are only
useful for computer games and not for other domains.
Although we are using games as our domain, they will
only be used for testing our solutions and the solutions
themselves will be adaptable to any domain.

For our research, we need up-to-date results so
that each peer will have accurate knowledge for opti-
mal contribution to the network. One of the common
themes between interest management work and our
research is the use of database-related queries (Cas-
tano et al., 2003; Nejdl et al., 2002) to retrieve data be-
tween peers. Whilst this is useful for updating a peer’s

own knowledge, there is no time limit on sending and
receiving knowledge, just as long as the knowledge
will eventually contribute to the community of peers.
This is not suitable for us because time-critical appli-
cation require information as soon as possible in order
to be useful. Liu (2011) uses polymorphic queries to
attempt to retrieve attributes from other peers if the
queried peer does not contain all of the requested at-
tributes. However, because this uses an algorithm to
forward queries to other peers depending on its “qual-
ity”, the queries will only be approximately answered
and we need accurate answers.

Ensuring that each peer is synchronised with each
other requires a form of distributed timekeeping. It
is unreasonable to assume all distributed systems will
run at the same speed and have the exact same time as
each other so a relative approach is required. Lam-
port logical clocks (Lamport, 1978) allows events
among distributed systems to be ordered between
themselves. This is especially important for dis-
tributed information systems because the order of re-
ceived messages will have an effect on the output –
rearranging the order of events will typically produce
different outcomes. Lamport clocks uses timestamps
from sent and received messages to resynchronise its
clock so that future messages from other sources will
not arrive out-of-order. Another way to keep dis-
tributed systems synchronised is to use a common
clock so that all systems will have the same time
as each other, leading to accurate global timestamps.
The Network Time Protocol (NTP) (Mills, 2003) uses
servers with accurate clocks to provide systems with
the current time. However, there are disadvantages
in using NTP for synchronization: depending on the
server the time may not be fully accurate and the time
it takes for the time message to arrive at the requestor
will affect the real time; this is even more so for dis-
tant requestors to the same server.

3 PROPOSED SOLUTION

In our solution, two major algorithms are used dur-
ing a peer’s lifetime in an application: bootstrapping
and query generation and sending. This document
only provides an overview of the algorithms used in
our solution, but detailed explanations can be found
in Gibson et al. (2012).

Bootstrapping only occurs once in a peer’s life-
time to join a network, but query generation and send-
ing occurs at every application (game) cycle. Other
parts of a peer’s lifetime have been omitted as these
occur during the application cycle.

One main disadvantage of P2P networks is the
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Algorithm 1: Bootstrap.
Input : S = haddress; porti, speed
Output: P = fp1; p2; :::; png, N0 = fn0;n1; :::;nmg,

speed0

1 connect(S)
2 send(S;speed)
3 receive*(S;hspeed0;remainingTime;P;Ni)
4 for n 2 N do
5 send(n;PING) // Gnutella PING-PONG
6 end
7 while remainingTime > 0 do
8 receive(A;msg)
9 let msg be of the form htype; in f oi

10 if type = PONG then
11 N0 N0[fAg // Gnutella PING-PONG
12 else if type = SPEED then
13 speed0 in f o
14 end
15 end
16 if jN0j> 0 then
17 startGame(P;speed0;N0)
18 end

lack of an entry point for new peers to join an existing
network. Most existing P2P applications tackle this
using an entry-point node, typically called a “boot-
strapping node” so that new peers can either directly
join the bootstrapping node and form neighbourhoods
from it, or download a list of peer addresses to di-
rectly connect to. The latter method is commonly
used in BitTorrent with the use of a tracker and in
Gnutella with the use of web caches (Taylor and Har-
rison, 2008). Because of the ease of using a bootstrap-
ping node and a list of available peers, we have used
these methods in our solution. This allows new peers
to directly join a bootstrapping node which sends the
peer a list of available peers to directly connect to.

Algorithm 1 (A1) explains the bootstrapping pro-
cedure; how a peer joins a network. The inputs are
the bootstrapping node’s address and port, S, and the
peer’s game playing speed, speed. The outputs are
the peer’s player attributes, P, the peer’s list of con-
nected neighbours (as well as their player details), N0,
and the game speed to play at, speed0. P allows oth-
ers to identify this peer’s player within the game and
allowing this peer to update its own player attributes.

To generate queries to update a peer’s (B) knowl-
edge about the application, the knowledge has to be
explicit. So a reasoner is able to infer what needs
to be retrieved for B to continue participating. How
the knowledge is explicitly stored and managed de-
pends on the application domain. This applies to the
reasoner as well; how it creates queries to update B’s
knowledge depends on how the knowledge is handled.
For example, let’s say the domain was a car racing
game. Apart from knowing important information

Algorithm 2: Query Generation and Send.
Input : N = fn1;n2; :::;nmg, Q = fq0;q1; :::;qng,

R = fr1;r2; :::;rpg, S = fs1;s2; :::;sqg,
T hreshold

Output: Q = fq0;q1; :::;qrg, S0 = fs0;s1; :::;stg
1 Q0 /0

2 S0 S
3 for s 2 S do
4 let s be of the form hv; ti
5 if v =2 Q and v =2 Q0 and t � T hreshold then
6 Q0 Q0[fvg
7 S0 S0 nfsg
8 end
9 end

10 for v 2 Q0 do
11 send(bestNeighbour(v;N), request(v))
12 end
13 Q Q[Q0

about each players’ location and position, knowing
when this information was taken affects how each
player plays the game. Therefore, being able to show
the age of each piece of information allows the rea-
soner to generate update queries depending on how
old the information is, hence the use of timestamps.

