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Abstract: Due to the large amount of data generated by genomics and proteomics research, the use of computational
methods has been a great support tool for this purpose. However, tools based on machine learning, face
several problems associated to the nature of the data, one of them is the class-imabalance problem. Several
balancing techniques exist to obtain an improvement in prediction performance, such as boosting and resam-
pling, but they have multiple weaknesses in difficult data spaces. On the other hand, cost sensitive learning
is an alternative solution, yet, the obtention of appropriate cost matrix to induce a good prediction model is
complex, and still remains an open problem. In this paper, a methodology to obtain an optimal cost matrix to
train models based on cost sensitive learning is proposed. The results show that cost sensitive learning with a
proper cost can be very competitive, and even outperform many class-balance strategies in the state of the art.
Tests were applied to prediction of molecular functions in Embryophyta plants.

1 INTRODUCTION

Modern biology has seen an increasing use of com-
putational techniques for large scale and complex
biological data analysis. Various computational
techniques, particularly machine learning algorithms
(Larrañaga et al., 2006) are applied to identify func-
tions of gene products specified by the molecular ac-
tivities they perform. In this context, there is a vast
number of problems associated with the nature of the
data. In particular, given that the same protein can
be associated to several functional classes, a problem
of classification with multiple labels is generated. A
straightforwad way to solve this kind of problem is the
“one-against-all” strategy, in wich a binary classifier
is trained per each class, in order to take independent
decisions about the membership of proteins. Yet, this
approach leads to a high degree of imbalance between
the number of samples in each class, magnifying the
already present disparity in their sizes and thereby
producing a large bias towards the category with more
information (Sonnenburg et al., 2007). There are sev-
eral ways to address class imbalance problems. Tech-
niques like Sampling and Boosting offer different so-

lutions to same issue, either from the addiction of
subtraction of samples to balance class distribution
(He and Garcia, 2009), or by the training of individ-
ually trained classifiers in an iterative way in order
to emphasizes on the incorrectly learned instances by
the previous iteration trained classifier (Ding, 2011).
However, these techniques have some drawbacks, be-
tween them, the over-training and noise addition in
the training set (oversampling), the lost of useful
data if a reliable sample selection criteria is not se-
lected (subsampling), tendency to fail if there not ex-
ist enough data or the inability to be a good model
in the presence of noise in the training set (Boost-
ing) (He and Garcia, 2009). By the other hand, mod-
els based on cost sensitive learning assume different
costs (or penalties) when examples are misclassified
from one category to another. This process is mod-
elled by a cost matrix that is a numerical representa-
tion of the penalty of classifying examples from one
category to another. Conventionally, models based on
cost-sensitive learning assume that the costs are fixed,
but this condition is not met in real-world applications
and this is still an open problem (Liu and Zhou, 2012).

In this paper, a simple and efficient methodology
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for obtaining the optimal cost matrix of a cost sensi-
tive learning model is proposed. This methodology
is applied to the prediction of molecular functions in
Embryophyta plants and is compared with a broad
spectrum of class-balance strategies in order to obtain
a comprehensive analysis of the problem. The results
show that cost sensitive models are highly reliable and
can outperform many commonly used balance strate-
gies in the prediction of molecular functions.

2 CLASS-BALANCE
STRATEGIES

This section describes the principles of all the com-
monly used class-balance strategies that are going to
be used in the experiments below. They are divided
into three categories: sampling strategies, boosting
strategies and cost sensitive strategies.

2.1 Sampling Strategies

2.1.1 Synthetic Minority Oversampling Method
(SMOTE)

SMOTE is an oversampling method proposed in
(Chawla et al., 2002), which main idea is to create
new synthetic samples that will belong to the minor-
ity class. These samples are computed by interpola-
tion among several closely spaced real samples. In
this way, the decision boundary of the minority class
becomes more general (Grzymala-Busse et al., 2005).
The synthetic samples are generated as follows: for
each real sample under consideration, represented as
a feature vector, the distance between it and its near-
est neighbors is taken. The result is multiplied by a
random number between 0 to 1 with a uniform prob-
ability, and this result is added to the original feature
vector. This procedure causes the selection of a ran-
dom point along the line segment between two sam-
ples. The SMOTE algorithm can be seen in (Chawla
et al., 2002).

