Human Activity Recognition for an Intelligent Knee Orthosis

Diliana Rebelo!, Christoph Amma?, Hugo Gamboa®*® and Tanja Schultz?
LCEFITEC, Physics Department, FCT-UNL, 2829-516, Caparica, Portugal
2Cognitive System Lab (CSL), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
3pLUX-Wireless Biosignals S.A, 1050-059, Lisbon, Portugal

Keywords:

Abstract:

Biosignals, Human Activity Recognition, Signal-processing, Hidden Markov Models.

This paper investigates the possibility to classify isolated human activities from biosignal sensors integrated

into a knee orthosis. An intelligent orthosis that is capable to recognize its wearers activity would be able to
adapt itself to the users situation for enhanced comfort. We use a setup with three modalities: accelerometry,
electromyography and goniometry to measure leg motion and muscle activity of the wearer. We segment
signals in motion primitives and apply Hidden Markov Models to classify these isolated motion primitives.
We discriminate between seven activities like for example walking stairs and ascend or descend a hill. In a
small user study we reach an average person-dependent accuracy of 98% and a person-independent accuracy

of 79%.

1 INTRODUCTION

Passive orthoses are widely used for conservative
therapy of diseases like Gonarthrosis, which is Os-
teoarthritis in the knee joint. Depending on the type
of arthrosis, these orthoses apply a constant force on
the knee joint to correct a defective position. This is
usually painful or at least unpleasant for the wearer
after a certain amount of time. Future active orthoses
could be able to vary this force depending on the cur-
rent wearers activity and therefore only apply force
if the knee joint is stressed, e.g. while walking stairs
but not while the wearer is sitting. This will impose
less strain on the wearer. In order to develop such a
system, it will be necessary to recognize the wearers
activity, which is the topic of this paper. The study
presented in this paper is part of a larger effort to de-
velop such active orthoses.

In this paper we evaluate the possibility to recog-
nize human activities based on data from biosignal
sensors solely placed on or under an existing passive
knee orthosis to allow future integration of sensors.
The contribution of this paper is the evaluation of the
ability to recognize activities with these restrictions
on sensor placement as well as providing a proof-of-
concept for the development of an activity recognition
system for an intelligent orthosis.

The focus of this work is the question how well we
can discriminate already segmented isolated motion
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primitives. In case of periodic activities like walk-
ing, we define a primitive as one cycle, in case of
non-periodic activities like sitting down, we define a
primitive as the complete motion. Therefore, prior
to classification, the continuous data recordings need
to be segmented into isolated motion primitives. We
use an automatic approach for the segmentation of all
periodic activities and perform manual segmentation
for non-periodic activities. We use Hidden-Markov-
Models (HMM) as classifier and model each of the
seven motion primitives with one HMM. In future
work we want to rely on the implicit segmentation
ability of HMMs to allow for realtime usage.

2 RELATED WORK

Gait and posture are often categorized as the standard
human movement from which analysis allow clinical
evaluation. In the past, some studies have proved the
reliability of accelerometry on activity recognition on
data collected from different areas of the body. For
example, in (Mathie et al., 2003), the use of triax-
ial accelerometers successfully distinguished between
activity (transitions sit-to-stand and stand-to-sit and
walk) and rest. In the context of physical activity
recognition, in (Welk and Differding, 2000), seden-
tary activities such as sitting or sleeping are discrimi-
nated from moderate intensity activities such as walk-
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ing through the analysis of acceleration data.
The use of EMG or electrogoniometers have been ap-
plied mostly on kinematics evaluation (Rowe et al.,
2000) or on pattern comparisons for diagnosis (Suda,
2011).
However, these aforementioned researches use only
accelerometers, goniometers or EMG sensors sepa-
rately with less restrictions on sensor placement.
Hidden Markov Models (HMM) are widely used
for activity recognition (Lukowicz et al., 2004). They
are especially useful if motions can be modeled as a
sequence of motion primitives like for example ges-
tures from a gesture alphabet (Amma et al., 2012).

