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Abstract: An algorithm for arrhythmia classification is presented with emphasis on the discrimination between normal 
and premature ventricular contraction (PVC) conditions. We derived new features from the transformed 
ECG signal resulting from the linear predictive analysis of the ECG heartbeats and from the LPC filter 
impulse response matrix. These features in conjunction with the residual error energy and RR-intervals are 
fed into the Regularized Least Squares Classifier (RLSC) with radial basis kernel. The proposed features 
show an acceptable separation capability between the two classes. Two scenarios are investigated using 
selected records taken from the MIT-Arrhythmia database namely, intra-patient and inter-patient 
classification. The achieved results are 98.18 sensitivity and 99.02 specificity in average for the first 
scenario (intra-patient) and 95.18 sensitivity and 96.92 specificity in average for the second scenario (inter-
patient).

1 INTRODUCTION 

Electrocardiogram (ECG) is a crucial diagnostic tool 
for monitoring cardiac activities. Abnormalities in 
both electrical generation and conduction at different 
levels in the heart are reflected on the ECG as 
deviations from the normal heart rhythm. The term 
Arrhythmia is used to refer to these deviations. In 
spite of many research efforts devoted to automatic 
arrhythmia monitoring, none of the developed 
methods are completely satisfactory. The challenge 
is due to the variations in the morphology of ECG 
heartbeats which exhibit the same type of 
arrhythmias within and across patients. Moreover, in 
many cases heartbeats with different types of 
arrhythmias have similar morphology and frequency 
content (Osowski and Linh, 2001). These intra-class 
variations and inter-class similarities make it 
difficult to extract discriminative features from the 
time series of the heartbeats. To overcome this 
problem many authors have proposed Patient-
Adapting Heartbeat Classifiers whereby a manual 
labelling of heartbeats from all new patients is 
needed and the classifier is adapted accordingly   
(De Chazal and Reilly,2006., Hu et al.,1997, 
Lagerholm et al., 2000). Though these approaches 
considerably improve the classifier performances, 

they do not seem practical, especially in developing 
countries, due to the cost of acquiring trained 
physicists who are able to label the data for each 
new patient. The ultimate aim in this research area is 
the development of a classifier that performs well on 
the unseen data without “assistance” from physicists.  
This study investigates the use of a Regularised 
Least Squares Classifier for the classification of 
normal (N) and abnormal premature ventricular 
contraction (PVC) conditions.  

Unlike normal beats which originate from the 
sinoatrial (SA) node, PVC beats originate from the 
ventricles and are characterised by the absence of 
the P wave and a large QRS complex as illustrated 
in Figure 1. Their presence in an ECG record 
becomes clinically significant only if their frequency 
of occurrence exceeds six beats per minutes. 
Examples of these complex PVCs include, bigeminy 
(every other beat is a PVC), multifocal (varied 
shapes and forms of the PVCs) and coupling (two 
PVCs occur back to back). These complex PVCs 
could degenerate into serious ventricular 
arrhythmias such as ventricular tachycardia      (Sigg 
et al., 2005). Therefore, many lives could be saved if 
these beats are detected early-on and accurately. To 
achieve good classification results, the set of input 
features as well as the classifier are crucial.  
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Figure 1: Premature ventricular contractions with different 
shapes. 

Autoregressive (AR) modeling has been adopted for 
ECG compression and monitoring (Ge et al.,2002., 
Ham and Han, 1996., Lin and Chang, 1989). The 
ECG signal can be reconstructed using the residual 
error and the linear prediction coefficients (LPC) 
using the synthesis filter. Though the representation 
and the use of the LPC filter coefficients as features 
have been well studied and understood, the 
extraction of relevant features from the residual error 
should receive much more emphasis as suggested by 
(Lin and Chang, 1989).  

In this paper, a new set of features extracted from 
the impulse response matrix of the LPC filter and the 
transformed ECG signal is proposed. Using this 
approach, each ECG period is orthogonally 
transformed into a new domain where only few 
coefficients contain most of the signal information. 
The extracted features are fed into the classifier in 
conjunction with some commonly used features 
including the residual error energy and RR intervals 
(Ge et al., 2002., De Chazal et al., 2004., Lannoy et 
al., 2011). The performances of the proposed 
algorithm are evaluated on clinical ECG data 
selected from the MIT-BIH arrhythmia database. 
The database is the most frequently used database 
for arrhythmia classification.  

