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Abstract: Cyclic Alternating Pattern (CAP) Occurs during Non-Rapid Eye Movement (NREM) Sleep and Is Exploited 
as a Neuro-Marker of Various Sleep Disorders. the CAP Is Build up from so Called a and B Phases Which 
Correspond to Widespread Synchronous and Regular Background Activities of EEG Respectively. 
Currently, These Phases Are Detected by Medical Experts through Visual Inspection,  Thereby Limiting 
Their Potential to Be Used as a Gauge for Sleep Quality. This Paper Aims to Contribute to the Current 
Effort towards Automatic Detection of CAP Phases, so That Its Potential Can Be Improved in the 
Assessment of Sleep Quality. unlike Previous Research Where a Predefined Bipolar (and/or Monopolar) 
Channel Was Used for Automatic Detection, This Paper Explores the Use of a Two-Step Principal 
Component Analysis (PCA) in Spatial and Feature Domains to Extract Features from All 21 Recording 
Channels of Ambulatory EEG. Linear Discriminant Analysis (LDA) Was Used on the Extracted Features to 
Discriminate Phase a and B. over a Five Subject Database, Our Algorithm Reached an Average 
Classification Accuracy over 86%, Whereas the Baseline Approach Resulted in an 80.3% Success Rate. 
These Results Indicate That the Two Step PCA Procedure Can Be Used Effectively to Extract Features from 
Ambulatory EEG towards Detection of CAP. 

1 INTRODUCTION 

Physiologically sleep is divided into two broad 
categories: rapid eye movement (REM) and non-
rapid eye movement (NREM). NREM sleep itself 
consists of sleep stages 1-3, parts of which 
contribute to the cyclic alternating pattern (CAP) 
(Terzano et al., 1985). As suggested by the name, 
CAP is a periodic phenomenon, which can be 
observed noninvasively in the electroencephalogram 
(EEG) signal. A particular CAP cycle is composed 
of phases A and B, where phase A is characterized 
by transient electro-cortical events as opposed to 
phase B, which is a return to the background 
(Terzano et al., 1985). Both phases A and B can last 
between 2 and 60 seconds and are called the 
microstructures of NREM sleep (Mariani et al., 
2011).  

Research on CAP in the past two decades has 
shown its potential as a marker for sleep instability. 
CAP has also been associated with several sleep 

pathologies such as sleep disordered breathing and 
periodic limb movement disorder (Terzano and 
Parrino, 1993). Increased amounts of CAP are 
normally found in cases with obstructive sleep apnea 
syndrome (Halász et al., 2004). In several studies, 
CAP A phase has been understood as a kind of gate 
through which certain pathological events occur 
more easily. This phenomenon has exhibited itself in 
sleep disturbances such as sleep bruxism and 
epilepsy (Kato et al., 2003); (Eisensehr et al., 2001); 
(Halász et al., 2002). In addition, CAP rate (the ratio 
between NREM CAP sleep and total NREM sleep) 
and the distributions of phase A during the CAP 
sequences can be used to characterize such sleep 
pathologies (Mariani et al., 2011).  

Currently, the phases of CAP are detected by 
medical experts by visual inspection, which is a 
cumbersome and subjective procedure. In the past 
few years, there has been an increasing interest in 
the automatic detection of CAP in EEG. Largo et al. 
(2005) utilized a wavelet approach in combination  

342 Khan A., Onaran I., Firat Ince N., Kaveh M., Friday T., Howell M., Henry T. and Sha Z..
A Two-step Subspace Approach for Automatic Detection of CAP Phases in Multichannel Ambulatory Sleep EEG.
DOI: 10.5220/0004247803420346
In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS-2013), pages 342-346
ISBN: 978-989-8565-36-5
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)



 

 

Figure 1: The schematic diagram of the two-step feature 
extraction and classification system. 

with a genetic algorithm to detect CAP. Recently, 
machine learning approaches such as the use of 
neural networks and support vector machines have 
also been explored as methods for automatic CAP 
detection (Mariani et al., 2011); (Mariani et al., 
2010). The subband power of EEG in delta (0-4Hz), 
theta (4-8Hz), alpha (8-12Hz) and beta (13-30Hz) 
are widely used as input features to classifiers. In 
these studies generally, a pre-selected bipolar 
electrode pair was used for feature extraction.  