2.1.2 Subsampling based on Particle Swarm
Optimization

This technique is based on the search of an opti-
mal sample subset for majority class, that maximizes
the generalization capability of the classifier. To this
purpose, a metaheuristic optimization strategy known
as Particle Swarm Optimization (PSO) is used. The
main concept of this technique is synthesized in the
following form: To a given dataset, a cross valida-
tion composed by three folds is used, generating ex-

ternal training and test sets. This external training sets
are partitioned in turn with another cross-validation of
three folds, these being the internal validation sets.
In this internal validation set, the internal training
sets are used to resampling, while internal test sets
guide the optimization process. Then the external test
sets are reserved to the balance set evaluation and ex-
cluded from resample process. The hybrid optimiza-
tion system based on PSO is used to evaluate the merit
of each majority class sample to compensate the bal-
ance effect between them. This is achieved through
the creation of different samples subsets of majority
class combined with the minority class to build a clas-
sification model which is them used to the partition of
test classification. When the completion criterion is
accomplished, the selected samples by the last itera-
tion are ordered by their frequency selection. After
the list of frequencies of selected samples is obtained,
a balanced dataset from the combination of the sam-
ples belonging to majority class with major frequency
index and samples of minority class is constructed
(Yang et al., 2009). the process of this algorithm is
explained in greater detail in (Yang et al., 2009).

2.2 Boosting Strategies

2.2.1 AdaBoost

Boosting algorithms are iterative algorithms that
place different weights on the training distribution at
each iteration. After each iteration, boosting increases
the weights associated with incorrectly classified ex-
amples and decreases the weights associated with cor-
rectly classified examples. This forces the system to
focus on the rare items, incrementing the weights as-
signed to rare classes. The most representative tech-
nique belonging to Boosting algorithms is AdaBoost
(Polikar, 2006). AdaBoost generates a set of clas-
sifiers, and combines them through weighted major-
ity voting of the classes predicted by the individual
hypotheses. The hypotheses are generated by train-
ing a weak classifier, using instances drawn from an
iteratively updated distribution of the training data.
This distribution update ensures that instances mis-
classified by the previous classifier are more likely to
be included in the training data of the next classifier.
Hence, consecutive classifiers training data are geared
towards increasingly hard-to-classify instances (Po-
likar, 2006), (Schapire, 1999). AdaBoost takes the
final decision via weighted majority voting, i.e, each
classifier will have a different power of decision, it de-
pends on the performance during training procedure,
as the classifier has better performance, will be fa-
vored with a greater power of decision over the other
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classifiers (Polikar, 2006). The algorithm is explained
in a detailed way in (Schapire, 1999).

2.3 Cost Sensitive Strategies

2.3.1 Cost Sensitive Learning

This strategy attempts to minimize costs (or maxi-
mize profits) associated with its decisions rather than
simply getting a high precision. In biclass problems,
when misclassified samples of one class are much
more costly than misclassified samples of another
class, it generate a model that center more in the cor-
rect classification of sample of the most costly class
samples than a model where the class treated equally.
Given a costs specification for correct and incorrect
predictions, a sample could be predicted to have the
class that leads to lower expected cost, where the ex-
pected value is computed using conditional probabil-
ity of each class given a sample. Mathematically be
(i; j) the inputs associated to a cost matrix C, where C
have the cost to predict a class i when the true class is
j. If i= j, then the prediction is correct, while if i 6= j,
the prediction is incorrect. The optimal prediction for
a sample is the class that minimize:

L(x; i) = å
j

P( jjx)C(i; j)

Where cost matrix C(i; j) is defined as:

Table 1: Cost matrix.

Actual negative Actual positive
Predict negative C(0;0) = c00 C(0;1) = c01
Predict positive C(1;0) = c10 C(1;1) = c11

For each i, L(x; i) is the sum over the alternative
possibilities for the true class of x. In this framework,
the goal of algorithm based on cost sensitive learning
is to produce a classifier that can estimate the proba-
bility P( jjx) given any example x, being this the true
class of x. For an example x, i means make the pre-
diction act as if i was the true class of x. the essence
decision-making by cost sensitivity is that this may
be optimal to act as if a class is true even when other
classes are more likely (Elkan, 2001). In biclass case,
the optimal prediction will be the class 1 if and only
if the expected cost of the prediction is less than or
equal to the expected cost of predicting class 0, i.e:

P( j = 0jx)c10 +P( j = 1jx)c11 < P( j = 0jx)c00 +P( j = 1jx)c01

Which equals to:

(1� p)c10 + pc11 < (1� p)c00 + pc01

where p = P( j = 1jx)
The threshold for optimal decision making is such
that:

p� =
c10� c00

c10� c00 + c01� c11

2.3.2 MetaCost

The basic idea of MetaCost is to take a normal, unal-
tered classifier and adjust the learning with a cost ma-
trix. First, the training set is taken to form multiples
subsets via bootstrap. each subset create by bootstrap
is used to build a ensemble of classifiers to take the
final decision, where each subsets and classifiers are
equals to number of iteration used in MetaCost. The
ensemble of classifiers are then combined through a
majority vote to determine the probability of each data
object x belonging to each class label. Next, each data
object in the training data is relabeled based on the
evaluation of a conditional risk function, and a final
classifier is then produced after applying the classifi-
cation algorithm to the relabeled training data. The
conditional risk function is defined as:

R(ijx) = å
j

P( jjx)Ci; j (1)

Where the conditional risk determine the cost of
predicting that sample x belongs to class label i in-
stead of class label j, P( jjx) is the conditional prob-
ability that sample x belongs to label j, and Ci; j is
the cost matrix used in the classification (Domin-
gos, 1999). The Algorithm is explained in detail in
(Domingos, 1999)

3 PROPOSED METHOD:
OPTIMAL COST MATRIX
SEARCH VIA CUCKOOCOST

This section describes the theoretical background and
foundations of the proposed methodology for select-
ing the optimal cost matrix.

3.1 Cuckoo Search

Cuckoo Search is based on the parasitic behavior ex-
posed by some species of Cuckoo birds. His natu-
ral strategy consist in leave eggs in host nest created
by other birds. This eggs presents the particularity to
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have a big similitude with host eggs, the more similar
they are, the greater your chance of survival.

Based on this statement, Cuckoo Search use three
idealized rules:

� Each cuckoo lays one egg at a time, and dumps it
in a randomly chosen nest.

� The best nests with high quality of eggs (solu-
tions) will carry over to the next generations.

� The number of available host nests is fixed, and a
host can discover an alien egg with a probability
pa [0, 1]. In this case, the host bird can either
throw the egg away or abandon the nest so as to
build a completely new nest in a new location.

For simplicity, this last assumption can be approx-
imated by a fraction Pa of the n nests being replaced
by new nests (with new random solutions at new lo-
cations). The generation of new solutions is defined
as:

x(t+1)
i = xt

i +a�Levy(l) (2)

Being l the step size and Lévy flights provides a
random walk to move around the search space. The
Lévy flight can be expressed as:

x(t+1)
i = xt

i +a�Lvy(l) (3)

Where

Levy� u = t�l,(1 < l < 3) (4)

3.2 CuckooCost

In biclass problems, the category with the most lower
representation or among of samples has a higher
misclassification cost C+ (usually this samples cor-
responds to category of interest or minority class).
Moreover, the category with more samples have a
lower misclassification cost C�, due to big amount of
data, helping to its representation. Taking in account
this fact, if a cost matrix is given, the decision that
are optimal are unchanged if their cost (in this case
the inputs of matrix cost) is multiplied by a scalling
factor (Liu and Zhou, 2006), this normalization al-
low change of baseline in which cost are measured.
Therefore, if each elements of cost matrix is multi-
plied by 1

C� , it can be expressed as:

Table 2.

Actual negative Actual positive
Predict negative C(0;0) = 0 C(0;1) =C+=C�

Predict positive C(1;0) = 1 C(1;1) = 0

Since costs can be normalized with the optimal
decision unchanged, C� can always be set to 1, and

therefore C+=C� is always bigger than 1 (Elkan,
2001), this relations is called called cost-sensitive
rescale ratio or cost ratio (Liu and Zhou, 2006). In
order to deal with class-imbalance using Rescaling,
different costs are to be incurred for different classes.
So, the optimal rescale ratio (called imbalance rescale
ratio) of positive class to negative class ri+;� is de-
fined a:

ri+;� = N�=N+

So to handle unequa misclassification and class-
imbalance at the same time, both the cost-sensitive
rescale ratio rc and the imbalance rescale ratio ri
should be take in consideration (Liu and Zhou, 2006).
Merging scale factors, we can obtain:

