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Abstract: Social networks are popular tools for communication, interaction, and information sharing on the Internet.
The extreme popularity and rapid growth of these online social networks reveal to study, understand, and
discover their properties. Social networks evolve gradually and the network structure varies as the network
grows. Large-scale dynamic network analysis requires a large quantity of network data to be available for
the experiments and using real data have restrictions due to the privacy issues. Synthetic data generation
is an alternative way to overcome these problems. The challenge when generating synthetic data is having
characteristics that are similar to real-world data. In this paper, we study on generating synthetic, but realistic,
time-evolving social graphs. We describe two main classes of properties: static and dynamic. We analyzed
real datasets and extracted their behavior using static and dynamic properties. Then, we generated synthetic
graphs with different parameter settings using Barabasi-Albert model (Barabasi and Albert, 1999). Our work
enables the creation of synthetic networks that reflect both static and dynamic characteristics of online social
networks. Moreover, our generated data may lead to more accurate structural and growth models, which are
useful for network analysis and planning.

1 INTRODUCTION

The popularity of online social networks has in-
creased the interest in analyzing how these networks
evolve over time. One fundamental question is to un-
derstand how do the network properties change as the
network evolves. In recent years a wide variety of
models have been proposed to analyze the evolution
of complex networks. The big proportion of the sig-
nificant amount of the network data that are being col-
lected are often about people and contain personal in-
formation. When such data are being analyzed and
mined, publishing the data becomes important prob-
lem due to the privacy issues. Furthermore, time to
time the limited number of available network graphs
are insufficient to generate meaningful experimental
results.

An alternative approach, is to use synthetically
generated data. Albeit the challenges, the use of syn-
thetic data offers great opportunities. The user can
control and rapidly generate the data set with the de-
sired characteristics, size and quality. It allows the
user to investigate what-if scenarios when real data
are difficult to collect. The generated data can be
shared, and thus allow other researchers to repeat ex-
periments and compare algorithms.

The main challenge in generation of synthetic data
is its realism. It is not easy to create data with charac-
teristics that are similar to real-world data. The gener-
ated data should obey all the main static patterns that
have appeared in the literature and also obey the re-
cently discovered temporal evolution patterns.

A widespread model that used to simulate social
networks is Barabasi-Albert model (Barabasi and Al-
bert, 1999). In this paper, we generate different evolv-
ing synthetic graphs with distinct parameters using
Barabasi-Albert model, compute static and dynamic
graph metrics of the generated synthetic graphs and
compare them with the measurements of the real so-
cial networks. Thereby, we explore the most conve-
nient parameter settings to generate synthetic graphs
that best fit to the real networks. Our study is useful
in generating synthetic networks that obey static and
dynamic properties of social networks. Our generated
networks can be used as better structural and growth
models in social network analysis.

The paper is organized as follows: in Section 2
previous works on graph generation are given. Static
and dynamic properties and Barabasi-Albert model
explained in Section 3. Measurements and results of
the generated and real graphs are given in Section 4.
Finally, we conclude the paper.
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2 RELATED WORK

Building synthetic social graphs that are sufficiently
representative of real world social graphs has been
of interest for researchers for a long time. Most of
the studies try to extract the characteristics of graphs
and the patterns that can help to distinguish between
an actual real-world graph and any synthetic one.
As summarized in (Chakrabarti and Faloutsos, 2006),
there exist several patterns: power laws, small diame-
ters and community effects which together character-
ize the graphs.

One of the first models has been proposed by
(Erdös and Rényi, 1959) which employs random net-
works in order to generate real networks. Random
graphs are generated by picking nodes under some
random probability distribution and then connecting
them by edges. Watts and Strogatz came up with a
model that starts with a regular ring ofn nodes where
each node is connected to itsk closest neighbours and
than the nodes are rewired according to some prob-
ability to another node chosen uniformly at random
(Watts and Strogatz, 1998). It has high clustering co-
efficient unlike Erdos-Renyi but fails to reproduce the
power-law distribution of the degrees and behave like
a Poisson distribution. It is clear that purely random
graphs are not a good approximation of topology of
social networks despite showing small-world effect.

