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Abstract: A number of signal processing techniques make use of first-derivative-based approaches for detecting 
regions of interest in biological signals. For instance, central and five-point derivative-based algorithms are 
employed for emphasizing and identification of the QRS complex in the ECG signal. Signal differentiation 
approaches are also used for detection and removal of high-frequency components associated to artefacts in 
the EEG signal. This paper aims to present a first-derivative approach based upon differentiation of 
consecutive samples – signal slope adaption (SSD) – for detecting regions of sharp wave activity in 
biological signals. A case study is analysed whereby SSD is used to mark and select the sharp wave activity 
associated to the QRS complex in the electrocardiogram. Evaluation of our methodology reveals that SSD 
shows to be effective for identification of QRS samples and, thereby, could be also employed to detect 
samples associated to sharp wave activity regions of other biological signals which possess similar signal 
slope behaviour. 

1 INTRODUCTION 

In research and clinical practice, automatic 
measurement and recognition of parameters in 
biological signals are fundamental to implement 
computer-based tools for data analysis and patient 
monitoring. In this context, detection of sharp wave 
activity or instantaneous signal variability represents 
a useful parameter in digital biological signal 
processing. A classical example of identification of a 
region with steep wave activity in biological signals 
is the detection of the QRS complex for 
measurement of the heart rate variability (HRV), 
which constitutes an important method for 
assessment of the cardiac regulation and diagnostic 
of disorders such as arrhythmias and congestive 
heart failure (Clifford, 2006); (Rangayyan, 2002). 

A number of methodologies which make use of 
first-derivative-based approaches and differentiation 
of the ECG signal are proposed in the literature for 
QRS detection (Pan and Tompkins, 1985); 
(Hamilton and Tompkins, 1986); (Benitez et al., 
2000); (Köhler et al., 2002); (Rezk et al. 2011). The 
basic idea of differentiating the digital signal is that 
such a feature can be used for characterizing and 

emphasizing regions of the signal which contain 
sharp wave activity or specific slope features, as is 
the case of the QRS complex (Köhler et al., 2002). 
As mentioned by Rangayyan (2002), the QRS 
complex has the largest signal slope in a cardiac 
cycle due to rapid conduction and depolarization 
characteristics of the ventricles. First-derivative 
approaches are reported to be robust under 
conditions of changes in QRS amplitude and for 
ECG excerpts corrupted by baseline drifts, motion 
artefacts, and muscular activity (Arzeno et al. 2008); 
(Rangayyan, 2002); (Clifford, 2006). 

Another first-derivative-based approach for fast 
wave activity detection is associated with the 
identification and removal of artefacts from the EEG 
signal, as proposed by Van de Velde et al. (1998) 
and Ferreira et al. (2012). According to Van de 
Velde et al. (1998), a slope differentiator procedure 
is employed for detection of the larger signal slope 
related to the higher-frequency of muscles artefacts 
components in comparison to the EEG. By using the 
same idea, Ferreira et al. (2012) present an approach 
based upon differentiation of consecutive samples of 
the EEG signal for identification and removal of 
gradient artefacts residuals from the 
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electroencephalogram recorded within the fMRI 
magnetic scanner.  Thus, in both of the cases above, 
the larger slope of the artefact interference is used to 
identify whether or not a sample is artefact free. 

First-derivative-based methods have the 
advantage of not requiring manual segmentation of 
data, training of the algorithms or patient-specific 
modifications. Furthermore, they are often 
implemented in real-time applications since they do 
not require extensive computations (Arzeno et al., 
2008). Signal first-derivative-based approaches can 
be used for identifying determined frequency 
properties in the signal as well (Cluitmans et al., 
1993); (Van de Velde et al., 1998). 

2 OBJECTIVES 

Allen et al. (1998) propose a methodology for 
ballistogram artefacts removal from the EEG signal 
recorded during combined EEG-fMRI which makes 
use of R-peaks detection in the ECG signal 
simultaneously registered. The ballistogram or pulse 
artefact is induced in the electrodes of the 
electroencephalograph by the pulsatile movement of 
blood in scalp arteries within the magnetic static 
field (B0) of the magnetic scanner. According to 
Allen et al., the identified QRS peaks in the ECG 
signal are used to calculate an average pulse artefact 
in the EEG signal which is then subtracted from 
those regions where the ballistogram artefact 
appears. A procedure to extract the ECG peaks 
based upon data segmentation and training is 
proposed within the methodology for average pulse 
artefact subtraction by those authors. 

