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Abstract: Finding features for classifiers is one of the most important concerns in various fields, such as information
retrieval, speech recognition, bio-informatics and natural language processing, for improving classifier predic-
tion performance. Online grafting is one solution for finding useful features from an extremely large feature
set. Given a sequence of features, online grafting selects or discards each feature in the sequence of features
one at a time. Online grafting is preferable in that it incrementally selects features, and it is defined as an
optimization problem based onℓ1-regularized logistic regression. However, its learning is inefficient due to
frequent parameter optimization. We propose two improved methods, in terms of efficiency, for online graft-
ing that approximate original online grafting by testing multiple features simultaneously. The experiments
have shown that our methods significantly improved efficiency of online grafting. Though our methods are
approximation techniques, deterioration of prediction performance was negligibly small.

1 INTRODUCTION

Currently, many techniques developed in the field of
machine learning are used in various fields includ-
ing information retrieval, natural language process-
ing, speech recognition and bio-informatics. Among
these techniques, learning of classification is one of
the most fundamental and general techniques that can
be used for many applications. Given training sam-
ples with correct labels, a classifier that infers the cor-
rect label for an input is learned from the training
samples. The classifiers infer the answer from fea-
tures, which are extracted from an input by applying
feature functions for the input. The accuracy of clas-
sifiers highly depends on the feature functions, but it
is not easy to find good feature functions. In many
applications, feature functions are still designed by
human experts. Specifically, in natural language pro-
cessing or information retrieval, combinations of lo-
cal word/part-of-speech features are frequently used
to detect the co-occurrence of words, part-of-speech,
and phrases in text. However, it is obviously not easy
even for human experts to find feature functions from
exponentially many combination features.

Selecting useful features from a large feature set is
calledfeature selection (Guyon and Elisseeff, 2003).
Feature selection is studied in machine learning as
a method for eliminating redundant or unnecessary

features to reduce the learning and inference costs
and improving a classifier’s generalization ability to
predict better answers for unseen data. With feature
selection, we can consider a scenario for obtaining
good features for improving a classifier’s prediction
performance, where we generate exponentially many
combinations of features and then select useful fea-
tures from them (Okanohara and Tsujii, 2009).ℓ1-
regularized logistic regression is preferable for such
a purpose because its prediction performance is com-
parable to the state-of-the-art classifiers (Gao et al.,
2007), and many features are eliminated to minimize
its objective function. However,ℓ1-regularized logis-
tic regression must estimate its parameters for all pos-
sible features, that is, if we had an extremely large
feature set as feature candidates, its parameter opti-
mization would be extremely expensive or intractable.
Perkinset al. proposed a method of incremental fea-
ture selection forℓ1-regularized logistic regression
calledgrafting (Perkins et al., 2003). Grafting starts
from an empty set of features and incrementally se-
lects features from a set of candidate features. Un-
like original ℓ1-regularized logistic regression, graft-
ing does not optimize parameters for the full set of
features, but it requires frequent optimization of pa-
rameters for the currently selected features, which
turns out to be extremely expensive. Perkinset al.
also proposed an online version of grafting, which we
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call online grafting (Perkins and Theiler, 2003), but
its computational cost is still high due to frequent pa-
rameter optimization.

We propose two improved methods for online
grafting, online grafting with multiplicative division
and online grafting with constant division, in which
parameter optimization is performed less frequently
than original online grafting. Our methods have
trade-offs between efficiency and prediction perfor-
mance. If we perform parameter optimization more
frequently, prediction performance will be better but
efficiency will decrease. If we have less frequent pa-
rameter optimization, it will be efficient but predic-
tion performance will decrease. Online grafting with
multiplicative division attempts to optimize parame-
ters each time multiple numbers of features are tested.
Online grafting with constant division attempts to
optimize parameters each time constant numbers of
features are tested. The experiments showed that
our methods significantly improved efficiency of on-
line grafting without deteriorating prediction perfor-
mance. We also measured the performance of our
methods for combination features in the experiments.

2 BACKGROUND

2.1 Logistic Regression with
ℓ1-Regularizer

Logistic regression, known as the maximum entropy
model, is a well known discriminative probabilistic
model for binary classification. Given an inputx, the
logistic regression classifier maps it into an outputy ∈
{−1,+1}, where−1 is a negative label and+1 is a
positive label. The logistic regression classifier learns
its probabilistic model from annotated training data.