Studying the static snapshots of graphs has led
to analyzing properties such as the small-world
phenomenon (Travers and Milgram, 1969) and the
power-law degree distributions. However, in time-
evolving graphs interesting properties have been dis-
covered, such as shrinking diameters, and densifica-
tion power law. The Forest Fire model attempts to ex-
plain the densification and decreasing-diameter over
time and also captures the power-law degree distribu-
tion (Leskovec et al., 2005b).

Real networks are often scale-free networks inho-
mogeneous in degree, having hubs and a scale-free
degree distribution. Such networks are better to be
represented by the preferential attachment family of
models, such as the BarabasiAlbert model (Barabasi
and Albert, 1999). It produces graphs with power-law
degree distributions missing from random graphs. It
captures two shared mechanisms shared by many real
networks: incremental growth and preferential attach-
ment properties.

The authors in (Leskovec et al., 2005a),(Leskovec
and Faloutsos, 2007) proposed the Kronecker model
which is based on Kronecker multiplication to gen-
erate graphs that obey the properties of real graphs.
Kronecker model starts with the initial seed graph and
constructs a larger graph by repeatedly multiplying

the seed graph with itself. It creates the target graph
by multiplying with a seed graph. It is another well
known technique to generate scale-free graphs. How-
ever, the final graph generated with the Kronecker
multiplication method heavily depends on the initial
seed graph. Thus, difficult to configure or control
to obtain a graph with desired properties. Barabasi-
Albert method with preferential attachment is config-
urable and generates much better representative net-
works for real-world despite some lacks.

3 DATA GENERATION

3.1 Data Representation

A social graphG(V,E), made of nodesV and edgesE
that connect nodes with different relationships. In this
study, real evolving graphG described over a time pe-
riod [0..T ] and it will be decomposed into a sequence
of static snapshotsG[0,ε], ....,G[T−ε,T ] = G1, ...,Gn. ε
is the discretization factor which will be adjusted de-
pending on the granularity of the time stamps and
Gt,t+ε is the graph containing all nodes and edges in-
volved during the time period[t, t + ε].

3.2 Barabasi-Albert Model

Barabasi-Albert incorporates two main properties of
the of scale-free networks: incremental growth and
preferential attachment (Barabasi and Albert, 1999).
These properties also shared by many real networks.
Real world networks expand in size continuously by
the addition of new nodes (incremental growth) and
new nodes preferentially attach to nodes with a high
degree(preferential attachment). The model has three
parameters:n is the number of nodes,m is the number
of edges to add in each step andpower is the power
of the preferential attachment.

3.3 Graph Properties

In this study, we describe two main classes of prop-
erties of graphs that represent social networks. Static
properties, describe the structure of snapshots of the
graphs. Radius, diameter, clustering coefficient
anddegree distribution metrics will be considered.
Dynamic properties such asshrinking diameter and
densification power-laware observed over a period
of time and evaluate how measurements of these snap-
shots change by looking the series of static snaphots.
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4 EXPERIMENTAL RESULTS

4.1 Dataset Description

Our experimentation has been conducted on dis-
tinct synthetic and real datasets. Three distinct real
datasets: Internet Link, Flickr (Mislove et al., 2008)
and Youtube (Mislove, 2009) consisting different
size, volume and clustering coefficient degrees has
been used. Weekly snapshots are taken from real
datasets and evolution of ten time period has been
taken into account. Each synthetic dataset has been
created using Barabasi-Albert model with distinctm
andpower parameters. Graphs created with the same
number of initial nodesn of the Internet Link dataset
(Mislove, 2009) and evolved over ten time period by
adding random number of nodes between 2000 and
3000 at each period. Table 1 gives the ultimate num-
ber of nodes and edges of the datasets after tenth evo-
lution which are used in the study. Synthetic datasets
represented with theSD abbreviation in the table.

