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Abstract: Gene expression in different cells is regulated by different sets of transcription factors.  How the 
combinations of transcription factors required to achieve specificity of expression are encoded by regulatory 
regions of DNA is a long-standing problem in biology.  In the model system C. elegans, gene regulatory 
regions are relatively compact, and much work has been done to describe gene expression patterns in a 
number of cell types.  In this work, we collected the promoter regions of genes with known expression 
patterns in a limited number of neuronal cell types, and annotated any DNA motifs in the promoters that 
corresponded to putative binding sites of known C. elegans transcription factors, using position weight 
matrices.  We used association rule mining to identify rules relating the presence of particular motifs with 
expression of particular genes.  We used metrics including confidence, support, lift, and p-value to mine and 
assess rules. We examined the effect on the rules of multiple vs. single transcription factors, and the effect 
of distance from transcription factor binding sites to the start of transcription.  The mined association rules 
were filtered by Benjamini and Hochberg’s approach, and the most interesting rules were selected.  We also 
validated our approach by generating association rules corresponding to gene expression patterns which 
have been already revealed in biological research. We conclude that our system allows the identification of 
interesting putative gene expression rules involving known transcription factors.  These rules can be further 
validated using biological techniques. 

1 INTRODUCTION 

There are numerous important research questions 
related to gene expression.  This paper deals with the 
problem of finding relationships between 
transcription factor binding sites (TFBSs) and cell 
type-specific gene expression, using the nematode 
worm C. elegans as a model system. 

C. elegans has many advantages as a model 
system for understanding gene regulation.  Because 
the genome is relatively compact, regulatory 
sequences are often contained within relatively short 
non-coding promoter regions, which are often close 
to the regulated gene (The C. elegans Sequencing 
Consortium, 1998). A number of groups have used 
both computational and biological techniques to 
elicit TFBSs and regulatory networks (Arda and 
Walhout, 2010); (Bigelow et al., 2004); (Hobert et 
al., 2010); (Ihuegbu et al., 2012); (Newburger and 
Bulyk, 2009); (Reece-Hoyes et al., 2005). Much 
information related to cell type specific gene 

expression has been elucidated (Bamps and Hope, 
2008); (Hunt-Newbury et al., 2007), and collected in 
curated databases (Hope Laboratory Expression 
Pattern Database); (WormBase). Studying cell type 
specific regulation in the C. elegans nervous system 
is particularly appealing, because the number of 
neurons is small (302 in the adult hermaphrodite), 
and all of the neurons are identified and classified 
into 118 distinct types (Altun and Hall, 2011).  

In previous work, we have developed an 
association rule mining and visualization system, 
and used a subset of C. elegans neurons with well-
defined gene expression patterns to try to identify, 
using computational methods, new candidate TFBSs 
from DNA motif sequences conserved among genes 
expressed in the same cell type (Thakkar et al., 
2007). Here, we have used our system to focus on a 
small number of experimentally validated, using 
biological methods, transcription factor binding sites 
in C. elegans. We asked the question whether we 
could derive association rules using these binding 
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sites that would usefully describe and predict gene 
regulatory patterns in neuron cell types in C. 
elegans. We analyzed the combined effect of 
multiple DNA motifs, and the effect of distance 
between motifs and the start of transcription (SoT). 
With correction for multiple tests using Benjamini 
and Hochberg’s false discovery rate control method, 
a number of significant association rules were 
identified.  These results suggest particular 
combinations of transcription factors that may be 
important in cell-specific expression in C. elegans. 

The contributions of this paper include the 
design and implementation of a new analysis 
pipeline that starts with the collection of a new 
dataset of C. elegans genes and biologically found 
TFBSs. Gene promoter regions are annotated with 
these TFBSs. Association rules that incorporate 
presence and relative positions of these TFBSs in the 
gene promoter regions, as well as gene expression 
information, are mined. These rules are further 
analyzed, refined, and statistically corrected for 
multiple tests using our visualization and analysis 
tools. Furthermore, association rules of potential 
biological significance are singled out by this 
analysis pipeline, and are postulated for further 
biological analysis. In addition, this paper illustrates 
how to use our computational tools to analyze and 
refine rules obtained directly from biological 
experiments. 

2 BACKGROUND 

2.1 Gene Expression 

In C. elegans, a simplifying assumption is often 
made that the promoter region a short distance 
upstream from the start of translation is the only 
sequence important in control of transcription 
(Bamps and Hope, 2008). The start of translation is 
used as if it were the start of transcription, because 
the start of transcription can be difficult to determine 
due to trans-splicing (Conrad et al., 1995). Where 
the start of transcription is known, it is typically 
close to the start of translation (The C. elegans 
Sequencing Consortium, 1998); (WormBase). Large 
scale studies have suggested that this assumption is 
justified for a majority of assayed genes (Hunt-
Newbury et al., 2007); (Reece-Hoyes et al., 2007). 
As a starting point for our work, we defined the 
region 1000 bps upstream from the start of 
translation as the promoter region. 