Given inputx and outputy, the probabilistic model
of logistic regression is defined as follows.

P(y =+1|x) =
exp( f (x))

1+ exp( f (x))
(1)

f (x) =
d

∑
j=1

w jx j + b (2)

whered is the number of features,b is a bias term,x j
is a j-th feature ofx, andw j is a weight for thej-th
feature.

The logistic regression classifier is trained by
maximizing the log-likelihood of the training data, or
equivalently minimizing the binomial negative log-
likelihood (BNLL) (Hastie et al., 2001) loss func-
tion for the training data. Logistic regression is

often trained with regularization to prevent overfit-
ting to the training data. Typically,ℓ1-norm or ℓ2-
norm is used as a regularization term, which is called
ℓ1-regularizer forℓ1-norm andℓ2-regularizer forℓ2-
norm. ℓ1-regularizer can also be used for feature se-
lection because many of the weights become zeros
for useless features as a result of training withℓ1-
regularizer (Tibshirani, 1994). Both grafting and on-
line grafting select features in the framework ofℓ1-
regularized logistic regression.

Given a data setD, the objective functionC for ℓ1-
regularized logistic regression is defined as follows:

C(w,D) =
1
|D| ∑

〈x,y〉∈D

log(1+ e−y f (x))+λ
d

∑
j=1

|w j|,

(3)
whereλ is a hyper-parameter, that is tuned manually.
This is the sum of the BNLL loss function andℓ1-
regularizer. The objective function is a convex opti-
mization problem without constraints.

2.2 Grafting

Grafting is a learning method that provides both
parameter optimization and feature selection in
the framework ofℓ1-regularized logistic regression.
Given a set of featuresF , grafting incrementally se-
lects features fromF. For each iteration of feature
selection, grafting optimizes weight parameters us-
ing a general-purpose gradient descent method and
selects a feature that has the greatest effect on reduc-
ing the objective functionC, i.e., a feature that has
the greatest magnitude of gradient∂C

∂wi
. Grafting stops

iteration when the magnitude of the gradient of the
loss function ∂L

∂wi
is belowλ (the hyper-parameter for

theℓ1-regularizer) for all remaining features. The ob-
tained weights are guaranteed to be locally optimum,
so grafting is guaranteed to find the global optimum
because the objective function is convex. This means
that grafting finds the optimum for the problem ofℓ1-
regularized logistic regression.

2.3 Online Grafting

Online grafting is an online feature selection algo-
rithm that provides both parameter optimization and
online feature selection. Non-online grafting selects
a feature from the set of features, that is, each feature
is tested many times so as to find the best feature in
the feature set. Online grafting is a feature selection
scheme where we assume that a sequence of features
is given, and each feature is tested only once along the
sequence of features.
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Algorithm 1 : ℓ1-reduction.

Input: feature vectorf and weight vectorw
for all wi ∈ w do

if wi = 0 then
Removefi from f
Removewi from w

end if
end for

The algorithm for online grafting is as follows.
Let F be the feature sequence,D the data set, and
λ the hyper-parameter for online grafting. Assume
that we have featuref and weightw vectors. First,
we retrieve a featuref from the head ofF, and f is
removed from the sequence. Then,f is added tof,
and 0 is added tow. Let the added feature vector be
f(test) and the added weight vectorw(test). The online
grafting algorithm tests the addedf as follows.

∣

∣

∣

∣

∂L̄
∂w j+1

∣

∣

∣

∣

> λ, (4)

whereL̄ is the average loss function forD. If f satis-
fies the above condition, it is selected as a new feature
in the model. If it is selected,f andw are updated
to f(test) and w(test), then the neww is re-estimated
by solving theℓ1-regularized logistic regression prob-
lem for the newf andD by using general-purpose nu-
merical optimization methods such as quasi-Newton
methods. If f is not selected,w and f remain un-
changed. Online grafting repeats this procedure until
F becomes empty.

In online grafting, weights that become zero as
a result of optimization are explicitly pruned byℓ1-
reduction each time after optimization is performed.
That is, in online grafting,ℓ1-reduction is frequently
performed.

3 TESTING MULTIPLE
FEATURES

Original online grafting is not practical for real data
sets, e.g., a data set consisting of millions of features
and several tens of thousands of data points, due to
high computational cost of original online grafting.
There are two reasons for this. First, parameter op-
timization is performed using a general-purpose nu-
merical optimization method, which is computation-
ally expensive. Second, original online grafting must
apply expensive parameter optimization each time a
feature passes the test. For example, if we have one
million features and one tenth of features pass the test,
we have to apply parameter optimization one thou-
sand times.