Table 1: Datasets.

Datasets Nodes Edges
Internet Link 22084 122439
Flickr 2263928 13982994
Youtube 1637838 7778675
SD1 (m=2 power=1) 32567 65131
SD2 (m=2 power=1.4) 30780 61557
SD3 (m=2 power=2) 33826 67649
SD4 (m=3 power=1) 34237 102705
SD5 (m=3 power=1.4) 31823 95463
SD6 (m=3 power=2) 32464 97386
SD7 (m=10 power=1) 31457 314515

Table 2: Radius,diameter and clustering coefficient of the
studied networks.

Dataset Radius Diameter Clustering Coefficient
Flickr 13 27 0.366
Youtube 13 21 0.177
Internet Link 1 12 0.008
SD1 (m=2 power=1) 6 10 0.001
SD2 (m=2 power=1.4) 3 6 0.758
SD3 (m=2 power=2) 2 4 0.998
SD4 (m=3 power=1) 5 8 0.001
SD5 (m=3 power=1.4) 3 5 0.527
SD6 (m=3 power=2) 2 3 0.998
SD7 (m=10 power=1) 3 5 0.010

4.2 Results of Static Properties

Radius and Diameter. Table 2 shows the results of
the radius and average diameter values of the graphs
after tenth evolution. The average diameter is calcu-
lated by taking the mean of the average shortest path
lengths over all nodes. Our real and synthetic graphs
are found to exhibit small diameter property despite

Figure 1: Degree Distributions.

their large population. The datasets SD3 and SD6
have smaller radius and diameter values since they are
denser compared to other graphs because of having
greater power value.

Clustering Coefficient.Our clustering coefficient re-
sults have shown on Table 2. Our real social networks
do not have high clustering coefficient value as it is
expected. Nevertheless, clustering coefficient degree
of synthetic datasets increase as the power value in-
crease. SD3 and SD6 have the maximum clustering
coefficient degrees due to the power.

Degree Distribution. The results have shown in
Figure 1. We can see from the results in Figure
1 that the synthetic datasets that are generated with
slighter preferential attachment power value (power)
fit power-law scaling more than the datasets generated
with greater power value. Higher preferential attach-
ment power value results several hub nodes while the
rest of the nodes in the network having few connec-
tions. Consequently, SD3 and SD6 do not fit power-
law scaling.
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Figure 2: Shrinking Diameter.

4.3 Results of Dynamic Properties

Shrinking Diameter. Figure 2 shows plots of the
change in diameter values of the datasets over time
with timestamp value onx axis and diameter value
on y axis. The results of real graphs conform the
shrinking diameter property. In synthetic graphs, we
obtained stabilized diameter results over time, some
times even after a small increase. This is because of
the nature of the generator model which has prefer-
ential attachment property where the diameter grows
slowly with the number of nodesn.

Densification Power Law (DPL). Our DPL results
are shown in Figure 3. All our real and synthetic
graphs obey the DPL, with exponents ranging be-
tween 1.06 and 1.24. The power-law exponent being
greater than 1 shows that there is a superlinearity be-
tween the number of nodes and the number of edges
in the graph.

5 CONCLUSIONS

In this paper, we presented a study on realistic so-
cial graph generation using Barabasi-Albert model.
We used static and dynamic graph properties to ana-
lyze synthetically generated graphs and measure how
fit the generated graphs to the real one. We gen-
erated graphs with different parameter settings and
compared them to the real graphs.

Results indicate that greater preferential attach-
ment power value cause small diameter and radius
values with disrupting the power law degree distri-
bution of the graphs. The parameter of the number
of edges to add in each step effects the number of
edges in each timestamp and results in greater den-
sification power law degree. Synthetically generated
graphs do not obey shrinking diameter property of
dynamic social networks. However, they have bet-
ter clustering coefficient degree with smaller diameter
than real graphs. Furthermore, these synthetic graphs
have power law degree distributions and fit densifica-
tion power law property of dynamic social networks.

Figure 3: Densification Power Law.
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