The paper is organised as follows, ECG filtering 
is presented in section 2.1, while Autoregressive 
modeling of the ECG signal is discussed in section 
2.2.  Feature extraction is examined in section 2.3, 
Regularised least squares classifier is presented in 
section 2.4. Results and a discussion of the 
performances of the proposed algorithm are given in 
section 3 and section 4 holds the conclusions. 

2 METHODS 

2.1 ECG Filtering 

The raw ECG signal is usually contaminated with 
different types of noise (eg., Baseline wander, power 
line interference, and high-frequency noise). ECG 
filtering is aimed at improving the signal to noise 
ratio (SNR) by removing the noise (Clifford et 
al.,2006.). 

In order to remove the power line interference, a 
second order notch-filter centred on  ଴݂ ൌ 60	Hz	 
with a bandwidth ΔF ൌ 3Hz is first applied to the 
ECG signal. The transfer function of the filter is 
given by: 
 

௡௢௧௖௛ܪ ൌ
ܾ଴ሺݖଶ െ 2 cosሺ߱଴ሻ ଵିݖ ൅ ଶሻିݖ
1 െ 2 cosሺ߱଴ሻݎ ଵିݖ ൅ ଶିݖଶݎ

, (1) 

 

where  			ܾ଴ ൌ
|ଵିଶ௥ୡ୭ୱሺఠబሻା௥మ|

ଶ|ଵିଶ௥ୡ୭ୱሺఠబሻ|
; 

 

										߱଴ ൌ
ߨ2 ଴݂

௦݂
; ݎ ൌ 1 െ

ΔFߨ

௦݂
	 ; 	 ௦݂ ൌ  .ݖܪ360

The parameter ݎ	controls the spectral width and 
depth of the filter.  

Afterwards, the baseline wander is removed from 
the ECG signal by cascading two median filters of 
lengths 108 (0.3 ௦݂) and 216 (0.6 ௦݂) samples, 
respectively. The first filter is aimed at removing the 
QRS complexes and the P-waves from the ECG, 
while the second filters the T waves. The output of 
the second filter is subtracted from the original ECG 
signal to obtain a corrected baseline ECG. Finally, 
the high frequency noise is filtered by biorthogonal 
wavelet, where the first approximation is kept as 
filtered ECG.A step by step demonstration of ECG 
filtering is given Figure 2.  

2.2 Autoregressive Modeling of ECG 

AR modeling consists of estimating the value of the 
current sample as a linear combination of P past 
samples, that is, 

ොሺ݊ሻݕ ൌ െ෍ܽ௜ ሺ݊ݕ െ ݅ሻ				,							

௉

௜ୀଵ

		 (2) 

 
 

where ݕොሺ݊ሻ is the predicted signal, ܽ௜	 are the 
LPCs,	ݕሺ݊ െ ݅ሻ is the i-th previous sample of the 
ECG signal and P is the model order.  
The prediction coefficients may be found by 
minimizing the sum-of-squared error (SSE) between 
the actual sample and the predicted one with respect 
to the LPC coefficients as given bellow: 
 
డ

డ௔೔
∑ ݁ଶሺ݊ሻ௡ ൌ

డ

డ௔೔
ሾ∑ ሺݕሺ݊ሻ ൅ ∑ ܽ௜	ݕሺ݊ െ ݅ሻ		௉

௜ୀଵ ሻଶ௡ ሿ ൌ 0  (3) 
 
The autocorrelation method is computationally more 
efficient and the filter is guaranteed to be stable 
(Makhoul, 1975). The original signal can be 
reconstructed using the residual error and the LPCs 
using the synthesis filter, that is, 
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ሺ݊ሻݕ ൌ ෍݄ሺ݊ െ ݇ሻ݁ሺ݇ሻ 			,				1	 ൑ 	݊ ൑ 	ܰ	
	

௡

௞ୀଵ

 (4) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2: ECG Filtering, a-Raw ECG taken from record 
208,b-Notch filtered ECG ,c-baseline wander removal 
using 2 median filters, d- bior3.3 wavelet first 
approximation ECG. 