During application of our method proposed in 
Ferreira et al. (2012) for identification and removal 
of residual gradient artefacts from the EEG signal, 
we noticed that the same approach could be 
modified and used for detection of the sharp wave 
activity associated to the ECG peaks, as well as to 
other types of biological signals. Thereby, it could 
be used during removal of the ballistogram artefact 
according to the methodology of Allen et al. (1998). 
Moreover, the advantages mentioned by Arzeno et 
al. (2008) by using first-derivative techniques could 
be incorporated to that methodology. 

The objective of this paper is to propose and 
assess an approach for sharp wave identification in 
biological signals which makes use of the difference 
between consecutive samples of the signal, modified 
from Ferreira et al. (2012). In this sense, a case study 
is presented in which our method is applied to 
identify the sharp wave activity associated to the 

QRS complex of the ECG signal.  

3 MATERIALS AND METHODS 

3.1 Subjects 

For application and evaluation of the proposed 
methodology for fast wave activity detection, we 
used data from the MIT-BH Arrhythmia and the 
MIT-BH Noise Stress Test databases (MIT-BIH, 
1998). These databases consist of 30 min 
ambulatory ECG recordings whose sampling rating 
for signal acquiring was 360 samples per second.  

For performance evaluation purposes, we 
implemented and applied a QRS detector using our 
methodology to the 12 recordings of the MIT-BH 
Noise Stress Test Database. 

3.2 Differentiation between 
Consecutive Samples for Sharp 
Wave Activity Detection  

Ferreira et al. (2012) describe a methodology for 
identification and removal of gradient artefact 
residuals from the EEG signal which is based upon 
the differentiation of consecutive samples of the 
digital signal. According to such an approach, the 
larger slope associated to the sharp wave activity of 
the gradient artefact residuals is used for detecting 
EEG samples which contain artefact interference. In 
order to identify which samples are in the region of 
fast wave activity, a slope threshold (thrs) is 
estimated in such a way that if the sample has signal 
slope larger than this threshold, it is then classified 
to belong to the sharp wave activity region. thrs can 
be estimated, for example, taking into account the 
probability distribution of the signal slope. 

The same idea can be applied for other types of 
biological signal with regions of sharp wave activity. 
It is the case of the QRS complex whose samples 
have signal slope much larger than other regions of 
the ECG signal (Rangayyan, 2002). The signal of 
figure 1a consists of an excerpt of 3600 samples 
(10 s) of the MIT-BH Arrhythmia Database 
recording 103. The respective differentiated signal is 
shown in figure 1b. Such a differentiation was 
obtained by subtraction of consecutive samples of 
the ECG signal, diff (ECG). Clearly, it can be 
noticed that higher values of the differentiated ECG 
are coincident with the region of the QRS complex.  

By analysing probability distributions of the 
signal slope of standard clinical ECG signals with 
high SNR, we could infer that the slope of samples 
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which belong to QRS regions are located above the 
threshold, thrs, calculated considering the average 
and the standard deviation of diff (ECG): 

 

)( )(diff)(diff σμthrs ECGECG  , (1)
 

where μdiff (ECG) is the average and σdiff (ECG)  is the 
standard deviation of diff (ECG), considering a 
window whose number of points is equal to the 
length of the differentiated ECG. It is noteworthy 
that the parameter thrs also corresponds to the RMS 
value of diff (ECG). 
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Figure 1: (a) Excerpt of 3600 samples (10 s) of the MIT-
BH Arrhythmia Database recording 103 and (b) respective 
differentiated signal diff (ECG). 

Taking into account the remarks above, a 
modified methodology from Ferreira et al. (2012), 
herein named signal slope adaption (SSD), was 
developed and is employed in this work in order to 
carry out the localization of the sharp wave activity 
associated to the QRS complexes, described as 
follows.  

As mentioned earlier, the highest values of the 
signal differentiation, diff (ECG), occurs precisely 
for samples located in the QRS complex. Therefore, 
once the highest slopes of the ECG signal can be 
associated to QRS samples along the ECG signal, 
they could be adequately identified.  

The maximum absolute value of the difference 
between consecutive samples of the ECG signal 
corresponds to the parameter ri which is related to 
diff (ECG) by the following expression: 
 

 maxir diff ECG , (2)
 

where i is the subscript of the maximum slope within 

diff (ECG).The two consecutive samples ECGi and 
ECGi+1 associated to ri are adapted by using (3): 
 

iii,corct LECGECG  ,
 
iii,corct LECGECG   11 , 

(3)

 

where 
 

thrsrL ii  . (4)
 

In (3), the sign of Li is set positive when 
ECGi > ECGi+1, and vice-versa. 