j = rc� ri+;�

Being j the cost ratio of matrix cost, where j �
ri+;�. CuckooCost use Cuckoo Search to obtain the
optimal parameter values to achieve the best classi-
fication performance possible. each nests represents
a set of solutions in the search space, i.e, each egg
on the nest represent a parameter that will be used in
the model optimization, in this case the cost ratio and
classifier parameters to improve the performance of
cost sensitive learning. In Algorithm 1 explain in de-
tail CuckooCost. It is important notify that in Cuckoo
Search, the parameters Pa and a help to explore ef-
ficiently the search space and allow to find globally
and locally improved solutions, respectively. Addi-
tionally, these parameters directly influence the con-
vergence rate of optimization algorithm, for instance,
if value of Pa tends to be small and a value is large, the
performance of the algorithm will be poor, which in-
duce a increment in number of iterations to converge
into a optimal value. if on the contrary, the value of Pa
is large and value of a is small, the speed of conver-
gence, the convergence speed of the algorithm tends
to be very high to obtain the best solution (Valian
et al., 2011). Usually, both a and Pa use fixed val-
ues, this may augment the probability to decrease the
efficiency of the algorithm. To avoid this problem, a
improvement to Cuckoo Search proposed in (Valian
et al., 2011) is used, which consist in use a range of
Pa and a to change dynamically in each iteration this
values, through the following equations:

c =
1

Ntot
ln
�

amin

amax

�
(5)

Pa = Pmax�
Niter

Ntot
(Pmax�Pmin) (6)

a = amax exp(cNiter) (7)
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Table 3: Dataset definition.

Ontology Class Biological name Samples Imbalance ratio

Molecular
Function

GO 0003677 DNA binding 143 1 : 7:68
GO 0003700 Sequence-specific DNA 102 1 : 10:76

binding transcription factor activity
GO 0003824 Catalytic activity 401 1 : 2:74
GO 0005215 Transporter activity 133 1 : 8:26
GO 0016787 Hydrolase activity 237 1 : 4:63
GO 0030234 Enzyme regulator activity 46 1 : 23:87
GO 0030528 Transcription regulator activity 152 1 : 7:22

The best nest will contain the optimal parameters
to induce a dependable cost sensitive model.

4 EXPERIMENTAL SETUP

4.1 Database

The database is constituted by 1098 proteins be-
longing to Embryophyta taxonomy of the Uniprot
database (Jain et al., 2009) with at least one anno-
tation in the molecular function ontology of the Gene
Ontology Annotation project (Ashburner et al., 2000).
Sequences predicted by computational tools and with
no real experimental evidence were discarded. Pro-
teins are associated to one ore more of the seven cate-
gories shown in Table 3. The dataset does not contain
protein sequences with a sequence identity superior
to 40% in order to avoid bias and overtraining in the
training dataset.

4.2 Characterization of Protein
Sequences

All the proteins (input space) were mapped into fea-
ture space. This set of features is composed by three
groups of attributes: physical-chemical features, pri-
mary structure composition statistics and secondary
structure composition statistics (see Table 4).

The first group reveals information about the bio-
chemical properties of the molecules, and it is com-
posed by: molecular weight, polarity of amino acid
side chains, isoelectric point, and hydropaticity index
(GRAVY). In the second group, the frequencies of
each aminoacid and the frequencies of all possible n-
grams of fixed length n was extracted, where n = 1;2.
Subsequently, in the last set, an estimate of the sec-
ondary structure of each protein, using the Predator
software 2.1 was made (Frishman et al., 1997), such
as the percentage of each structure (alpha, beta, coiled
coils) and each ”di-gram” (9 in total, representing the

Algorithm 1: CuckooCost algorithm.
Require: Pa and ranges of Pa values: Pamin ;Pamax
Require: a and range of a values: amin;amax
Require: Number of nest: NumberNest
Require: Number of eggs per nest: eggdimension
Require: Total number of iterations: Ntot
Require: location of best nest: ind
Require: local best nest: LBest

// set up the initial nests randomly and initial set of
values belonging to fitness function

Niter 0 , Pa initval, a initval2
Cuset initNests(eggsdimension)
f tset O(nullvector)
//Obtain the initial best solution from initial nests

( f tset;Best; ind) getBest(Cuset;Cuset; f tset)

c 1
Ntot ln

�
amin
amax

�
while Niter < Ntot do

Pa = Pmax� Niter
Ntot

(Pmax�Pmin)

a = amax exp(cNiter)

//Generate new solutions, but keep the current best

neoNests getCuckoos(Cuset;Best;a)
( f new;LBest; ind) getBest(Cuset;neoNest; f tset)
Niter = Niter +NumberNest

//Discovery and randomization

discover EmptyNests(Cuset;Pa;maxindex)
( f new;LBest; ind) getBest(Cuset;discover; f tset)
Niter Niter +NumberNest

//Find the best objective so far

if f new > f max then
f max f new
Best LBest

end if
end while
return Best
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Table 4: Description of feature space.