Algorithm 2 (A2) explains how queries are created
based on the age of game variables. The inputs are
B’s set of connected neighbours (created from A1),
N, a set of previously queried variables, Q, the vari-
ables used to control each player in the game, S, and
a time limit to represent when a piece of information
becomes out of date, T hreshold. The outputs are an
updated set of queries to ask each player, Q, in order
to update B’s information about the queried player(s)
and an updated list of player variables to be used with
the game rules in the current game cycle, S0.

4 EXPERIMENT

To evaluate our proposed research, we have devised
an experiment to show how the accuracy of knowl-
edge affects the performance of a peer which will
have an affect on neighbouring peers. The test ap-
plication is a simple racing game where players have
to complete a certain number of laps around a circu-
lar track to win. To encourage competition, the play-
ers are able to use the shortest lane to complete a lap
sooner, travel at various speeds and are allowed to
overtake slower players. There are also penalties to
consider as well; each player has a limited amount of
fuel and is consumed quicker if the player is travel-
ling fast. A pit stop is available for refuelling, but it
is only available at one point along the track and re-
quires time to fully refuel a player. If the player runs
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out of fuel before the pit stop, the player loses. Play-
ers can overtake or independently move to outside
lanes providing they do not crash into others. Whilst
outside lanes are useful for overtaking, they have a
longer length than inside lanes so it is not advanta-
geous to remain on the outside for long periods of
time. By forcing players to pick the best route whilst
being conservative with fuel, the game will be com-
petitive, strategic and fun. Figure 1 shows player A
playing the racing game with seven opponents.

Figure 1: The racing game application running.

For our experiment, we have eight peers which
will run their own copy of the game and be able to
communicate with each other. Each peer will be able
to play the game as a player with the capacity to win
and play by the rules. The peers are based on the Rete
algorithm with rules to control where the peer may
move to depending on its condition and the locations
of the opponents. They also perform random moves,
such as change lanes and speed to simulate a human
player and to encourage the peers to perform more
update queries so that their knowledge base of oppo-
nents is kept up-to-date. For a simple racing game like
this, more than eight players may be too much for an
“enjoyable” experience, but the results will help us
refine our proposed mechanism for larger-scale and
more data-intensive applications.

In each configuration, each peer’s perception of
the game will have to be compared with the other
peers’ perceptions. This will allow us to use a con-
vergence metric to see how close an opponent’s per-
ception of a player state is in relation to the player’s
actual state. For the racing game, the most important
attributes to keep up-to-date are the player’s location
(in terms of lane and how far around the track) and
speed since these determine how an opponent will
react. There are also other attributes which are not
as important, but will affect how the game is played
as well; for example, the player’s fuel to see if they
require a pit stop and the number of laps to see if
they have won. By seeing if an opponent’s percep-
tion of a player’s attributes is accurate over time, as

well as vice versa, should lead to accurate gameplay
by both parties. However, since queries are only di-
rected to the closest virtual player, distant players may
not have constant accurate perceptions of each other.
This should not be a problem though because it is
unlikely they will interact with each other due to the
distance between themselves–this is related to interest
management. Since this will have an effect during the
comparison of perceptions, weights will have to be al-
located to show that the difference of player states be-
tween distant players is not as important as the differ-
ence of player states between close or neighbouring
players. As a game continues and players overtake
others, the importance of perceptions between play-
ers will constantly change but should lead to accurate
gameplay among each player’s closest opponent.

5 EVALUATION

For our evaluation we ran four experiments to show
how the “hops” of a message affects each peer’s per-
ception of its opponents. A hop refers to how many
peers a message will be sent to before the message is
classed as expired and therefore not to be forwarded
any more. A hop is commonly referred to as the time-
to-live (TTL) of a message. Since we are using eight
peers in a ring topology, each experiment sets each
message to hop one, two, three and four times respec-
tively. This ensure that at least one experiment (four
hops) will enable all peers to communicate with each
other with no dropped messages. Since a message
can travel in either direction from a peer, the furthest
distance to travel to reach all peers is four hops be-
cause of three intermittent peers in each direction, en-
suring that a message with four hops will reach any
peer within the 8-peer ring topology.

To enable fine control over our experiments, we
have created our own in-house P2P simulator called
P2P Tool1 which allows us to create peers with certain
rule sets and custom topologies around structured or
unstructured presets. It also allows us to manage how
messages are directed among peers and how peers
should deal with certain types of messages.