The binding sites for a specific transcription 
factor typically share a common nucleotide 
 

sequence. Because the sequence is not completely 
identical for each binding site, each TFBS is 
represented as a Position Weight Matrix (PWM) 
(Bailey, 1998). A PWM records the likelihood for 
each nucleotide at each position of a TFBS. A motif 
is a potential TFBS, which means that a motif is a 
subsequence of DNA that is a reasonable match to 
the transcription factor’s PWM. 

2.2 Association Rules 

Association rule mining (Agrawal et al., 1993) is a 
technique to find frequently co-occurring items in 
data. An association rule is a probabilistic rule of the 
form: X → Y, where X and Y are sets of items in the 
dataset. This rule means that Y is likely to occur in a 
data instance when the data instance contains (or 
satisfies) X. This likelihood is given by the 
confidence of the rule (defined below). X is called 
the antecedent and Y the consequent of the rule.  

In this work, we use the ASAS (Pray and Ruiz, 
2005) algorithm to mine the association rules of the 
form:  

݅ݐ݋݉ ଵ݂, … ݅ݐ݋݉, ௞݂, …,ଵݐ݊݅ܽݎݐݏ݊݋ܿ , ௠ݐ݊݅ܽݎݐݏ݊݋ܿ
→  ܥ	݁݌ݕݐ	݈݈݁ܿ

where ݇ ൒ 1,݉ ൒ 0. This rule states that if a gene’s 
promoter contains ݉݅ݐ݋ ଵ݂, … ݅ݐ݋݉, ௞݂ and if their 
locations satisfy	ܿݐ݊݅ܽݎݐݏ݊݋ଵ, … ,  ௠, theݐ݊݅ܽݎݐݏ݊݋ܿ
gene is probably expressed in cell type C. The 
conditions include the order of multiple motifs in the 
gene’s promoter region, and the distance of the 
motifs from SoT. 

We used the following different metrics to assess 
an association rule X → Y. Here,	PሺAሻ denotes the 
proportion of data instances in the dataset that 
contain or satisfy A. 
 Support(X → Y) =	PሺX&Yሻ.  

 Confidence(X → Y) = PሺY|Xሻ ൌ 	
୔ሺଡ଼&ଢ଼ሻ

୔ሺଡ଼ሻ
.  

 Lift(X → Y) = 
୔ሺଢ଼|ଡ଼ሻ

୔ሺଢ଼ሻ
ൌ 	

୔ሺଡ଼&ଢ଼ሻ

୔ሺଡ଼ሻ୔ሺଢ଼ሻ
 . 

 p-value(X → Yሻ: A test statistic that measures the 
likelihood that X and Y are independent (Alvarez, 
2003). 

 Within-Cell-Support (X → Y) = 
୔ሺଡ଼&ଢ଼ሻ

୔ሺଢ଼ሻ
. This is not 

a typical association rule metric, but a relevant 
metric in our work. It provides the proportion of 
genes in a cell type that share the pattern described 
by the rule. 
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Table 1: A small sample illustrating our dataset. The first sequence, named WBGene0001145, is expressed in cell type HSN 
and contains two motifs; one might bind transcription factor HLH-1, and the other TRA-1. The first motif is 16 bps long 
and occurs starting at 37 bps away from SoT. 

Sequence HLH-1 TRA-1 DAF-16 … HLH-25 SKN-1 Cell types 
WBGene0001145 [37:52] [236:258] [] … [] [] HSN 
WBGene0000482 [] [] [569:582] … [547:562] [362:373] ADL, ALM, ASE, ASH, ASI 

 

It is expected that rules with high confidence, 
low p-value, high lift, and higher within–cell-type-
support would be more interesting and more likely 
to show true relationships between transcription 
factors and cell types.  

2.3 Controlling False Discovery Rate 

In our work, we use Benjamini’s and Hochberg’s 
procedure to control Type I errors (Benjamini and 
Hochberg, 1995).  A Type I error occurs when a null 
hypothesis is rejected even though it is true. The 
more tests performed on a set of data, the more 
likely a Type Ι error will occur. Consider ݉ tests 
with null hypotheses	ܪଵ, ,ଶܪ	 	 … ,  ௠, andܪ	
corresponding p-values ݌ଵ, ,ଶ݌ … , ଵ݌ ௠. Let݌ ൑ ଶ݌ ൑
⋯ ൑  ௠.  Benjamini’s and Hochberg’s procedure݌
works as follows: (1) Define a threshold 0 ,ݍ ൏ 	ݍ ൑
1,  to control the false discovery rate; (2) Let ݇ to be 
the largest ݅ for which ݌௜ ൑ ሺ݅/݉ሻ(3) ;ݍ Reject all 
null hypotheses ܪ௜, 	݅ ൌ 1, 	2, 	 … , 	݇. 