3 DATA ACQUISITION AND
SIGNAL PROCESSING

3.1/ Experimental Setup

We equipped a standard Ortemal ipomax passive or-
thosis with two triaxial accelerometers-and one bi-
axial goniometer. Additionally, six EMG sensors to
measure muscle activity were put on the skin under
the orthosis. It is a requirement of our application
scenario to place all sensors on or under the ortho-
sis, since all sensors should be integrateable into the
orthosis in the future. The orthosis itself consists of
two rigid shells, one for the upper and one for the
lower leg which are fixed to the leg with straps. The
shells are connected by a joint on each side in order
to allow flexion of the knee joint. The accelerometers
were placed on the frontside of the orthosis, one on
the lower part and one on the upper part to measure
acceleration of tibia and femur respectively. The go-
niometer was placed on the joint so it can measure the
angle of the orthosis joint which can be assumed equal
to the angle of the knee joint. Although the goniome-
ter is biaxial only the axis aligned to the rotation axis
of the orthosis joint was used. EMG electrodes were
placed on the knee’s main extensor and flexor mus-
cles: semimembranosus, semitendinosus, gastrocne-
mius (external and internal), vastus lateralis and vas-
tus medialis. Figure 1 shows the EMG electrodes’
locations (A, B) as well as the complete experimental
setup (C).

The signals were recorded wirelessly with two
synchronized bioPluxresearch? devices at a sampling
rate of 1000 Hz.

We performed a study with 6 healthy male subjects in
the age between 20 and 30. Although the orthosis was
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Figure 1: (A, B) Placement of electromyography surface
electrodes (C) Complete experimental setup: two Bioplux
research devices, two ACC (circles), six EMG and one go-
niometry sensors (arrow) placed on a regular Ortema right
knee orthosis.

not adapted to the anatomy of the subjects, all partic-
ipants were able to move their knee freely and didn’t
feel any pain. Additionally, we made video record-
ings of the experiments for reference.

3.2 Acquisition Protocol

The subjects performed the following 7 activities for
the given number of repetitions:

Activity 1. Sit and stand (20 repetitions);

Activity 2. Sit, stand and walk a few steps (5 rep-
etitions);

Activity 3. Walk to a chair, turn, sit and stand (20
repetitions);

Activity 4. Walk and stairs up (10 repetitions);
Activity 5. Walk and stairs down (10 repetitions);

Activity 6. Ascend a hill (2 repetitions of 2 min-
utes each, with 27% of inclination);

Activity 7. Descend a hill (2 repetitions of 2 min-
utes each, with 27% of inclination);

Activities 6 and 7 were performed on a treadmill with
an adjustable inclination at a walking speed of 2.5
km/h.

The combined activities were chosen to have more
challenging data for future evaluation of continuous
recognition of activities. Since this is not in the
scope of this paper the recorded data was segmented
into motion primitives. In total, we work with 7
movements: walk (W), stand-to-sit (St), sit-to-stand
(Si), stairs up (Su), stairs down (Sd), ascend (A) and
descend (D).

3.3 Data Segmentation

The purpose of the data segmentation step is to split
the continuous sensor recordings into motion primi-
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tives. For the periodic motions walk, stairs up, stairs
down, and ascend and descend a hill, we define a mo-
tion primitive as one complete gait cycle. For motions
like stand-to-sit and sit-to-stand, we define a motion
primitive as the movement that occurs between the
two static postures “stand” and “sit”. We segment
each continuous periodic signals in its unique mo-
tion primitives. We segment the periodic activities ac-
cording to the standard segmentation of gait cycles in
(Sutherland, 2002). A gait cycle consists of a stance
and a swing phase and starts and ends with the initial
contact of the heel on the floor. At this point of the
gait cycle the knee angle is minimal.

For cyclic motions we compute the minima of the
goniometer signal and take these as segment borders.
Figure 2 illustrates the resulting segmentation. The

Figure 2: Example segmentation of the activity walk shown
for the goniometer signal. The minima represent segment
borders.

non-periodic movements stand-to-sit and sit-to-stand
were segmented manually based on the goniometer
signal. We visually checked the results of the auto-
matic segmentation to verify the correctness of our
data segmentation.

3.3.1 Data Corpus

After acquisition and segmentation of all recorded
data, the segments for the seven different activities
form our data corpus. In order to get a balanced
dataset for the evaluation we randomly chose 17 seg-
ments per person for each activity, which is the min-
imum number of samples we recorded over all ac-
tivities. The resulting balanced data corpus therefore
consists of 119 segments per person and 714 segments
in total.

3.4 Classification and Feature
Extraction

For feature extraction, the signal is windowed using
a rectangular window function with 50ms window
length and no window overlap. All features are com-
puted on the resulting windows. We denote the sam-

total number of samples per window. Along the ex-
periments, for each window, we extract the Average
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avg =+ g xi for the goniometer and accelerome-
{gy’s output and the Root Mean Square (RMS) RMS =
L(x2+x3+:::4+x3%) for the EMG signals.

