
Formalizing SIMBA RTMAS Models using Real-time Maude

Toufik Marir1, Farid Mokhati2 and Hassina Seridi-Bouchelaghem3
1Mathematical and Computer Science Department, University of Oum El Bouaghi, Oum El Bouaghi, Algeria

2 Mathematical and Computer Science Department, University of Oum El Bouaghi, LAMIS Laboratory, Oum El Bouaghi,
Algeria

3Computer Science Department, LABGED Laboratory, University Of Annaba, Annaba, Algeria

Keywords: Formal Specification, Real-time Multi-Agent System, Real-time Maude, SIMBA.

Abstract: Multi-agent systems paradigm is the most appropriate one to developing complex systems. Consequently, it
is used to develop real-time intelligent systems which are one of complex systems categories. In the
literature, several works have been proposed for formalizing many aspects of multi-agent systems.
However, the application of formal methods upon real-time multi–agent systems (RTMAS) (where the time
is the primordial aspect) stills in the immaturity stage. In this paper, we present the formalization of SIMBA
real-time multi-agent systems using Real-Time Maude language as a main stone for formal development of
based-SIMBA systems.

1 INTRODUCTION

Development of complex and distributed real-time
systems is nowadays a challenge to many
researchers. The multi-agent paradigm is presented
in several cases as an ideal solution to develop these
systems. However, there is no yet a mature
methodology to develop real-time multi-agent
systems (Zhang, 2006). We think that the
remarkable recent advances of formal methods can
be a good assistance to develop such systems. In this
paper we propose the formalization of SIMBA real-
time multi-agent systems using Real-Time Maude.

Several approaches have been proposed to
formalize real-time agent using different real-time
models like timed automata (Hutzler, Claudel and
Wang, 2003; Moscato, et al., 2008). According to
Ölveczky (2000), we think that logic-based models
instead of others models of real-time systems (like
timed automata) provides more expressiveness to
describe different aspects of RTMAS. Marir,
Mokhati and Seridi-Bouchelaghem (2009) proposed
the formalization of ARTIS real-time agent using
Real-Time Maude. In fact, the social aspect of
RTMAS has been omitted in the formalization of
ARTIS agent. Hence, we present in this paper an
extension of the formalization of ARTIS agent to
support the social aspect of RTMAS through the
formalization of SIMBA platform.

SIMBA (Multi-Agent Systems Based-On
ARTIS) can be considered as an extension of ARTIS
real-time agent to support the social ability (Julian,
et al., 2002). Thus, SIMBA real-time multi agent
system consists of a set of communicating ARTIS
real-time agent. Moreover, SIMBA requires the
existence of a mediator agent which integrates the
DF (Directory Facilitator) and the AMS (Agent
Management System) services.

Real-Time Maude is an extension of Maude
language to specify and analyzing real-time and
hybrid systems (Ölveczky and Meseguer, 2007).
Based on rewriting logic, Maude language provides
a high expressiveness level to describe and
analyzing distributed systems. More details about
Maude can be found in (Clavel et al., 2007).

Due to the limited space of this paper, we focus
in the following section only on the formalization of
SIMBA platform. The ARTIS formal framework on
which the formalization of SIMBA has been based is
presented briefly. The formalization of ARTIS agent
using Real-Time Maude can be found in Marir,
Mokhati and Seridi-Bouchelaghem (2009).

2 TRANSLATION PROCESS

This section is devoted to explain the translation
process of SIMBA RTMAS description to Real-

411Marir T., Mokhati F. and Seridi-Bouchelaghem H..
Formalizing SIMBA RTMAS Models using Real-time Maude.
DOI: 10.5220/0004259904110414
In Proceedings of the 5th International Conference on Agents and Artificial Intelligence (ICAART-2013), pages 411-414
ISBN: 978-989-8565-38-9
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

Time Maude specification. In fact, the generated
framework of SIMBA specification is an extension
of the formalization of ARTIS agent proposed in
(Marir, Mokhati and Seridi-Bouchelaghem, 2009).
The formal specification of ARTIS agent using
Real-Time Maude (Figure 1) is composed of six
functional modules: Knowledge, Blackboard,
Knowledge-Source, MKS (for Multi-Level-
Knowledge-Source), KS-List (for Knowledge-
Source-List) and MKS-List (for Multi-Level-
Knowledge-Source-List); an object oriented module
(In-Agent module) and a timed object-oriented
module (ARTIS-Agent).

Figure 1: ARTIS framework’s architecture.

Because SIMBA architecture is proposed as an
extension of ARTIS agent to support the social
aspect of multi-agent systems, it is naturally that the
formalization of SIMBA platform based on the
formalization of ARTIS agent. Consequently, the
formalization of the social ability of SIMBA
architecture addresses the following purposes:

 The formalization of the message and
mailboxes structures to support the
communication between agents;

 The formalization of the communication
module within ARTIS agent;

 The formalization of the mediator agent;
 The formalization of the interaction

between agents.
In order to formalize SIMBA architecture we

reused ARTIS-Agent module from the formalization
of ARTIS agent and we defined several new
modules: the Message and Mailbox functional
modules; Communicating-ARTIS-Agent and

Mediator-Agent object-oriented modules; several
object oriented modules to specify the different
ARTIS agents (noted ARTIS-Agent-i) and SIMBA-
RTMAS timed object-oriented module to define the
interactions between agents. Figure 2 gives the
architecture of the developed framework.