Feature Description Number

Chemical-
Physical

Length of the sequences 1
Molecular weight 1
Percentage of positively charged residues (%) 1
Percentage of negatively charged residues (%) 1
Isoelectric point 1
GRAVY - Hydropathic index 1

Primary
Structure

Frequency of each aminoacids 20
Frequency of each dimers 400

Secundary
Structure

Frequency of structures 3
Frequency of dimers in structures 9

TOTAL 438

combinations of alpha, beta and coiled coils) were
extracted. The estimation of the secondary struc-
ture of the proteins was made from the data based on
the primary structure. Thus, none of the secondary
structures reported here were calculated from known
data.The total set contains 438 feature attributes.

4.3 Feature Selection

In order to obtain representative characteristics, the
feature selection was performed as a pre-processing
stage from the relevance and redundancy analysis.
The relevant characteristics were quantified by calcu-
lating the correlation with the actual labels for all fea-
tures. The redundant features were identified through
the analysis of the feature correlation matrix of di-
mension nxn. To reduce computational cost, a fast
filter-selection algorithm proposed in (Yu and Liu,
2004) was used. As a selection criterion, a measure
based on non-linear correlation was used.

4.4 Class Imbalance and Classification
Schemes

To mitigate the effect generated by multi-label sam-
ples in the dataset, reduce classification complex-
ity and to obtain a better interpretation of results,
a against vs all learning strategy was used. Nev-
ertheless, the use of this strategy raises in addi-
tional problems such as highly class imbalance in the
data space. To overcomes the unbalanced data, five
class balance strategies are applied. between these
techniques, are: AdaBoost (Ada)(Schapire, 1999),
SMOTE (Chawla et al., 2002), Subsampling based
on particle swarm optimization (SPSO) (Yang et al.,
2009), cost sensitive learning (CS)(Elkan, 2001) and
MetaCost (MC)(Domingos, 1999) without matrix
cost optimization via CuckooCost (CS)(MC), and
cost sensitive learning and MetaCost within Cuck-
ooCost (CSCu),(MCCu). To all classification tests,

support vector machines (SVM) with Gaussian Ker-
nel was used, except the test with AdaBoost. In
this case, it was necessary the use of Naive Bayes
as weak classifier and twenty iterations for Boosting
technique.

The tuning of parameters presents in SVM and
Gaussian Kernel (penalty constant C and dispersion
g) were made with particle swarm optimization
(PSO). Taking as objective function the maximization
of adjustable geometric mean (AGM) (Batuwita and
Palade, 2009), which have the property to improve
the sensitivity, keeping reduction of specificity at
minimal. Noteworthy that PSO was not used in cost
sensitive learning strategies (CS and MetaCost), due
to two reasons: i) initially the methodology was pro-
posed based on PSO, however, by not getting good
results, the method was adapted with optimization
based on Cuckoo Search, ii) CuckooCost take g and
penalty constant C as hyperparameters in the opti-
mization problem. To evaluate the performance of
molecular function classification, a cross-validation
with ten folds was used. For CuckooCost, the search
range to each parameter are:

1� j� 1:5Rd
0:00030518�C � 4096
0:000030518� g� 32

Where j is the cost ratio extracted from cost matrix,
and f is the imbalance ratio. Table 4 shows the differ-
ent classes used on this study with its imbalance ratio
and the number of samples for each class.