Algorithm 2 : Online Grafting (Multiplicative Division).

Input: F , D andλ
f := (), w := (), i := 0, j := 0
for all f ∈ F do

i := i+1
let f = ( f1, · · · , f j) andw = (w1, · · · ,w j)

f(test) := ( f1, · · · , f j, f ), w(test) := (w1, · · · ,w j,0)

if
∣

∣

∣

∂LD(w(test))
∂w j+1

∣

∣

∣
> λ then

f := f(test), w := w(test)

end if
if i ≥ 2j then

Optimizew for D ........(*)
ℓ1-reduction(f, w)
i := 0, j := j+1

end if
end for
return f andw

Our two proposed methods approximate online
grafting by testing multiple features simultaneously,
i.e., multiple features are tested successively without
optimization, and the parameters are optimized only
after the multiple feature test.

3.1 Multiplicative Division

The first method,multiplicative division, tests mul-
tiple features in which the number of tested features
increases in multiple. First, one feature is tested then
parameter optimization is performed. Next, two fea-
tures are tested and parameter optimization is per-
formed. Next, four features are tested and parameter
optimization is performed. We continue this proce-
dure until we reach the end of the feature sequence.
With this method, we test 2i−1 features before we per-
form i-th parameter optimization.

Algorithm 2 is that for online grafting with multi-
plicative division.

This method frequently optimizes the weights in
the beginning of the procedure. The trained model has
a small number of features in the beginning; hence,
we consider that the ability of selecting good features
is weak in the beginning. After having a sufficient
number of features, we assume that online grafting
can select good features with less frequent parameter
optimization.

This strategy can significantly reduce the total
number of optimizations, but online grafting might
wrongly select useless features or discard useful fea-
tures. We examined this trade-off by evaluating the
accuracy of online grafting through experiments.

In the experiments, we also evaluated the cumu-
lative number of optimized weights, which is the cu-
mulative number of weights that are optimized by pa-
rameter optimization. As the number of data points
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Algorithm 3 : Online Grafting (Constant Division).

Input: F, D, λ andC
f := (), w := (), i := 1
for all f ∈ F do

i := i+1
let f = ( f1, · · · , f j) andw = (w1, · · · ,w j)

f(test) := ( f1, · · · , f j, f ), w(test) := (w1, · · · ,w j,0)

if
∣

∣

∣

∂LD(w(test))
∂w j+1

∣

∣

∣

> λ then

f := f(test), w := w(test)

end if
if i ≥ |F |/C then

Optimizew for D ........(*)
ℓ1-reduction(f, w)
i := 1

end if
end for
return f andw

is fixed in online feature selection, the computational
cost for learning is related to the number of weights
that are estimated by parameter optimization. We
compare the cumulative number of optimized weights
between original online grafting, our online grafting
methods, andℓ1-regularized logistic regression. In
principle, the accuracy ofℓ1-regularized logistic re-
gression is better than online grafting because online
grafting is a method of approximatingℓ1-regularized
logistic regression. However,ℓ1-regularized logistic
regression requires full features and weights as inputs
for the algorithm, which means that it requires sig-
nificant time and space for parameter optimization.
Therefore, there is also a trade-off between accuracy
and cumulative number of optimized weights. We
also evaluated this trade-off in the experiments.

3.2 Constant Division

The second method,constant division, tests multi-
ple features in which the number of tested features
is fixed. Given a constantC, |F |/C features are tested
then parameter optimization is performed. We con-
tinue this procedure until we reach the end of feature
sequence. With this method, we always test|F|/C
features before we perform parameter optimization.
Algorithm 3 shows the algorithm for online grafting
with constant division.

The advantage of this strategy is that we can con-
trol the frequency of parameter optimization. If we set
the constantC as |F |, then online grafting with con-
stant division is the same as original online grafting.

4 COMBINING FEATURES

We also examine a method for generating a new fea-

ture set by combining features in the framework of on-
line feature selection. A new feature can be generated
by multiplying the feature elements. As there are 2|F |

combinations forF , the feature combination method
can generate an extremely long sequence of features.
Let F1 = { f1, f2, · · · , fK}. A new feature setF2
is generated as{ f1 f1, f1 f2, · · · , f1 fK , f2 f1, · · · , fK fK}
by multiplying two elements inF1. For the com-
bination of orderL, we generate a new feature set
F1 ∪ F2 ∪ ·· · ∪ FL. We call the new feature set ‘L-
combination feature set’.