Figure 2: SIMBA framework’s architecture.

Due to lack of space only some parts of our
framework will be explained.

The two functional modules Message and
Mailbox provide means to communication between
agents. The Message functional module specifies the
message’s structure. Thus, the Mailbox functional
module defines the mailbox’s structure as a list of
messages.

The mediator agent allows the interaction
between agents. It integrates the addresses of the
existed agents in the SIMBA architecture with the
services offered by each agent. As is presented in
Figure 3, the mediator agent is defined in the object-
oriented module Mediator-Agent as a class with
yellow-pages attribute. Hence, mediator agent
provides the possibility of registration for the new
agents (As is presented in Figure 3) and the
possibility to unsubscribe for the existing agents.

Communicating-ARTIS-Agent object-oriented
module (Figure 4) is an extension of ARTIS-Agent
object-oriented module with the communication
module.

Message

Mailbox

Mediator-Agent

SIMBA-RTMAS

ARTIS-Agent

Communicating-ARTIS-Agent

ARTIS-Agent-i

Functional Module

Object-Oriented Module

Timed Object-Oriented Module

Importation Link

 Functional Module

Object-Oriented Module

 Timed Object-Oriented Module

Importation Link

MKS

Knowledge

Knowledge-Source

Blackboard

KS-List MKS-List

In-Agent ARTIS-Agent

ICAART�2013�-�International�Conference�on�Agents�and�Artificial�Intelligence

412

(omod Mediator-Agent is

(The mediator-agent class)
class Mediator-Agent | Yellow-
Pages : Agent-Service-List .

**********(The registration of the
new agent in the Mediator-
Agent’s base)******************

rl [Registration] :

< Agent: Mediator-Agent |
Yellow-Pages : Agent-
Service-List >

Inscribe(Agent-Service)
=>
< Agent: Mediator-Agent |

Yellow-Pages : Insert-Agent-
Service(Agent-Service,
Agent-Service-List) > .

endom)

Figure 3: Some parts of Mediator-Agent object-oriented
module.

In fact, the communication module of ARTIS
agent can be defined by two mailboxes inserted in
the definition of ARTIS agent class. One of these
mailboxes is used to store the received messages and
the other is used to store the message before
sending. Obviously, a Communicating-ARTIS-Agent
class includes blackboard structure and its own
timer. Known that the tick rule does not support the
concurrency rewriting, we should define only one
tick rule in SIMBA-RTMAS module which used to
progress a universal time in uniform way.

In order to ensure the concurrency execution of
ARTIS agents’ clock, we rewrite all the clock unit of
ARTIS agent using the same time unit (called
Universal-Time-Unit). Thus, an ARTIS agent (A)
clock should be rewritten according to this
Universal-Time-Unit using Clock-Base parameter
(for example, Timer (A) = Universal-Time / Clock-
Base (A)). The Clock-Base is defined as an attribute
of Communicating-ARTIS-Agent class. Despite the
progression of the universal time, an ARTIS agent
does not change its clock value only one time each
its Clock-Base value of Universal-Time-Unit. As is
presented in the rewriting rule (Figure 4), the ARTIS
agent should update the validating time of the
messages and the knowledge in each own passed
time unit.

The behaviour of the communication module is
specified using two rewriting rules (one for
receiving messages case and the other for sending
messages case) in the Communicating-ARTIS-Agent
object-oriented module.

(omod Communicating-ARTIS-Agent is

protecting ARTIS-AGENT .
protecting MAILBOX .

********(The Communicating-ARTIS-
Agent class definition)********

class Communicating-ARTIS-Agent |
Received-Mailbox : Mailbox,
Sending-Mailbox : Mailbox,
Blackboard-Content : Blackboard,
Clock-Base-Is : Nat, Timer-Is :
Time .

*********(The rule that specifies
the progression time of an ARTIS
agent) ************************

crl [Progression-Time-Of-ARTIS] :

< Agent1 : Communicating-ARTIS-
Agent | Received-Mailbox :
Received-Mails, Sending-
Mailbox : Sending-Mails,
Blackboard-Content :
Blackboard1, Clock-Base-Is :
Clock-B1, Timer-Is : T >

Universal-Time-Is(Global-T)
 =>

< Agent1 : Communicating-ARTIS-
Agent | Received-Mailbox :
Updating-Time(Received-
Mails), Sending-Mailbox :
Updating-Time(Sending-
Mails), Blackboard-Content :
Updating-Time(Blackboard1),
Clock-Base-Is : Clock-B1,
Timer-Is : T plus 1>

if (Global-T rem Clock-B == 0).

***************(The ARTIS agent’s
communication module behavior
specification) ****************

...
endom)

Figure 4: Some parts of Communicating-ARTIS-Agent
module.