4.5 Evaluation Metrics

4.5.1 Performance Measures

Performance measures non-susceptible to unbalance
data phenomena were used to obtain a reliably evalu-
ation of the classification. Measures such as sensitiv-
ity, specificity, geometric mean and ROC area (AUC)
were used to this purpose, which are defined as:

i) Sensitivity

Sensitivity =
T P

T P+FN
(8)

ii) Specificity

Speci f icity =
T N

T N +FP
(9)

ii) Geometric mean

Geometricmean =
p

Sensitivity�Speci f icity
(10)
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iv) ROC area (AUC)

AUC =
1+T Prate�FPrate

2
(11)

Additionally, a metric that measure the degree of
bias in the classification, known as the relative sensi-
tivity (RS) (Su and Hsiao, 2007) will be used. It is
defined as:

RS =
Sensitivity
Speci f icity

(12)

4.5.2 Data Complexity Measures

The grade of data imbalance is not the only factor
that leads to a biased learning. elements associated
with data complexity can generate deficiencies in the
learning models. Data complexity can be observed in
phenomena such as difficulties inherent in data, short-
comings in classification algorithms and the low rep-
resentation present in the data space (He and Garcia,
2009). The following measures were used to quantify
the complexity present in data:

i) Overlap Measures: They examine the range and
distribution of values in each category, and verify
the overlap between them (Basu, 2006). In the
experiment, the measures used were:

– Volume of Overlap Region (VOR): It mea-
sures the amount of overlap in the boundary re-
gion between two categories (Basu, 2006), and
it is defined as:

VOR = Õ
i

MIN(max( fi ;c1);max( fi ;c2))�MAX(min( fi;c1);min( fi ;c2))

MAX(max( fi ;c1);max( fi ;c2))�MIN(min( fi ;c1);min( fi ;c2))

(13)

– Fisher’s Discriminant Ratio: For a multidi-
mensional problem, not necessarily all features
have to contribute to class discrimination. As
long as there exists one discriminating feature,
the problem is easy. Therefore, we use the max-
imum f over all the feature dimensions to de-
scribe a problem (Basu, 2006). This measure
also serves as indicator of quality in the dataset
representation, i.e, if its value tends to be low,
there is little contribution in the overall discrim-
ination of the dataset, which may indicate a
weak representation of the data. The Fisher’s
discriminant ratio is defined as:

Fisher = max
(µ1�µ2)

2

s2
1 +s2

2
(14)

– Difference between Inter/Intra Classes Scat-
ter Matrix: It measures the distance between

the class distribution, The measure indicates fa-
vorability as its value is greater (Garcı́a-López
et al., 2012). This metric is complementary
with VOR, Fisher, Fisher discriminant ratio is
described as:

J4 = TrfSb�Swg (15)

Where,

Sw =
C

å
i=1

ni

n
bSi (16)

Sb =
C

å
i=1

ni

n
(mi�m)(mi�m)T (17)

Being bSi the covariance matrix of i� th class,
mi the sample mean of the i� sima class and m
the sample mean of the whole dataset.

ii) Measures of Geometry, Topology and Density
of Manifolds: This metrics gives indirect infor-
mation about separation between categories. It is
assumed that a category is composed by a collec-
tion of one or more manifolds, forming the sup-
port of the probability distribution of a given class.
The shape, position and interconnectivity of man-
ifolds gives a hint of its overlap (Basu, 2006). To
evaluate the complexity of manifolds, the leave-
one-out error in 1NN (LOO 1NN) is used.

5 RESULTS AND DISCUSSION

Figure 4 summarizes the results of classification that
are represented by bars and lines at different color
scales. Each figure contains information about the
behavior of the geometric mean (red), the area un-
der the ROC curve (AUC) (green), sensitivity (color
light blue) and specificity (color light cyan). Each row
depict one of the class-balance strategies, sorted in
ascending order according to the strategy of balance:
oversampling (SMOTE), subsampling (SPSO), cost-
sensitive learning unused and using CuckooCost (CS,
CSCu,MC, MCCU) and Boosting (AdaBoost). On
the right side of the graph, it shows the dispersions of
classification results obtained by each balance tech-
nique, exposed by means of boxplots.
Table 5 contains information concerning to data
complexity involved in the categories. This table
describes measurements that determine the overlap
and separability between classes (VOR, J4, Fisher),
and measurements of nonlinearity in the classifiers
(LOOerror1NN) contrasted with information of im-
balance degree for each dataset, this in order to obtain
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(a) DNA binding.
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(b) Sequence-specific DNA binding -
transcription factor activity.
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(c) Catalytic activity.
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(d) Transporter activity.
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(e) Hydrolase activity.
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(f) Enzyme regulator activity.
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(g) Transcription regulator activity.