We use continuous density Hidden Markov Mod-
els (HMM) as classifier (Rabiner, 1989). Each mo-
tion primitive is modeled by one HMM with a left-to-
right topology with 10 states and Gaussian-Mixture-
Models with two components. In future work we
want to evaluate the ability to concatenate the primi-
tive models to recognize continuous activities without
the need for explicit segmentation. We use the BioKit
toolbox developed at the Cognitive Systems Lab for
the HMM training and decoding.

4 EXPERIMENTS

We evaluate the classification accuracy for classi-
fying isolated motion primitives for all modality
combinations in a subject-dependent and a subject-
independent context.

4.1 Experiment 1: Subject-dependent

To evaluate the subject-dependent accuracy of the
classifier we performed a leave-one-out cross-
validation for each subjects data. We reach accura-
cies between 65% and 98% depending on the signal
modalities used. Table 1 shows the results from which
we can state that the combination GON&ACC has the
highest accuracy.

Table 3 shows the confusion matrix for the best
performing signal combination GON&ACC.

Table 2 shows the classification accuracy per sub-
ject for the best set. High accuracies are reached for
all subjects. For the subject-dependent case, we be-
lieve that a robust activity recognition is possible.

Table 1: Classification accuracy (mean and standard devia-
tion) per combination of signals in subject’s dependent and
independent context.

Classification Accuracy (%)
Subject dependent Subject independent

EMG 65:41 0:17 44:57 13:87
GON 83:33 0:12 61:46 11:67
ACC 97:34 0:01 75:05 22:65
EMG&GON 72:13 0:17 47:94 14:60
GON&ACC 98:32 0:05 78:70 21:64
EMG&ACC 81:23 0:14 55:52 14:46
All 87:54 0:13 63:66 17:14




Table 2: Classification accuracy (mean and standard devi-
ation) per subject for the GON&ACC set in a subject’s de-
pendent and independent context.

Classification Accuracy (%)
Subjects Subject dependent Subject independent

1 97:32 0:04 36:13 21:43
2 99:11 0:02 83:19 10:11
3 97:32 0:04 89:08 4:56
4 98:22 0:03 78:15 8:17
5 98:22 0:03 94:12 0:15
6 99:11 0:04 91:52 0:87

Table 3: Confusion matrix for GON&ACC in a subject-
dependent and subject-independent (between brackets) con-
text, in percentage.

W St Si Su Sd A D

W 95(89) 0 0 0 34 10) 1(7)
St 0 10083 0O 0 017) O 0
Si 0 1(00) 99(83) 0(17) O 0 0
Su 0 0 0 98(92) 2(4) 0@4) ©
Sd 0(4) 0(1) O(1) 0(9) 98(66) 0(1) 2(18)
A 0(1) 0 0 1(32) 0 99(67) 0
D 019 © 0 0 109 0 99(72)

4.2 Experiment 2: Subject-independent

We evaluate the subject-independent performance
with a leave-one-out cross-validation on the subjects.
That means we test on one subjects data and train
on the data of the remaining subjects. We use all
samples in our database, resulting in 595 samples for
training and 119 samples for testing for each subject.

We reach accuracies between 49% and 79% for
the different signal modalities. Table 1 shows the
results and, analogously to the subject-dependent
evaluation, we can state that the combination
GON&ACC has the highest accuracy. Nevertheless,
compared to the subject-dependent case, the accuracy
is much lower which can be explained by the varia-
tions in human motion for different subjects.

Table 3 shows the confusion matrix for
GON&ACC. We can see that the movements
stairs down and ascend are easily confused with
descend and stairs up, respectively. This is not
surprising since the performed motions are very
similar for these pairs of activities.

Table 2 shows the classification accuracy per subject
for the GON&ACC set.

Concerning the evaluation per subject, the rec-
ognizer performed with an accuracy between 36%
and 94% with an average of 79%. Due to the small
number of subjects, the generalization ability of the
classifier is relatively low and thus we can see a low
performance for subject 1.
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5 CONCLUSIONS

In this work we evaluated the possibility to recog-
nize human activities from different biosignal sensors.
We reach a person-dependent accuracy of 98% and
a person-independent accuracy of 79%. The combi-
nation of GON&ACC signals gives the highest accu-
racy. Based on the dataset and the models for the mo-
tion primitives acquired in this work, we will investi-
gate continuous recognition of activities in the future,
which will be the next step towards an active intelli-
gent knee orthosis.
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