In order to show how affective our mechanism is,
we use the metric of divergence to show how differ-
ent a peer’s perceived knowledge of another peer dif-
fers from the other peer’s actual knowledge. Figure
2 shows how much a peer (in this case, D) diverges
from opposing peers over game time. Whilst we only
show peer D’s perceptions of peers A, B, C, E, F, G
and H, every peer will produce similar looking graphs

1https://github.com/msgibson/P2PTool
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due to each peer being equal with each other in terms
of relative neighbours and functionalities. In this doc-
ument, only the experiments with one and three hops
will be discussed; discussions on hops two and four
as well as how our mechanism differs from a pure ex-
haustive search are available in (Gibson et al., 2012).

To calculate the divergence of a peer, we calcu-
late the difference between the peer’s knowledge of
each opponent with the opponent’s actual knowledge
at each game tick. For each graph, the higher the di-
vergence, the more different the perceived and actual
values are, leading to inaccurate gameplay.

In Figure 2(a), each message only lasts one hop,
meaning only the immediate neighbours of D (peers
C and E) will receive messages. The graph shows that
peers C and E mostly have a low divergence, mean-
ing the perceived knowledge peer D has of C and E
are close to C and E’s actual knowledge respectively.
However for the remaining peers (A, B, F, G and H)
divergence is high because D is never able to commu-
nicate with them. Peers A, B, G and H appear to flat-
line around the 5000 game tick point because in all in-
stances (peer D’s perception and the actual peers con-
trolling the players), the players seem to have “lost”
(ran out of fuel) at the same time. The divergence is
still high because the perceived and actual player po-
sitions will be at different locations around the track.

Figure 2(b) shows that since messages can arrive
at more distant peers, the divergence among these
peers will be smaller. For three hops, peers A and
G can be reached. Since peer H is never in reach, it
always has a high divergence. There are some spikes
in divergence in the reachable peers. We believe this
is caused when peer D tries to overtake the reachable
peers in its copy of the game, but failing to complete
the overtake. This may affect the peer’s closest oppo-
nents, leading to fluctuating thresholds for the oppo-
nents and affecting queries being sent.

By looking at Figures 2(a) and 2(b), total diver-
gence among the peers decreases as the number of
hops increases. This should be obvious because as
messages are able to reach more peers, information
retrieved will be more accurate and hence lower di-
vergence. To show how much hop count improves
information accuracy, Figure 3 shows how peer D’s
convergence with all peers combined improves over
time with increasing hop count and how all peers ben-
efit from increased hop count for their convergences.

In Figure 3(a), the graph shows that as the num-
ber of hops increases per message, the divergence is
generally lower at each point in game time. Each
line represents the average of each opponent percep-
tions from each experiment. For hops one and two
though, hop two’s divergence spikes over hop one’s

divergence at some points. This is also present in hops
three and four where hop three’s divergence spikes
over hop four’s divergence at some points. These
spikes are likely caused by the spikes seen in Figures
2(a) and 2(b), resulting in some errors being carried
over. To smooth out the errors, we averaged each
peer’s total divergences (each peer’s version of the
graph in Figure 3(a)) and applied weighting to the
closest players of each peer at each game tick to high-
light divergences in the closest opponents are more
important than divergences in distant players since
closer opponents are in the player’s interest set. This
combination of peer divergences and weightings led
to Figure 3(b) which clearly shows that as hop count
increases for messages, all peers improve because of
lower divergence, leading to more accurate applica-
tion performance and gameplay.

6 CONCLUSIONS, DISCUSSION
AND FUTURE WORK

In this paper, we have discussed an alternative ap-
proach to exchanging information over P2P networks
through the use of timestamps. We have also showed
how we approach this using rule-based applications
(specifically, but not limited to, computer games) by
evaluating the age of its knowledge base and gener-
ating queries to a peer who will be able to update
the information. Finally, we showed and explained
our experiment results to show how our approach per-
forms in varying configurations. Using the experi-
ment results will allow us to further refine our pro-
posed approach for other types of applications, specif-
ically data-intensive applications.

Although the results may be obvious in showing
that as message hops increases, a peer’s perception of
other peers improves, it confirms that our mechanism
of reducing queries based on certain times throughout
an application’s life leads to similar results compared
with an exhaustive querying to all peers.

We will use the results to develop our research to
focus on data-intensive applications as well as im-
prove our simulator’s performance to minimise di-
vergence spikes. This will mean looking at other
means of creating queries depending on the state of
the player instead of just time. One area that will
be focussed on more in the future is security. Whilst
running our experiment, we assume that all peers are
trustworthy and have no devious intentions. This is
not a reasonable approach for real-world applications
though. One area that should be focussed on is rogue
messages. Peers may be able to “lie” by sending
wrong information about itself or even other peers so
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(b) 3 hops

Figure 2: Peer D’s divergence with other peers over game time.
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(a) Peer D’s divergences over hops
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(b) All peers’ divergences over hops

Figure 3: Comparison of divergences over hops.

that it can gain an advantage in a game. This can be
prevented by comparing the new received informa-
tion with a peer’s own information to see if there is
a significant difference between them. If there is a
large difference, then it is likely the new information
is false so it should be discarded. The new informa-
tion could also be compared with neighbouring peers
to see if they think the information is false.
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