The signal ECG in equation (2) is then replaced 
by the modified signal ECGcorct which contains the 
adapted samples ECGcorct,i and ECGcorct,i+1. (2), (3), 
and (4) are iteratively recalculated until Li ≤ 0. The 
decreasing value of ri calculated at each iteration 
ensures the convergence of the parameter Li. After 
the last iteration, all samples of ECG which have 
slope larger than thrs are adapted within ECGcorct 
and, therefore, match the samples of the QRS 
complex. 

3.3 QRS Detector for Methodology 
Evaluation 

The following QRS detector was implemented for 
evaluation of our methodology, according to the 
common algorithm structure proposed for QRS 
detection (Köhler et al., 2002): 

 

Figure 2: Block diagram structure of the QRS detector 
algorithm for methodology evaluation. 

As observed in the diagram above, a filter is 
applied to the ECG signal before application of SSD. 
As is done with most QRS detector algorithms, a 
band-pass filter was used. This filter was set up as a 
56-coefficient FIR, cut-off frequencies at 8 and 
35 Hz. The reason to set the cut-off frequency at 
35 Hz is because we noticed that a lower value 
causes considerable attenuation of the amplitude of 
QRS samples. This fact is in agreement with Thakor 
et al. (1984) which indicate that the bandwidth of the 
QRS complex ranges from 5 to around 40 Hz.  

Application of the filter stage of figure 2 could 
be bypassed when the ECG signal is affected by 
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artefacts whose signal slope has order of magnitude 
much lower than the slope of the QRS samples, as 
discussed below. 

3.4 Signal Subtraction and QRS 
Detection 

As depicted in figure 2, after SSD approach 
described by (1) – (4) to be employed for adapting 
the samples associated to the QRS complex, a 
further subtraction stage is carried out for QRS 
samples selection, as follows: 
 

corctfilt ECGECGP sig
, (5)

 

where Psig contains the QRS selected samples. 
ECGfilt and ECGcorct correspond to the ECG signal 
after filtering and SSD application respectively. As 
SSD approach adapts samples with larger signal 
slopes associated to the QRS complex, the 
subtraction indicated in (5) excludes other regions of 
the ECG signal in such a way that the latter are 
represented as zero values within Psig. Therefore, the 
samples of Psig whose value is different from zero 
are assumed to belong to the QRS complex.  

3.5 R-peak Identification and 
Validation 

Motion artefacts and drifting baselines are corrected 
during the subtraction performed in (5). Hence, the 
filtering stage shown in figure 2 could be used only 
when the signal is affected by artefacts whose signal 
slope is higher than thrs. Otherwise, there is no need 
for calculating another threshold for identification of 
the R-peaks as well. In this situation, since the 
samples of Psig could be grouped in clusters 
corresponding to each QRS complex, the maximum 
sample amplitude of each cluster corresponds to the 
respective R-peak.  

On the other hand, R-peak validation rules are 
demanded when the noise sample slope is higher 
than thrs, and calculation of a second threshold is 
also necessary. We tested a second threshold, trp, 
calculated taking into account the RMS value of the 
samples that belong to clusters corresponding to the 
last QRS complexes located. trp was set as being 
50% of such a RMS value.  

Also for peak validation, the minimum time 
between two consecutive clusters was set as 200 ms, 
considering the ECG refractory period. Thus, when 
two consecutive clusters along Psig had a time 
difference lower than 200 ms, they were grouped 
into a unique cluster whose maximum sample 

amplitude was validated as identified R-peak. 

3.6 QRS Detection Performance 
Analysis 

According to Köhler et al. (2002), the usage of 
software QRS detection algorithms requires the 
evaluation of the detection performance. In this way, 
ANSI/AAMI/ISO EC57 (1998) recommends that the 
parameters sensitivity (Se) and positive predictivity 
(+P) should be calculated for algorithm assessment: 
 

FNTP

TP
Se


 , (6)

 

FPTP

TP
P


 , (7)

 

where TP is the number of true positives, FN the 
number of false negatives, and FP is the number of 
false positive QRS predictions.  

4 RESULTS 

Figure 3 illustrates the application of our 
methodology in the ECG excerpt of figure 1a. 

For the signal shown in figure 3a, the band-pass 
filter was not applied in order to illustrate the 
application of our methodology to a raw ECG signal 
with high SNR. As observed in figure 3b, SSD 
approach adapts only ECG samples associated to the 
sharp wave activity of the QRS complexes whose 
slope is higher than thrs. Figure 4 depicts a zooming 
in around the time 811.5 s showing the samples 
identified as QRS samples. 

Evaluation of our methodology was performed 
by application of the QRS detector of figure 2 to the 
recordings of the MIT-BH Noise Stress Test 
Database in accordance with ANSI/AAMI/ISO 
EC57 (1998). This database corresponds to twelve 
30 min ECG recordings with different levels of SNR 
at 0, 6, 12, 18, 24, and -6 dB. 