3 DATA COLLECTION AND 
PREPROCESSING 

All our data were collected from (WormBase). We 
selected 11 neuron cell types from C. elegans: AIA, 
AIY, ADL, ALM, ASE, ASH, ASI, ASK, CAN, 
HSN, and PHA.  This selection was based on each 
cell type having at least 30 genes known to be 
expressed in that cell type.  We collected promoter 
sequences of 331 unique genes expressed in these 
cell types.  We chose to limit the length for each 
promoter sequence to 1000 bps. We used all 71 
PWMs found in WormBase; these correspond to 52 
different transcription factors. 

We used MAST (Bailey, 1998) to annotate 
potential binding sites of the transcription factors in 
the gene promoter sequences. During this process, 
the similarity between each pair of PWMs was 
calculated. PWMs highly similar to others were 
deleted, resulting in only 48 PWMs being kept. We 
set the E-value threshold to 10. This MAST 
parameter is a user required composite of the 
strengths of all the motif matches found in a 

sequence. By filtering the sequences with E-value 
less than or equal to 10, 59 different promoter 
sequences were kept. Finally, our dataset was 
formed with these 59 promoter sequences annotated 
with the aforementioned 48 PWMs, together with 
information on which of the 11 cell types each gene 
is expressed in. The annotation process resulted in a 
maximum number of annotated PWMs in a promoter 
sequence being equal to 17, a minimum number of 
5, and an average of 11. In summary our dataset 
consists of 59 data instances (gene promoters) and 
59 attributes (48 corresponding to the annotated 
motifs according to the 48 PWMs plus 11 cell 
types). Table 1 shows a small sample of our dataset. 

4 MINING OF PATTERNS 

Our association rule mining algorithm takes as input 
a dataset of instances of the type illustrated in Table 
1; a minimum support threshold; and a minimum 
confidence threshold. Its mining strategy is close in 
spirit to that of the two-stage Apriori algorithm 
(Agrawal and Srikant, 1994). That is, it first 
constructs all candidate rules that satisfy the 
minimum support threshold, and then keeps only 
those rules that also satisfy the minimum confidence 
threshold. However, our candidate rule generation is 
more complex than that of the Apriori algorithm, as 
it takes into account the positions of the annotated 
motifs on the promoter regions of the genes relative 
to one another, and relative to SoT.  Handling the 
added data complexity and the added expressiveness 
of the rules requires the use of judicious prune 
strategies and efficient data structures. Once that the 
rules have been constructed based on the minimum 
support and confidence thresholds, they are 
annotated with their lift, p-value, and within-cell-
support. Table 2 contains examples of rules mined 
by our algorithm. 

In this work, we also use our interactive 
visualization tool to visualize the dataset in the 
context of a rule. This enables rule evaluation and 
rule specialization according to biological 
hypotheses regarding order, position, and spacing of 
motifs. 

Mining�Association�Rules�that�Incorporate�Transcription�Factor�Binding�Sites�and�Gene�Expression�Patterns�in�C.�elegans

83



 

 

Based on these association rule mining and 
visualization systems, we implemented the analysis 
pipeline outlined below. Given a dataset D as 
described in section 3 , a minimum 
support	minsupp, and a minimum confidence  
minconf:  
1. Mine all association rules ܺ → ܻ of the form 

described in section 2.2, with supportሺX → Yሻ ൒
minsupp, and confidenceሺX → Yሻ ൒ minconf. 

2. Select the mined rules with p-value ൑0.05. We 
then use these rules to generate new refined 
association rules by applying the following 
analysis methods: 
a. Combined effect of Multiple Motifs Analysis: 

for a rule with multiple motifs, we generate 
new rules by deleting one motif in the original 
rule at a time. We then compare the p-value of 
the original rule with those of the generated 
rules. This analysis is described in section 5.1. 

b. Effect of Distance from SoT Analysis: we 
refine an association rule by adding distance 
constraints to it using our visualization tool. 
We then compare the p-value in the original 
rule with those of the refined rules. This 
analysis is described in Section 5.2.  

3. Apply the Benjamini and Hochberg’s correction 
on each of two rule sets: one containing all the 
mined rules (step 1 above); and the other one 
containing all of the mined rules together with the 
refined rules generated (steps 1 and 2 above). For 
all the rules of one of the rule sets: 
a. Sort the rules in an ascending order of p-values 

ଵ݌ ൑ ଶ݌	 ൑ 	… 	൑ ,௠: ܴଵ݌ ܴଶ, … , ܴ௠. 
b. Let ݇ to be the largest ݅ for which ݌	௜ ൑

௜

௠
 ,ݍ

where q=0.05. 
c. Output the rules ܴଵ, ܴଶ, … , ܴ௞. 