Figure 1: Molecular function prediction results.

information concerning to the difficulty to induce re-
liable learning models in each biclass problem. Mea-
sures such as Fisher discriminant ratio, J4 and tend
to be favorable as they increase in value, indicating
a greater separability, otherwise occurs VOR which
tends to be better as its value approaches zero, indicat-
ing a smaller area of overlap. According to the values
given in Table 5, The most complex space is the set
belonging to Hydrolase activity (GO 0016787), show-
ing a low value at J4 and VOR highest compared to
other classes. This fact is proved by the results ob-
tained for this class exhibited in Figure 1(a), Where
all techniques show poor performance balance. This
suggests that in this class will present a very poor rep-
resentation of the data. Also, if we look again the
values listed in the Table 5, The level of imbalance is
not as significant as compared with the values of over-
lap between the data, which might lead to think that
data complexity can may deteriorate more severely
the learning process in protein prediction compared
with the class imbalance, only when level of overlap
and separability is to big compared with imbalance ra-
tio itself.Therefore, it is convenient to use complexity
measures as a complement to the level of imbalance
to be certain about the difficulty of the problem.

Despite the complexity, the best behavior for Hy-
drolase activity was obtained SPSO, with a value of
geometric mean (GM) and ROC area (AUC) just over
50% and very low dispersion in the prediction. How-
ever, the difference was very short compared to the
method based on cost sensitive learning using Cuck-
ooCost (CSCu). It is remarkable that in datasets with
higher imbalance between categories such as Enzyme
regulator activity and Sequence-specific DNA bind-

ing transcription factor activity (GO 0030234 and GO
0003700), CSCu obtained a considerable superior-
ity over the techniques compared, in fact, its perfor-
mance overcomes in five of the seven categories (GO
0030234, GO 0003700, GO 0003677, GO 0030528
and GO 0005215), and the remaining 2 sets (GO
0016787 and GO 0003824) was one of the highest
performing techniques in his prediction, as can be
seen in Table 6

On the other hand, AdaBoost and SMOTE obtain
the worst prediction results, especially in Hidrolase
activity, Enzyme regulator activity and Transcription
regulator activity (GO 0016787, 0030234 and GO
0030528). From these results we conclude that in the
presence of sets with high overlap, oversampling can
be conterproductive, due to there exist a high proba-
bility of adding extra noise in the training set when
synthetic samples are adding, interfering with the in-
duction of a reliable model for prediction of molecu-
lar functions. In case of AdaBoost, the high overlap
can decrease considerably the generalization capabil-
ity of the classifiers used by this technique, when it is
forced to be rather complex decision boundaries.

An important fact shown in Figure 4 and the over-
all results of the Table 6, is the effect of CuckooCost
in methods based on cost sensitive learning over their
performance (CS,MC,CSCu,MCCu). Clearly shows
a substantial improvement in MetaCost and cost sen-
sitive learning in overall performance (increased GM
and AUC), as well as the reliability of the results by
decreasing the classification dispersion in every cate-
gory. Although MetaCost follows the same trend of
improvement when using CuckooCost in transporter
activity (GO 0005215), it is seen a slight increase in
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Table 5: Table of data complexity measurements in the datasets.

Categories Fisher Discriminant Ratio VOR J4 LOO error 1NN (%) Imbalance
GO 0003677 1,162564308 1,518414e-45 366,65 42 1:7,68
GO 0003700 1,258898151 8,325292e-43 153,09 54,7 1:10,76
GO 0003824 0,095424389 1,503915e-39 114,67 41,3 1:2,74
GO 0005215 1,275657636 1,974715e-67 3045,37 19,4 1:8,26
GO 0016787 0,004254501 6,654359e-07 -0,472 53,9 1:4,63
GO 0030234 0,265168845 1,247835e-26 14,712 79,3 1:23,87
GO 0030528 0,954652410 1,125151e-37 255,43 37,6 1:7,22

Table 6: Table of AUC and GM.

Categories SMOTE SPSO CS CSCu MC MCCu Ada
AUC GM AUC GM AUC GM AUC GM AUC GM AUC GM AUC GM

GO 0003677 0,693 0,668 0,708 0,707 0,615 0,519 0,788 0,786 0,684 0,659 0,718 0,713 0,766 0,747
GO 0003700 0,654 0,599 0,721 0,721 0,679 0,629 0,821 0,817 0,617 0,566 0,668 0,655 0,773 0,744
GO 0003824 0,664 0,658 0,667 0,667 0,53 0,292 0,655 0,651 0,618 0,592 0,661 0,654 0,599 0,536
GO 0005215 0,778 0,752 0,811 0,81 0,643 0,562 0,829 0,823 0,803 0,788 0,839 0,835 0,812 0,766
GO 0016787 0,505 0,405 0,516 0,513 0,497 0,188 0,504 0,49 0,499 0,395 0,499 0,443 0,485 0,128
GO 0030234 0,568 0,429 0,663 0,642 0,618 0,613 0,699 0,686 0,515 0,205 0,617 0,518 0,675 0,502
GO 0030528 0,659 0,621 0,717 0,714 0,595 0,493 0,763 0,762 0,68 0,662 0,676 0,66 0,723 0,691