To our knowledge none of the previously-
proposed  methods have resulted in high enough 
accuracy such that they can be used in clinical 
practice. This paper contributes to the state of the art 
in CAP detection by developing such an automated 
method by employing a different feature extraction 
strategy using the standard tools of statistical signal 
processing. Unlike the previous attempts where a 
preselected bipolar (and/or monopolar) channel was 
used for automatic detection, the approach described 
in this paper uses a two-step Principal Component 
Analysis (PCA) executed in spatial and feature 
domains to extract a small feature set from 
multichannel ambulatory EEG recordings. A 
schematic diagram representing our approach is 
given in Figure 1. In the rest of the paper, we first 
describe the ambulatory EEG dataset used for 
performance evaluation. Then we explain our feature 
extraction and classification techniques. Finally, we 
provide classification results and compare our 
algorithm to a baseline technique utilizing 
predefined channels.  

2 METHODS AND MATERIALS 

2.1 Data Processing and Monitoring 

Continuous ambulatory EEG recordings of five adult 
subjects (3 females and 2 males) with suspected 
seizure disorder were recorded at their homes. This 
was different from previous research, where the 
EEG recordings were made in laboratories. Using a 
home setting is beneficial as it might eliminate or 

reduce any subconscious changes in the sleep pattern 
that might occur as a result of a lab based sleep 
setting. The subjects had no known history of sleep 
disorders.  Their age ranged from 19 to 41. The 
recordings were obtained with a portable data 
acquisition unit (XLTEK Trex, Natus Medical CA). 
EEG was sampled at 200 Hz from 21 channels that 
were in accordance with the 10-20 system. The 
recordings were obtained by the neurology 
department at the University of Minnesota and 
approval was obtained from the University of 
Minnesota institutional review board to analyse the 
data offline. In order to define a ground truth, an 
expert visually scored the continuous ambulatory 
EEG into the following events: 

i) macrostructure: sleep stages 1-4, wake, REM 
sleep, 

ii) arousal, 
iii) microstructure: A and B phases. 

A representative annotated multichannel EEG 
data composed of A and B phases is presented in 
Figure 2. The data was converted from XLTEK to 
Matlab format for further analysis by using in-house 
developed software tools.  

2.2 Spatial PCA (sPCA) 

Our preliminary observations in the collected 
ambulatory EEG data (as depicted in Figure 2) 
indicated that the phase A is characterized by 
transient widespread synchronous electro-cortical 
events. These events are followed by background 
activity (phase B). With this motivation, rather than 
using a predefined channel set, we used spatial 
principal component analysis (sPCA) to transform 
the full multichannel EEG into linear projections of 
the data on a set of virtual orthogonal channels 
represented by the spatial eigenvectors. Each 
eigenvector is a weighted linear combination of the 
EEG recording channels. The orthogonal principal 
components are tuned to account for the spatial 
variance in the data with minimum number of 
elements. This property of PCA makes it possible to 

 
Figure 2: The raw EEG data and the CAP annotations as 
seen on the XLTeK recording system. 
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 represent the multi-channel EEG data with a small 
set of virtual channels, and, thereby serves as a 
dimension reduction and SNR improvement step.  
The sPCA was computed by running an eigenvalue 
decomposition on the spatial covariance matrix with 
a dimension of 21x21. The cumulative energy 
spectrum of the eigenvalues of the sPCA is given in 
Figure 3-A. We observe that only five components 
were able to account for the 95% of the total 
variance in the data. Consequently, we elected to use 
the first five components to project the multichannel 
EEG data into virtual channels. Thus performing the 
sPCA reduced the initial dimensionality from 21 to 
5. 

In order to give a flavour about the distribution 
of spatial projections, the top five spatial 
eigenvectors are visualized on 2D topological head 
maps in Figure 3-B.  

2.3 Subband Features 

After projecting the 21 channel EEG into the virtual 
channels, we computed the power in the following 
five frequency bands as features:  

 Delta Low  (0-2Hz) 
 Delta High (2-4Hz) 
 Theta (4-8 Hz) 
 Alpha (8-13Hz) 
 Beta (13-30 Hz) 

To find the power in each of these bands, a 
Welch periodogram (Hayes, 2009) was computed by 
using a Hamming window of size 200 samples with 
an overlap of 50 samples where the FFT was 
computed at 512 points. 

After computing the five subband powers for 
each of the five virtual channel, a feature vector of 
size 25 was obtained for use in classification  

A straightforward strategy would be to feed the 
above 25-dimensional feature vector into a classifier 
for final decision. However, high dimension is 
generally associated with poor generalization 
capability in the classifier. For this reason, we 
implemented another dimension reduction step via 
PCA. In this approach, a subband matrix was formed 
with a structure of Nx25 where N represents the total 
number of A and B phase instances. Then the data 
was converted to log scale to suppress the skewness 
of the distribution and the effect of outliers and 
normalized. We executed another PCA in this 
feature space (fPCA) and examined the Eigen 
spectrum as in the previous sPCA step. The 
cumulative energy spectrum related to fPCA is given 
in Figure 4. It is observed that only two principal 
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Figure 3: A)  sPCA spectrum. The red line indicates that 
the at least 95% of spatial PCA spectrum is preserved by 
the coefficients below the line. B) 2D topological head 
maps of the sPCA components computed from all 
subjects. 

components accounted for more than 95% of the 
variance in the feature space. Consequently, we 
selected the top two vectors for final feature 
extraction.  