5 RESULTS 

For the results reported in this paper, a minimum 
confidence of 0.2 and a minimum support of 0.1 
were used, resulting in 51 mined association rules. 
Among those rules, 15 had a p-value of less than 
0.05; we call them significant rules.  They are shown 
in Table 2. We found 7 significant rules in which 
there was more than one motif. These rules suggest 
that two motifs work together in regulating gene 
expression. The combined effect of motifs in each of 
these rules will be analyzed in Section 5.1. We also 
analyzed the effect of distance from SoT in the other 
8 single-motif rules. 

It is worth noting that typically in data mining, rules 
that have high confidence are sought, with less 
importance placed on support. However, given the 
nature of gene expression data, the trade-off between 
confidence and support needs to be re-evaluated. On 
the one hand, high rule support is important in gene 
expression analysis as we aim to find meaningful 
patterns that apply to several genes. On the other 
hand, low rule confidence may be observed because 
there are numerous different (hidden) factors that 
affect gene expression, and existing data do not 
account for all of them. As a result, in this work we 
use a lower threshold for rule confidence in order to 
obtain rules that have greater support.  Once rules 
are mined, some of the hidden factors (e.g., the order 
of the motifs, or their distance from each other, or 
their distance from the SoT) may be identified by 
visualizing the rules in the context of the dataset. 
Those factors can then be used to refine the rules, 
thereby increasing their confidence. 

5.1 Combined Effect of Multiple Motifs 

As shown in Table 3, we obtained 7 rules with two 
motifs. We assessed whether the motifs in these 
rules have a combined effect in gene expression, by 
comparing the p-value of a rule with those of simple 
rules created by keeping just one motif from the 
original rule. For example, for the rule set 4 in Table 
3: HNF-6 && HLH-4→HSN, the corresponding 
simple rules are: HNF-6→HSN and HLH-4→HSN. 
We expect the p-value of the multiple-motif rules to 
be much better than those of the corresponding 
single-motif rules if the motifs have a combined 
effect on gene expression. 

 

Figure 1: p-value comparison: multiple-motif vs. single-
motif rules. For each rule containing multiple motifs in 
Table 2, we compared its p-value with those of the derived 
rules containing only one motif, in order to determine 
whether these motifs exhibit a combined effect. 
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Table 2: Significant rules: these are the 15 mined rules with (uncorrected) p-value ൑ 0.05 obtained. The column Motif 
contains motifs and conditions for each rule, and the column Cell Type has the cell type for each rule. Take the first rule as 
an example: PHA-4 && CND-1[SoT] →ASE means that if both motifs CND-1 and PHA are found in a gene’s promoter 
sequence, and CND-1 is closer to SoT, then there is a 100% confidence that the gene will be expressed in cell type ASE. 

ID Motif Cell Type Confidence Support Lift p-value Within cell support 
1 PHA-4&& CND-1[SoT] ASE 1.00 0.1017 2.95 3.07E-4 0.3 (6/20) 
2 HLH-14&& HLH-19[SoT] PHA 0.86 0.1017 3.89 1.49E-5 0.46 (6/13) 
3 PUF-11 ASE 0.67 0.1356 1.97 7.22E-3 0.4 (8/20) 
4 HNF-6 && HLH-4[SoT] HSN 0.67 0.1017 3.03 4.49E-4 0.46 (6/13) 
5 MEX ASE 0.58 0.1186 1.72 4.51E-2 0.35 (7/20) 
6 HLH-19 PHA 0.58 0.1186 2.6 6.76E-4 0.54 (7/13) 
7 PUF-11 PHA 0.50 0.1017 2.27 8.82E-3 0.46 (6/13) 
8 MDL-1 && HLH-4 [SoT] HSN 0.40 0.1356 1.82 1.71E-2 0.62( 8/13) 
9 PHA-4 && SIR-2[SoT] ASK 0.67 0.1017 2.46 3.74E-3 0.38 (6/16) 
10 PHA-4  && HLH-4[SoT] CAN 0.55 0.1017 2.68 1.78E-3 0.5 (6/12) 
11 LIN-32 CAN 0.50 0.1356 2.46 5.55E-4 0.67 (8/12) 
12 PHA-4 ALM 0.50 0.1356 2.11 3.81E-3 0.57 (8/14) 
13 MDL-1 && PHA-4 [SoT] ALM 0.50 0.1017 2.11 1.65E-2 0.43 (6/14) 
14 PHA-4 ADL 0.46 0.1017 1.95 3.14E-2 0.43 (6/14) 
15 PHA-4 AIY 0.22 0.1017 1.87 2.38E-2 0.86 (6/7) 

 
Figure 1 shows –log(p-value) comparisons for all 

the 7 rule sets. The larger this value, the better the 
rule. In most of these rule sets, the measurement 
value of the multiple-motif rule is much better than 
the value of the simple rules. In rule set 4, for 
example, the single rules are not even significant on 
their own, while the joint one is highly significant. 
Thus, these results provide some evidence that the 
motifs in these rules have a combined effect on gene 
expression. The details of the rules are in Table 3. 