The results obtained for the parameters Se and 
+P are presented in table 1. The QRS detector 
shows high sensitivity (above 84%) even when the 
SNR is about -6 dB. Although the values obtained 
for +P are affected by a larger number of false 
positives which occur under low SNR conditions, 
the noise tolerance performance of such a detector is 
comparable to other ones proposed in the literature 
(Benitez et al., 2000); (Rezk et al., 2011). 
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Figure 3: (a) ECG signal of figure 1a; (b) ECGcorct, 
resulting from application of SSD to (a); (c) Psig or 
absolute value of the subtraction between (a) and (b). 
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Figure 4: Zooming in figure 3a, around time 811.5 s. The 
regions of sharp wave activity with signal slope higher 
than thrs are identified as QRS samples (thick blue traces). 

Table 1: Se and +P calculated for the MIT-BH Noise 
Stress Test Database considering application of the QRS 
detector depicted in figure 2. 

Recording Se (%) +P (%) 

118e00 91.62 79.33 
118e06 98.24 86.24 
118e12 99.96 93.47 
118e18 99.96 98.91 
118e24 99.96 99.56 
118e_6 84.11 74.64 
119e00 95.36 82.04 
119e06 99.09 87.77 
119e12 99.90 97.45 
119e18 100 100 
119e24 100 100 
119e_6 85.51 71.96 

5 DISCUSSION 

As observed in figure 1, the difference between 
consecutive samples of the ECG signal can be used 
for identification of the shaper wave activity 
associated to QRS complex (Rangayyan, 2002). This 
property can be also observed in other biological 
signals or under specific conditions where the signal 
is affected by artefacts or other types of interference, 
as discussed by Cluitmans et al. (1993), Van de 
Velde et al. (1998), and Ferreira et al. (2012). 

Ferreira et al. propose a methodology for 
detection and removal of gradient artefact residuals 
which also identifies artefact samples by the 
magnitude of the signal slope. Thus, we developed a 
modification of such a method for identification and 
selection of signal samples which contain sharp 
wave activity, described by equations (1) – (4). 
When applied to the ECG signal, these equations 
results in an effective identification of the QRS 
samples, as depicted in figures 3 and 4.  

Application of our methodology within the 
prototype of QRS detector (figure 2) reveals that it 
has a good performance for identifying the R-peaks, 
even under conditions of low SNR (table 1). 
According to Arzeno et al. (2008), first-derivative-
based methods can be easily implemented in real-
time R-peak detection. Such advantage is also 
observed for the detector of figure 2. Moreover, it 
shows to be effective for detection of ectopic beats 
as well. Hence, in future work the performance of 
this QRS detector will be evaluated for a larger set 
of data and during removal of the ballistogram 
artefact as well, according to the approach proposed 
by Allen et al. (1998). 

Therefore, the results shown in figures 3 and 4, 
and table 1 reflect the effectiveness of SSD in the 
detection of the steep wave activity of the QRS 
complex. This fact clearly indicates the possibility to 
apply the same approach to detect regions or 
artefacts in other biological signals which possess 
similar behaviour of the slope parameter. 
Identification of samples as belonging to the sharp 
wave activity region of interest depends on the value 
of the slope signal threshold, estimated by equation 
(1) for the ECG signal. Thus, our methodology 
achieves better performance when the slope of the 
sharp wave activity samples is higher and does not 
overlap the slope magnitude of other regions of the 
analysed signal. 

Another fact which should be investigated in 
future work is how the application of SSD approach 
could be used to identify samples from a specific 
frequency bandwidth in the biological signal. For 
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example, in the case of the QRS complex region, 
this bandwidth ranges from around 5 to 40 Hz. In 
experiments which involve removal of gradient 
artefacts residuals from EEG signals, SSD shows to 
select higher frequency components associated to 
the artefact (Ritter et al., 2010; Ferreira et al. 2012). 
Thereby, SSD could be evaluated and proposed as 
an alternative time-domain filtering approach. 

6 CONCLUSIONS 

In this work, we propose a methodology (SSD) for 
detection of sharp wave activity in biological signals 
based upon differentiation of consecutive samples of 
the digital signal. 

Our methodology shows to achieve effective 
identification of the sharp wave activity associated 
to the QRS samples in the ECG signal. Also 
evaluation of a QRS detector prototype which makes 
use of SSD reveals that the QRS complexes are 
localized with sensitivity and positive predictivity 
comparable to other methodologies proposed in the 
literature. In future work, our methodology shall be 
applied and evaluated for detection of sharp wave 
activity in other types of biological signals.  
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