where ݄	ሺ݊ሻ is the synthesis  filter impulse response 
and ܰ is the size of the ECG period.  
A fourth-order LPC analysis is performed on each 
ECG heartbeat belonging to one of the two classes 

considered in this study (Ge et al,2002). We 
consider that each heartbeat starts from the midpoint 
between the R-peak of the given heartbeat and the 
R-peak of the previous heartbeat and ends on the 
midpoint between the R-peak of the current 
heartbeat and the R-peak of the following heartbeat. 
We use the heartbeat fiducial point times provided 
with the MIT-BIH arrhythmia database to locate the 
R-peaks (Mark and Moody, 1997).  

2.3 ECG Features 

As mentioned in Section 1, the set of features plays a 
vital role in achieving good classification results. To 
this end, each ECG heartbeat is transformed into a 
feature vector. In this section, we use some features 
that have been successfully used in previous studies 
for ECG monitoring and we propose new set of 
features to explore more information from the ECG 
data. 

2.3.1 RR-Interval Features 

The RR-interval is the interval between two 
consecutive R-peaks. Two RR-intervals are 
measured, namely the RR-interval between the 
actual heartbeat and the preceding heartbeat (Pre-RR 
interval) and the RR-interval between the actual 
heartbeat and the subsequent heartbeat (Post-RR 
interval) as shown in Figure 3. 

 

Figure 3: Pre-RR and Post-RR intervals. 

2.3.2 Residual Error Energy 

Residual error energy (ࢋ࢘ࡱ) is a time-domain 
measurement that characterises the performance of 
the prediction, it is defined as: 

ࢋ࢘ࡱ ൌ  (5) ࢀࢋࢋ

2.3.3 Transformation based Features 

An interesting framework for an accurate 
representation of the excitation signal applied to 
speech signal was initiated by (Atal, 1989), and this 
was later investigated and further developed by our 
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group for ECG compression in (Baali, Salami, 
Akmeliawati and Aibinu, 2011) and for ECG period 
normalization in (Baali, Akmeliawati, Salami, 
Aibinu and Gani, 2011). The representation in 
question is subsequently described and adopted for 
features extraction. 
Equation (4) can be expressed in matrix as: 

ࢅ ൌ  (6) ,ࢋࡴ
 

where	ࢅ	is	ܰ ൈ 1	column vector in which its entries 
represented by the ECG samples and 	ࢋ is an ܰ ൈ 1 
column vector of the residual error. ࡴ is the ܰ ൈ ܰ  
impulse response matrix of the synthesis filter (also 
called LPC filter), its entries are completely 
determined by the linear prediction coefficients, ࡴ is 
a lower triangular and Toeplitz matrix. 

ࡴ ൌ

ۏ
ێ
ێ
ێ
ۍ

1
݄ሺ1ሻ
⋮
.

݄ሺܰ െ 1ሻ

	

0
1
⋮
.

݄ሺܰ െ 2ሻ

⋯
⋱	
⋱	
.
			.						

.

.

.

.
						.						

0
0
⋮
.
1

		

ے
ۑ
ۑ
ۑ
ې

		, (7) 

Applying the singular values decomposition (SVD) 
to ࡴ  gives:    

ࢅ ൌ  (8) ,	ࢋࢀࢂࡰࢁ

where ࢁ and ࢂ are orthogonal ܰ ൈ ܰ  matrices, and 
ܰ is a real valued ࡰ ൈ ܰ diagonal matrix of the 
singular values of ࡴ. 
The SVD domain representations of ࢅ and ࢋ are 
given by    ࣂ and  ࣀ  respectively, where   ࣂ ൌ  ࢅࢀࢁ
and    ࣀ ൌ  . ࢋࢀࢂ
Therefore;  

ࣂ ൌ ࣀࡰ 	 (9) 

From (9) each component of the residual signal (ࢋ) 
is projected onto the right singular vectors of the 
matrix H and then weighted by the corresponding 
singular value. Since the singular values are always 
arranged in a descending order, one can expect that 
the transformed ECG signal (ࣂ) is decaying as seen 
in Figure 4. 