5.2 Effect of Distance from SoT 

As mentioned in Section 1, it is believed that 
distance between the motifs and SoT may affect 
gene expression (MacIsaac et al., 2010). Thus, we 
included distance as a factor in our association rules. 
We checked if the rules could be improved by 
adding distance from SoT constraints to them. This 
rule refinement was performed using a visualization 
tool we developed in prior work. Figure 3 shows an 
example of a visualization of the rule PHA-
4→ALM. Note however that if we refine a rule by 
only considering the motif’s location in a very 
specific region, the p-value of the rule may improve 
only at the expense of reducing the number of 
sequences that support the refined rule. The resulting 
rule might be meaningless because of its low 
support. Thus, we aimed at keeping a balance 
between getting a low p-value and keeping a high 
support value.  Distance refined rules are shown in 
Table 4. 

To compare the refined rules with the original 
rules, we also used –log(p-value). For simplicity, in 
this paper we only considered distance refinements 
of rules with only one motif in their antecedents. 
Figure 2 shows p-value comparisons of the 8 single-
motif rules in Table 2 with the distance refined rules 
in Table 4. Except for Rule 11, the other rules were 
improved by constraining the location of the motif in 
each rule to a particular region of the promoter.  This 
illustrates how our visualization tool can aid in the 
refinement of rules for future testing.   

 

Figure 2: p-value comparison: Rules refined by distance 
from SoT vs. original rules. To assess the effect of 
distance from SoT in gene expression, we compared the p-
values of rules refined using distance constraints with 
those of the corresponding original rules. 
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Table 3: Multiple-motif rules and their corresponding single-motif rules. 

ID Motif Cell Type Confidence Support Lift p-value 
Within cell 

support 

1 
PHA-4&& CND-1[SoT] ASE 1.00 0.10 2.95 3.07E-04 0.3 

PHA-4 ASE 0.54 0.12 1.59 8.53E-02 0.35 
CND-1 ASE 0.46 0.22 1.37 5.33E-02 0.65 

2 
HLH-14&& HLH-19[SoT] PHA 0.86 0.10 3.89 1.49E-05 0.46 

HLH-14 PHA 0.25 0.20 1.13 2.51E-01 0.92 
HLH-19 PHA 0.58 0.12 2.64 6.76E-04 0.54 

4 
HNF-6 && HLH-4[SoT] HSN 0.67 0.10 3.03 4.49E-04 0.46 

HNF-6 HSN 0.35 0.12 1.59 8.53E-02 0.54 
HLH-4 HSN 0.26 0.20 1.16 2.00E-01 0.92 

8 
MDL-1 && HLH-4 [SoT] HSN 0.40 0.14 1.82 1.71E-02 0.62 

MDL-1 HSN 0.26 0.17 1.16 3.51E-01 0.77 
HLH-4 HSN 0.26 0.20 1.16 2.00E-01 0.92 

9 
PHA-4 && SIR-2[SoT] ASK 0.67 0.10 2.46 3.74E-03 0.38 

PHA-4 ASK 0.37 0.17 1.37 1.15E-01 0.63 
SIR-2 ASK 0.33 0.12 1.23 4.25E-01 0.44 

10 
PHA-4  && HLH-4[SoT] CAN 0.55 0.10 2.68 1.78E-03 0.5 

PHA-4 CAN 0.22 0.10 1.09 7.41E-01 0.5 
HLH-4 CAN 0.21 0.17 1.05 7.23E-01 0.83 

13 
MDL-1 && PHA-4 [SoT] ALM 0.50 0.10 2.11 1.65E-02 0.43 

MDL-1 ALM 0.26 0.17 1.08 6.30E-01 0.71 
PHA-4 ALM 0.29 0.10 1.20 5.16E-01 0.43 

Table 4: The 8 distance refined single-motif rules. Take the first rule as an example; it is the refinement of rule 3 in Table 2 
where the distance of the motif PUF-11 from SoT is constrained to be between 350 and 950 bps. 

ID Motif Cell Type Confidence Support Lift p-value 
Within cell 

Support 
3 PUF-11 ASE 0.67 0.1356 1.97 7.22E-3 0.4 

3(refined) PUF-11 [350-950] SoT ASE 0.88 0.12 2.58 5.73E-04 0.35 
5 MEX ASE 0.58 0.1186 1.72 4.51E-2 0.35 

5(refined) MEX [250-900] SoT ASE 0.88 0.12 2.58 5.73E-04 0.35 
6 HLH-19 PHA 0.58 0.1186 2.6 6.76E-4 0.54 

6(refined) HLH-19 [190-750] SoT PHA 0.70 0.12 3.18 5.95E-05 0.54 
7 PUF-11 PHA 0.50 0.1017 2.27 8.82E-3 0.46 

7(refined) PUF-11 [100-850] SoT PHA 0.60 0.10 2.72 1.48E-03 0.46 
11 LIN-32 CAN 0.50 0.1356 2.46 5.55E-4 0.67 