Total 0,646 0,59 0,686 0,682 0,596 0,47 0,723 0,717 0,63 0,552 0,668 0,64 0,69 0,588

the variance of the result. This may be due to an ap-
propriate number of iterations for MetaCost (10 iter-
ations) was not taken. MetaCost use resampling via
Bootstrap, taking a portion of the training set to cre-
ate a subset in each iteration, then each subset is taken
by a number of base classifiers equal to the number
of iterations for the algorithm selected and the final
classification decision is taken in committee by a vote
of each classifier. When the number of iterations in
MetaCost is not adequate and additionally the dataset
have a substantial degree of imbalance, as it is in this
case, the number of samples of interest, i.e the sam-
ples belonging to this category used for each base
classifier could not be enough.

In all categories, there exist cases where some bal-
ance techniques present very similar values of GM
compared with their AUC values, mainly in SPSO
and CSCu. It observes that occurs particularly when
the numeric difference between sensitivity and speci-
ficity is small, i.e, the numeric values of sensitivity
and specificity are to close among them. This fact
can be corroborated with the relative sensitivity val-
ues (RS) (Su and Hsiao, 2007), exposed in Table 7.

Table 7: Table of relative sensitivity.
Categories SMOTE SPSO CS CSCu MC MCCu Ada
GO 0003677 0,582 0,996 3,301 1,119 0,582 0,796 1,572
GO 0003700 0,427 1,067 2,185 1,217 0,433 0,676 1,701
GO 0003824 0,766 0,973 11,057 0,803 0,555 0,755 0,406
GO 0005215 0,593 1,002 2,885 0,8 0,688 0,842 0,762
GO 0016787 0,251 1,234 25,892 0,614 0,241 0,371 0,017
GO 0030234 0,208 1,652 0,783 0,677 0,044 0,297 0,269
GO 0030528 0,503 1,203 3,541 1,126 0,631 0,651 1,824

As it can seen, SPSO and CSCu are the techniques
with less bias in their classifications, with values more
close to one. The above indicates that precisely these

two classifiers try to obtain an equilibrium between
sensibility and specificity values, fact that is shown
with the points in Figure 4 where AUC = GM. Con-
trary to popular belief, SMOTE tends to be very spe-
cific, although sampling techniques try to become
more sensitive to increase distribution of samples on
category with lower representation. it is noteworthy
that both CS and MC obtained a quite substantial im-
provement when they use CuckooCost to optimize
their parameters, initially CS was to sensitive but it
had a small s pecificity, contrary case to MC, that it
had a big specificity. When CuckooCost was used,
both strategies were proximal to one, specially in CS.

6 CONCLUSIONS AND FUTURE
WORK

A method to optimize the free parameters associated
to cost sensitive learning, applied to prediction of
molecular functions in embryophita plants was pro-
posed, with the purpose of having direct control over
sensitivity and specificity of the classification (related
to the costs involved misclassifying samples belong-
ing to each category). The optimization is proposed
over the elements of the cost matrix, whose tuning
was adapted on elements outside the main diagonal,
building the cost ratio. The variation of the cost ratio,
along with the classification parameters were used as
hyperparameters in the optimization problem, since
the metric intrinsically modify the fitness function. To
this purpose, a metaheuristic optimization technique
called Cuckoo Search was used. The methodology
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takes as fitness function the maximization of adjusted
geometric mean (AGM) (Batuwita and Palade, 2009).
This work demonstrated that the use of models based
on cost sensitivity learning are very competitive and
reliable, and even superior to other balance techniques
in the state of the art, specially in applications related
to bioinformatics. As future work, the use of other
metrics as fitness function for improving the costs
associated with the classification, such as ROC area
(AUC), Geometric Mean (GM), Mathews Correlation
Coefficient (MCC) or another relationships between
sensitivity and specificity can be considered.
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