5 EXPERIMENT

5.1 The Datasets

We used four data sets in the experiments; a9a (Frank
and Asuncion, 2010), w8a (Platt, 1999), IJCNN1
(Prokhorov, 2001), and news20.binary (Keerthi and
DeCoste, 2005). The prediction task of a9a is to de-
termine that a person makes over 50,000 USD a year.
w8a and news20.binary are for text categorization,
and IJCNN1 is used in the IJCNN 2001 competition.
Each data set was composed of a training set, a devel-
opment set, and a test set. The number of features for
each data set is listed in Table 1. Since a9a, w8a, and
IJCNN1 do not have large feature sets, we used the 2-
combination feature set. Table 1 also lists the number
of combination features. These data sets were used
for binary classification, i.e, the output labels were
binary-label{−1,+1} in all data sets.

5.2 Evaluation

We compared our methods (multiplicative division
and constant division), a current method (original on-
line grafting), andℓ1-regularized logistic regression
(LR+L1). The division numberC for constant di-
vision and the hyper-parameterλ for regularization
were determined using the development sets. We im-
plemented the online grafting algorithms in Python.
We used the Python package of LIBLINEAR (Fan
et al., 2008) for parameter optimization ((*) in Algo-
rithm 2, 3). We used InTrigger1, a distributed comput-
ing platform consisting of more than 1,900 CPU cores
in 14 sites, for conducting the experiments. We eval-
uated precision, training time, the number of weights
optimized by LIBLINEAR (optimized weights), and
the number of features that remain afterℓ1-reduction
(active features) for the test data sets.

1http://www.intrigger.jp/
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The experimental results are listed in Tables 2, 3,
4, and 5. The results from the tables indicate that the
multiplicative division method achieved the least cu-
mulative number of optimized weights and the short-
est training time of the two proposed methods. That
is, it successfully reduced the computational cost.
When comparing the two proposed methods with
original online grafting. The proposed methods dra-
matically reduced both training time and the cumula-
tive number of optimized weights. The difference in
training time between LR+L1 and the multiplicative
division method was rather small, but the multiplica-
tive division method was slightly faster than LR+L1,
and the cumulative number of optimized weights with
the multiplicative division method was smaller than
LR+L1. These tables also show that the difference in
precision was negligibly small among the proposed
methods, original online grafting, and LR+L1 in a9a,
w8a, and IJCNN1. These results indicate that our
methods are good approximations of LR+L1 in terms
of precision.

6 CONCLUSIONS

We proposed two improved methods, in terms of effi-
ciency, for online grafting. Online grafting is an incre-
mental gradient-based method for feature selection,
which incrementally estimates features that should be
assigned exactly zero weights inℓ1-regularized lo-
gistic regression, and eliminates them one at a time.
Online grafting was preferable as a feature selection
method but its learning was inefficient due to frequent
parameter optimization. We approximated original
online grafting by testing multiple features simultane-
ously, i.e., multiple features were tested successively
without optimization.

We evaluated our two methods. They attempt
to optimize parameters each time multiple/constant
numbers of features are tested. Though our meth-
ods have trade-offs between efficiency and prediction
accuracy, the experimental results showed that our
methods worked efficiently with negligibly small loss
of prediction accuracy, and in some cases prediction
accuracy was better than original online grafting and
ℓ1-regularized logistic regression.

ACKNOWLEDGEMENTS

We would like to thank the InTrigger team for oper-
ating and offering the computing resources consisting
of more than 1,900 CPU cores in 14 sites. This work

was supported by JSPS KAKENHI Grant-in-Aid for
Scientific Research (C) Grant Number 22500121.

REFERENCES

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and
Lin, C.-J. (2008). LIBLINEAR:a library for large lin-
ear classification.Journal of Machine Learning Re-
search, 9:1871–1874.

Frank, A. and Asuncion, A. (2010). UCI machine learning
repository.

Gao, J., Andrew, G., Johnson, M., and Toutanova, K.
(2007). A comparative study of parameter estimation
methods for statistical natural language processing. In
Proceedings of the 45th Annual Meeting of the Asso-
ciation of Computational Linguistics (ACL’07), pages
824–831, Prague, Czech Republic. The Association
for Computational Linguistics.