11(refined) LIN-32 [0-430] SoT CAN 0.55 0.10 2.68 5.32E-04 0.50 
12 PHA-4 ALM 0.50 0.1356 2.11 3.81E-3 0.57 

12(refined) PHA-4 [520-900] SoT ALM 0.70 0.12 2.95 1.61E-04 0.50 
14 PHA-4 ADL 0.46 0.1017 1.95 3.14E-2 0.43 

14(refined) PHA-4 [50-1000] SoT ADL 0.50 0.10 2.11 1.65E-02 0.43 
15 PHA-4 AIY 0.22 0.1017 1.87 2.38E-2 0.86 

15(refined) PHA-4 [240-850] SoT AIY 0.26 0.10 2.20 6.93E-03 0.86 
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Table 5: Selected mined rules: these rules were selected by the Benjamini and Hochberg’s procedure applied to the 51 
mined rules using q = 0.05. This means that the probability of making a Type I error here is less than 0.05. 

ID in  
Table 2 

Motif 
Cell 
Type 

Confidence Support Lift p-value 
Within cell 

support 
2 HLH-14  && HLH-19  [SoT] PHA 0.8571 0.1017 3.8901 1.49E-05 0.54 
1 PHA-4 && CND-1  [SoT] ASE 1.0000 0.1017 2.9500 3.07E-04 0.30 
4 HNF-6 && HLH-4 [SoT] HSN 0.6667 0.1017 3.0256 4.49E-04 0.46 
11 LIN-32 CAN 0.5000 0.1356 2.4583 5.55E-04 0.67 
6 HLH-19 PHA 0.5833 0.1186 2.6474 6.76E-04 0.54 
10 PHA-4 && HLH-4 [SoT] CAN 0.5455 0.1017 2.6818 1.78E-03 0.50 
9 PHA-4 && SIR-2  [SoT] ASK 0.6667 0.1017 2.4583 3.74E-03 0.38 
12 PHA-4 ALM 0.5000 0.1356 2.1071 3.81E-03 0.57 
3 PUF-11 ASE 0.6667 0.1356 1.9667 7.22E-03 0.40 
7 PUF-11 PHA 0.5000 0.1017 2.2692 8.82E-03 0.46 

Table 6: Selected distance refined rules along with mined rules: these rules were selected by the Benjamini and Hochberg’s 
procedure applied to the rule set which consists of 51 mined rules, the rules generated from multi-motif rules (from Table 
3), and 8 distance refined rules (from Table 4) using q = 0.05. 

ID in  
Table 2 

Motif 
Cell 
Type 

Confidence Support Lift p-value 
Within cell 

support 
2 HLH-14  && HLH-19  [SoT] PHA 0.8571 0.1017 3.8901 1.49E-05 0.54 
6(refined) HLH-19 [190-750] [SoT] PHA 0.70 0.12 3.18 5.95E-05 0.54 
12(refined) PHA-4 [520-900] [SoT] ALM 0.70 0.12 2.95 1.61E-04 0.50 
1 PHA-4 && CND-1  [SoT] ASE 1 0.1017 2.95 3.07E-04 0.3 
4 HNF-6 && HLH-4 [SoT] HSN 0.6667 0.1017 3.0256 4.49E-04 0.46 
11(refined) LIN-32 [0-430] [SoT] CAN 0.55 0.10 2.68 5.32E-04 0.50 
11 LIN-32 CAN 0.5 0.1356 2.4583 5.55E-04 0.67 
3(refined) PUF-11 [350-950] [SoT] ASE 0.88 0.12 2.58 5.73E-04 0.35 
5(refined) MEX [250-900] [SoT] ASE 0.88 0.12 2.58 5.73E-04 0.35 
6 HLH-19 PHA 0.5833 0.1186 2.6474 6.76E-04 0.54 
7(refined) PUF-11 [100-850] SoT PHA 0.60 0.10 2.72 1.48E-03 0.46 
10 PHA-4 && HLH-4 [SoT] CAN 0.5455 0.1017 2.6818 1.78E-03 0.5 
9 PHA-4 && SIR-2  [SoT] ASK 0.6667 0.1017 2.4583 3.74E-03 0.38 
12 PHA-4 ALM 0.5 0.1356 2.1071 3.81E-03 0.57 
15 PHA-4 [240-850] [SoT] AIY 0.26 0.10 2.20 6.93E-03 0.86 
3 PUF-11 ASE 0.6667 0.1356 1.9667 7.22E-03 0.4 
7 PUF-11 PHA 0.5 0.1017 2.2692 8.82E-03 0.46 

 
Figure 3: Sequence plot for the rule PHA-4→ALM. Each red dot is an occurrence of the motif PHA-4 in the promoter 
regions of the genes listed on the Y-axis. The X-axis represents the distance of the motifs from SoT, and the Y-axis lists the 
gene sequences that contain the motif PHA-4.  The sequences above the dotted line are expressed in cell type ALM, while 
the sequences below the dotted line are not. From this plot, we can see that if we refine the rule by specifying the location of 
the motif PHA4 at a distance of between 500 to 900 bps from SoT, then the rule is improved. 
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5.3 Controlling the False Discovery 
Rate 

As described in Section 4, we applied the Benjamini 
and Hochberg’s correction to all 51 mined rules 
using a significant level q = 0.05. Ten rules were 
selected as significant and they are shown in Table 
5. 