Known that the communication in SIMBA
architecture is not critical task, the communication
module can execute only if the ARTIS agent is not
in critical phase. As is presented in Figure 5, an
ARTIS agent in not-critical phase can extract a
message from its sending mailbox (if it is not empty)
to send it (Sending-Mail rule) or extract a message
from its received mailbox (if it is not empty) to
process it (Receiving-Mail rule). For legibility
reason, only the necessary attributes of

Formalizing�SIMBA�RTMAS�Models�using�Real-time�Maude

413

Communicating-ARTIS-Agent class are presented in
the two rewriting rules.

*****(Sending Mail case rule)*****

crl [Sending-Mail] :

<Agent1: Communicating-ARTIS-Agent
| Sending-Mailbox: Mails >

 =>
Mail(Head-Mailbox(Mails))
< Agent1: Communicating-ARTIS-
Agent | Sending-Mailbox: Tail-
Mailbox(Mails) >

if (not Is-In-Critical-Phase
(Agent1) and not Is-Empty-
Mailbox(Mails)) .

*****(Receiving Mail case rule)***

crl [Receiving-Mail] :

< Agent1: Communicating-ARTIS-
Agent | Received-Mailbox: Mails>

 =>
Received-Mail(Head-Mailbox(Mails))
< Agent1: Communicating-ARTIS-
Agent | Received-Mailbox: Tail-
Mailbox(Mails)>

if (not Is-In-Critical-Phase
(Agent1) and not Is-Empty-
Mailbox(Mails)) .

Figure 5: The communication module behaviour specified
by rewriting rules.

The Communicating-ARTIS-Agent module
specifies only the kernel of communicating ARTIS
agent. The specific behaviour of each ARTIS agent
should be specified in separated modules (called
ARTIS-Agent-i object-oriented module). By specific
behaviour, we intend the pre-condition and the post-
condition of ARTIS agents’ execution.

SIMBA-RTMAS timed object-oriented module is
used to specify the global behaviour of the real-time
multi-agent system. By the global behaviour of the
real-time multi-agent system we intend the
interaction between ARTIS agents to achieve their
purposes.

Using our framework to specify based SIMBA
software necessities the customizing of some
modules to the specific needs of user. Indeed, the
users of our framework should specify the specific
behaviours of each ARTIS agent in ARTIS-Agent-i
modules and the global behaviour in the SIMBA-
RTMAS module.

Real-Time Maude provides several analysis tools
which can be applied on our framework to detect
possible errors.

3 CONCLUSIONS

The development of real-time multi-agent system is
a difficult activity in which the consequences of
errors can be catastrophic. Indeed, the uses of formal
methods represent the best solution for this problem.
Obviously, the formalization of RTMAS is the first
step to apply the different formal techniques such as
model checking or simulation. In this paper we
extent the formalization of ARTIS real-time agent to
support the social aspect of RTMAS. Our approach
is based on Real-Time Maude language which is
characterized by the expressiveness of description
and the variety of its techniques of verification and
validation. In a future work, we will study the
different properties to verify using Real-Time
Maude’s model checker.

REFERENCES

Clavel, M., Durán, F., Eker, E., Lincoln, P., Martí-Oliet,
N., Meseguer, J., and Talcott, C., L., (Eds.), 2007, All
About Maude - A High-Performance Logical
Framework, How to Specify, Program and Verify
Systems in Rewriting Logic. Lecture Notes in
Computer Science 4350. Springer.

Julian, V., Carrascosa, C., Robello, M., Soler, J., and
Botti. V., 2002., SIMBA: An Approach For Real Time
Multi Agents Systems, In Proc. of V Conferncia
Catalana d’Intelligncia Artificial, Castell. Springer-
Verlage.

Hutzler, G., Claudel, H., Wang, D., Y., 2004, Designing
Real-Time Multi-Agent Systems Using Timed
Automata, In Ghidiniet, C., al (Eds) EUMAS’04.

Marir, T., Mokhati, F., and Seridi-Bouchelaghem, H.,
2009, Formalizing ARTIS Agent Model using RT-
Maude, In L. Braubach and al. (Eds.): MATES 2009,
LNAI 5774, pp. 226–231.

Moscato F., Venticinque, S., Aversa, R., and Di Martino,
B., 2008, Formal Modeling and Verification of Real-
Time Multi-Agent Systems: The REMM Framework,
In Badica C., et al. (Eds.): Intel. Distributed Comput.,
Systems & Appl., SCI 162, pp. 187–196.

Ölveczky. P., C., 2000, Specifying And Analysis of Real-
Time And Hybrid Systems In Rewriting Logic. Dr.
Scient. Thesis, Department of Computer Science,
University of Bergen.

Ölveczky, P., Meseguer, J., 2007. Semantics and
pragmatics of Real-Time Maude, In Higher-Order and
Symbolic Computation, Volume 20 Issue 1-2, June
2007, Pages 161 – 196.

Zhang, L., 2006, Development Method for Multi-Agent
Real-Time Systems, In International Journal Of
Information Technology, Vol. 12, No. 5, 19-28.

ICAART�2013�-�International�Conference�on�Agents�and�Artificial�Intelligence

414