Guyon, I. and Elisseeff, A. (2003). An introduction to vari-
able and feature selection.Journal of Machine Learn-
ing Research, 3:1157–1182.

Hastie, T., Tibshirani, R., and Friedman, J. H. (2001).The
Elements of Statistical Learning. Springer, New York:
Springer-Verlag.

Keerthi, S. S. and DeCoste, D. (2005). A modified finite
newton method for fast solution of large scale lin-
ear SVMs. Journal of Machine Learning Research,
6:341–361.

Okanohara, D. and Tsujii, J. (2009). Learning combina-
tion features with L1 regularization. InProceedings
of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, Companion
Volume: Short Papers (NAACL-short’09), pages 97–
100, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Perkins, S., Lacker, K., Theiler, J., Guyon, I., and Elisseeff,
A. (2003). Grafting: Fast, incremental feature selec-
tion by gradient descent in function space.Journal of
Machine Learning Research, 3:1333–1356.

Perkins, S. and Theiler, J. (2003). Online feature selection
using grafting. InInternational Conference on Ma-
chine Learning (ICML 2003), pages 592–599. ACM
Press.

Platt, J. C. (1999). Advances in kernel methods. chapter
Fast training of support vector machines using sequen-
tial minimal optimization, pages 185–208. MIT Press.

Prokhorov, D. (2001). IJCNN 2001 neural network compe-
tition. In IJCNN’01, Ford Research Laboratory.

Tibshirani, R. (1994). Regression shrinkage and selection
via the lasso.Journal of the Royal Statistical Society
(Series B), 58:267–288.

Efficient�Online�Feature�Selection�based�on�l1-Regularized�Logistic�Regression

281



Table 1: Specifications of data sets.

a9a w8a IJCNN1 news20.binary
# of features 123 300 22 1,355,191

# of combination features 15,252 90,300 506 -
# of training data 26,048 36,624 39,992 10,000

# of development data 6,513 8,922 9,998 4,998
# of test data 16,281 13,699 91,701 4,998

Table 2: Experimental results for a9a.

Precision Cumulative number Time Max number Active features
(%) of optimized weights (s) of optimized weights

Multiplicative division 85.25 6,772 10.45 2,146 451
Constant division C = 5 85.24 6,970 23.42 1,863 329
Constant division C = 10 85.19 8,058 34.07 1,199 379
Constant division C = 50 85.24 13,265 99.52 451 135
Original online grafting 85.19 505,822 5,952.71 116 102

(Perkins and Theiler, 2003)
LR+L1 85.19 15,252 10.78 15,252 643

Table 3: Experimental results for w8a.

Precision Cumulative number Time Max number Active features
(%) of optimized weights (s) of optimized weights

Multiplicative 99.04 38,209 17.26 12,491 673
Constant division C = 5 99.04 37,713 37.77 9,429 673
Constant division C = 10 99.07 39,807 47.03 5,083 596
Constant division C = 50 99.06 53,424 131.52 1,512 442
Original online grafting 99.05 8,833,804 56,029.97 278 269

(Perkins and Theiler, 2003)
LR+L1 99.11 90,300 24.4 90,300 958

Table 4: Experimental results for IJCNN1.

Precision Cumulative number Time Max number Active features
(%) of optimized weights (s) of optimized weights

Multiplicative division 97.64 742 20.44 394 391
Constant division C = 5 97.60 1,080 41.07 388 386
Constant division C = 10 97.58 1,962 67.92 380 380
Constant division C = 50 97.61 8,810 332.75 371 371
Original online grafting 97.61 68,438 2,633.61 317 314

(Perkins and Theiler, 2003)
LR+L1 97.62 506 15.67 506 414

Table 5: Experimental results for news20.binary.

Precision Cumulative number Time Max number Active features
(%) of optimized weights (s) of optimized weights

Multiplicative division 94.90 37,176 11.77 5,007 2,327
Constant division C = 5 94.96 221,574 20.56 205,210 2,615
Constant division C = 10 94.94 145,456 34.44 115,802 2,201
Constant division C = 50 94.76 128,409 141.62 24,419 1,756
Original online grafting 95.00 16,302,937 15,994.70 1,851 1,412

(Perkins and Theiler, 2003)
LR+L1 96.22 1,355,191 12.05 1,355,191 11,224
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