In order to give an idea about the discriminatory 
power of these components we calculated the 
receiver operating characteristic curve (ROC) for 
each feature. The ROC curves for the top two 
components are given in Figure 5. A scatter plot 
representing the distribution of A and B instances of 
all subjects in this 2D space is given in Figure 6. It is 
observed that these two features provided noticeable 
discrimination between phase A and phase B. 

2.4 LDA Classifier 

For CAP detection, classification entailed using part 
of the provided data to form a ‘classifier’ that would 
distinguish between phase A and phase B. Then 
using the remaining data, the performance of the 
classifier was tested to determine the potential for 
automatic detection of CAP. We used a leave-one-
subject-out strategy to train and test the LDA 
classifier. 

Classification was chosen as one of the methods 
because it works as a ‘supervised’ learning 
technique; that is for any given instance, the class or 
category to which it belongs is known apriori. 
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Figure 4: The spectral PCA spectrum (fPCA). The red line 
indicates 95% of the cumulative energy preserved in the 
PCA coefficients. 

Hence, for any given inputs the desired output is 
well defined. Along these lines, previous research on 
the topic of CAP detection has tried different 
machine learning algorithms including neural 
networks, genetic algorithms and support vector 
machines (SVM). In this study, an LDA, which is a 
parameter free classifier, was used.  

In order to compare the efficacy of our approach 
we compared it to a baseline technique, where 
predefined bipolar and monopolar channels are used 
for feature extraction. In this study, we used F4-C4 
bipolar and C4 monopolar electrodes as in (Mariani 
et al., 2011). The same subband features were 
extracted and fed to an LDA classifier to obtain a 
fair comparison. 

 

Figure 5: ROC curve of the first two components (F1 and 
F2) of the fPCA. 

3 RESULTS 

Table 1 shows the classification results obtained 
from our two-step PCA method and the baseline 
approach. Over a 5-subject database, our method 
provided 86.8% classification accuracy. The 
baseline approach was able to reach 80.3% 
classification accuracy on the same database. We 
note that our approach not only provided 
significantly better results (p=0.006, paired t-test) 
but also outperformed the baseline technique in each 
subject.  

4 CONCLUSIONS 

In previous research on CAP detection, the EEG 
signal was processed from the difference between 
two predefined channels (varying depending on 
particular research) from the 10-20 EEG system. 
One disadvantage of using the difference of a 
particular pair of channels is that these channels 
actually might not have the most significant 
contribution to the different phase subtypes. By 
using a particular pair, there is hence the chance that 
the channels with the most vivid distinctions 
between the different phases are overlooked. In this 
study, by taking a completely different approach 
from previous research we performed a two-step 
PCA to account for the information in all channels 
while removing redundancies, and reducing the 
influence of noise and other non-informative signal 
components.  

Performing the sPCA essentially yielded in 
‘virtual channels’. These channels were then used to 
form topological head maps to observe the 
distribution of spatial projection weights. Given that 
each sPC is linear combination of the 21 channels, 
the topological head maps for each sPC 
demonstrated how much a particular area was 
contributing to CAP.  

Table 1: The Classification Results of Spatial & Feature 
Space PCA and fixed channel method using C4-F4 & C4 
electrodes. 

Subject  sPCA & fPCA C4-F4 + C4 
1 88.5 81.5
2 84.0 74.8
3 87.2 76.9
4 87.9 84.6
5 86.6 83.6

Avg. 86.8 80.3 

A�Two-step�Subspace�Approach�for�Automatic�Detection�of�CAP�Phases�in�Multichannel�Ambulatory�Sleep�EEG

345



 

 

Figure 6: The scatter plot of the first two fPCA features 
for all subjects. 

After performing another PCA on the feature 
space composed of subband powers of virtual 
channels, we utilized an LDA classifier for final 
decision. By using this technique, we demonstrated 
that automatic detection of CAP phases such as A 
(activity) and phase B (background) could be 
achieved with an average accuracy of 86.8% by 
using only two effective features.  

It should be noted that the current classification 
results were obtained from features extracted in 
manually segmented EEG. However, in a fully 
automated detection system, the borders of A and B 
phases should be detected as well. Therefore, 
additional research is needed to extend this 
algorithm to continuous EEG recordings. 
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