We also applied Benjamini and Hochberg’s 
correction to the rule set of the 51 mined rules 
combined with the refined rules generated by the 
previous two analysis methods, using q = 0.05. 
Seventeen rules were selected, as shown in Table 6. 
These rules are statistically interesting and warrant 
further investigation of their biological significance. 

Interestingly, most of the distance refined rules 
were selected in Table 6, where their corresponding 
original rules were not, suggesting that distance 
from the SoT may play an important role in gene 
expression.  One caveat to this conclusion is that the 
refined rules were chosen after looking at the data to 
determine where motifs are found, which may 
artificially lower the p value. Ideally, refined rules 
should be tested on a novel data set. 

5.4 Hypothesis-driven Analysis 

Our analysis tool provides a way to test hypotheses 
relating motifs and cell types, even if these 
hypotheses are not mined by our system. As an 
illustration, we use here a pattern described by 
Hobert et al. (Hobert et al., 2010) and shown in 
Table 7: the two TFs CEH-10 and TTX-3 work 
together in regulating gene expression in cell type 
AIY, but work separately in several other cell types 
examined. Hobert et al. also found that those two 
TFs always bind together in the genes expressed on 
cell type AIY, so they combined their binding sites 
and proposed a PWM which represents the two 
binding sites. We can express this finding in the 
form of an association rule by using Hobert’s 
proposed PWM and the rule CEH-10/TTX-3→AIY. 
We evaluated the statistical significance of this rule 
in our dataset described in section 3. We constructed 
5 rules, one rule for each cell type in Table 7, as 
shown in Table 8. We used our system to calculate 

each of the rules’ metrics with respect to our dataset. 
The third rule, corresponding to the pattern found in 
(Hobert et al., 2010), has the best metrics and a p-
value of 0.00253, while the other rules are not 
significant at a p-value	൑	0.05. Thus, our association 
rules and their metrics are consistent with 
biologically confirmed findings. 

Table 7: Gene expression patterns taken from (Hobert et 
al., 2010).1 means that the TF has been bound in the gene 
regulatory region and 0 means that is has not. 

 CAN ADL AIY AIA ASE 
CEH-10 1 0 1 0 0 
TTX-3 0 1 1 1 0 

6 CONCLUSIONS 

In this paper we have presented a framework for 
discovering rules governing gene expression patterns 
based on transcription factor position weight 
matrices. This framework uses the MAST tool 
(Bailey, 1998) to annotate motifs in each gene 
promoter sequence, and then mines association rules 
to find relations between transcription factors and 
cell type specific expression. We analyzed the 
significance of the association rules we obtained. 
Also, we showed another use of our system to 
evaluate gene expression relations between 
transcription factors and cell types found in the 
literature. 

Future work includes extending our dataset by 
collecting more complete regulatory sequences, 
more cell type classes and expressed sequences, and 
more transcription factors, as more binding sites 
become better defined. Applying other data mining 
techniques in addition to association rule mining will 
be investigated as well. 
 
 
 
 
 
 

Table 8: Association rules constructed and tested. Each rule corresponds to a cell type in Table 7. 

Motif Cell Type Confidence Support Lift p-value Within cell Support 
CEH-10/TTX-3 CAN 0.4 0.0678 1.9667 9.01E-02 0.33 
CEH-10/TTX-3 ADL 0.3 0.0508 1.2643 6.09E-01 0.21 
CEH-10/TTX-3 AIY 0.4 0.0678 3.3714 2.53E-03 0.57 
CEH-10/TTX-3 AIA 0.2 0.0339 2.36 1.51E-01 0.4 
CEH-10/TTX-3 ASE 0.1 0.0169 0.295 7.98E-02 0.05 

BIOINFORMATICS�2013�-�International�Conference�on�Bioinformatics�Models,�Methods�and�Algorithms

88



 

 

REFERENCES 
 

 

Agrawal, R., & Srikant, R. (1994). Fast algorithms for 
mining association rules. Proc. 20th Int. Conference 
on very Large Data Bases (VLDB), 1215, 487-499.  

Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining 
association rules between sets of items in large 
databases. SIGMOD Rec., 22(2), 207-216. doi: 
http://doi.acm.org/10.1145/170036.170072  

Altun, Z. F., & Hall, D. H. (2011). Nervous system, 
general description. (). WormAtlas. doi: 
10.3908/wormatlas.1.18  

Alvarez, S. A. (2003). Chi-squared computation for 
association rules: Preliminary results. (Technical 
Report No. BC-CS-2003-01).Computer Science 
Department, Boston College.  

Arda, H. E., & Walhout, A. J. M. (2010). Gene-centered 
regulatory networks. Briefings in Functional 
Genomics, 9(1), 4-12.  

Bailey, T. T. L. (1998). Combining evidence using p-
values: Application to sequence homology searches. 
Bioinformatics (Oxford, England), 14(1), 48-54.  

Bamps, S., & Hope, I. A. (2008). Large-scale gene 
expression pattern analysis, in situ, in caenorhabditis 
elegans. Briefings in Functional Genomics & 
Proteomics, 7(3), 175-183.  

Benjamini, Y., & Hochberg, Y. (1995). Controlling the 
false discovery rate: A practical and powerful 
approach to multiple testing. Journal of the Royal 
Statistical Society.Series B (Methodological), , 289-
300.  

Bigelow, H., Wenick, A., Wong, A., & Hobert, O. (2004). 
CisOrtho: A program pipeline for genome-wide 
identification of transcription factor target genes using 
phylogenetic footprinting. BMC Bioinformatics, 5(1), 
27.  

Conrad, R., Lea, K., & Blumenthal, T. (1995). SL1 trans-
splicing specified by AU-rich synthetic RNA inserted 
at the 5'end of caenorhabditis elegans pre-mRNA. 
Rna, 1(2), 164-170.  

Hobert, O., Carrera, I., & Stefanakis, N. (2010). The 
molecular and gene regulatory signature of a neuron. 
Trends in Cognitive Sciences, 33(10), 435.  

Hope Laboratory Expression Pattern Database. Retrieved 
from http://bgypc059.leeds.ac.uk/~web/databaseintro. 
htm  

Hunt-Newbury, R., Viveiros, R., Johnsen, R., Mah, A., 
Anastas, D., Fang, L., Lorch, A. (2007). High-
throughput in vivo analysis of gene expression in 
caenorhabditis elegans. PLoS Biology, 5(9), e237.  

A. Icev*, C. Ruiz , and E. Ryder. (2003). Distance-
Enhanced Association Rules for Gene Expression. 
In Proc. of the Third ACM SIGKDD Workshop on 
Data Mining in Bioinformatics (BIOKDD2003). Held 
in conjunction with the Ninth International Conference 
on Knowledge Discovery and Data Mining 
(KDD2003). pp. 34-40. Washington DC, USA. August 
2003  

Ihuegbu, N. E., Stormo, G. D., & Buhler, J. (2012). Fast, 
sensitive discovery of conserved genome-wide motifs. 
Journal of Computational Biology, 19(2), 139-147.  

MacIsaac, K. D., Lo, K. A., Gordon, W., Motola, S., 
Mazor, T., & Fraenkel, E. (2010). A quantitative 
model of transcriptional regulation reveals the 
influence of binding location on expression. PLoS 
Computational Biology, 6(4), e1000773.  

Newburger, D. E., & Bulyk, M. L. (2009). UniPROBE: 
An online database of protein binding microarray data 
on protein–DNA interactions. Nucleic Acids Research, 
37(suppl 1), D77-D82.  

K. A. Pray*, C. Ruiz. (2005). Mining Expressive 
Temporal Associations From Complex 
Data. International Conference on Machine Learning 
and Data Mining MLDM'2005. Springer Verlag. 
Leipzig, Germany. July 9-11, 2005  

Reece-Hoyes, J. S., Deplancke, B., Shingles, J., Grove, C. 
A., Hope, I. A., & Walhout, A. J. M. (2005). A 
compendium of caenorhabditis elegans regulatory 
transcription factors: A resource for mapping 
transcription regulatory networks. Genome Biology, 
6(13), R110.  

Reece-Hoyes, J. S., Shingles, J., Dupuy, D., Grove, C. A., 
Walhout, A. J. M., Vidal, M., & Hope, I. A. (2007). 
Insight into transcription factor gene duplication from 
caenorhabditis elegans promoterome-driven 
expression patterns. BMC Genomics, 8(1), 27.  

D. Thakkar*, C. Ruiz, E. F. Ryder. (2007). Hypothesis 
Driven Specialization of Gene Expression Association 
Rules. In Proceedings of the IEEE International 
Conference on Bioinformatics and Biomedicine 
(BIBM2007). pp. 48-55. Fremont, CA. USA. Nov. 
2007.  

The C. elegans Sequencing Consortium. (1998). Genome 
sequence of the nematode C. elegans: A platform for 
investigating biology. Science, 282(5396), 2012-2018. 
doi: 10.1126/science.282.5396.2012  

WormBase, http://www.wormbase.org/, release WS230, 
date 1 April 2012.  

 

Mining�Association�Rules�that�Incorporate�Transcription�Factor�Binding�Sites�and�Gene�Expression�Patterns�in�C.�elegans

89