 

Figure 4: Normal sinus beat and transformed ECG.  

From this transformation two features may be 
introduced: 

1- The ratio between the number of elements 
containing 90% of the total energy of the 
transformed ECG (ࣂ) and the length of the ECG 
heartbeat (i.e., Energy Based Ratio (EBR) .The 
energy of the ECG waveform and the transformed 
ECG is the same since the mapping ࢅࢀࢁ is 
isometric. 

2- The largest singular value of the impulse 
response matrix. 
For instance, Figure 5 represents a two-dimensional 
feature space of normal (red ‘+’) and PVC (black 
‘o’) beats randomly taken from three different 
patients with identification numbers 116, 208 and 
210. The first feature corresponds to the first 
principle component of the impulse response matrix  
H, while the second represents the EBR. The cluster 
plot shows that the newly introduced features have a 
good discrimination capability between the normal 
(NOR) and PVC beats. 

 

Figure 5: Two-dimensional feature vectors of normal (red 
‘+’) and PVC beats (black ‘o’). 

2.4 Feature Normalization 

A linear method is used to normalize the features to 
zero mean and unit variance, such that: 

ො௜ݔ ൌ
௜ݔ െ ݔ̅
ߪ

, ݅ ൌ 1,2, …… . , ܰ (10) 

where ݔො௜ is the normalised value, ̅ݔ and ߪ are 
respectively the mean value and standard deviation. 

2.5 RLS Classifier 

The use of Regularized least squares (RLS) is 
considered in this paper, where the aim is to build a 
function (i.e., a learning model) using a set of 
training  points  that  accurately  predicts the class to  
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which the test points belong (i.e., unseen examples). 
The RLS is a special case of the Tikhonov 

regularization problem which is mathematically 
stated as (Rifkin, 2002).  

min
௙∈ࡴ

1
ℓ
෍ܸሺݕ௜, ݂ሺܠ௜ሻሻ

ℓ

௜ୀଵ

൅ λ‖݂‖୏
ଶ 	, (11) 

where ܸ is the loss function,  λ is the regularization 
parameter (λ ∈ Թା). ‖݂‖୏

ଶ  is the norm of 	݂ 
measured in a Reproducing Hilbert space defined by 
the kernel K. The square loss function is given by : 

ܸ൫ݕ௜, ݂ሺܠ௜ሻ൯ ൌ ൫ݕ௜ െ ݂ሺܠ௜ሻ൯
ଶ
, (12) 

where ܠ௜ denotes the d-dim feature vector of the ith 
training point and ݕ௜ ∈ ሼെ1,൅1ሽ gives the binary 
outcome, for	݅ ൌ 1,… , ℓ   (with ℓ is the number of 
training points). 
The Representer Theorem (Rifkin, 2002) states that 
for some ܠ௝ the solution ݂∗  of (11) has the form: 

݂∗൫ܠ௝൯ ൌ෍ܿ௜Kሺܠ௝, ௜ሻܠ

ℓ

௜ୀଵ

				ܿ௜ ∈ Թ (13) 

There is a wide range of possible kernel functions 
that might be used, however, in this paper the linear 
kernel is chosen, that is, 

K൫ܠ௜, ௝൯ܠ ൌ ࢏ܠ
 ௝ (14)ܠࢀ

The kernel function measures the similarity between 
two feature vectors.  The selection of the linear 
kernel is justified by the fact that it allows a lower 
computational complexity compared to other kernels 
(Rifkin and Lippert, 2007). 

The norm of 	݂ is given by : 

‖݂‖୏
ଶ ൌ ࢉ												.ࢉ۹ࢀࢉ ∈ Թℓ, ࡷ ∈ Թℓൈℓ, (15) 

where ࡷ  is the square positive semidefinite training 
kernel matrix with elements : 

,ሺ݅ࡷ ݆ሻ ൌ K൫ܠ௜, ,௝൯ܠ for ∶ 	݅ ൌ 1,… , ℓ	and		݆ ൌ 1,… , ℓ. 

By using (12), (13) and (15), the Tikhonov 
regularization problem can be rewritten as: 

min
Թℓ∋ࢉ

1
2ℓ
ሺ࢟ െ ሻ்ࢉ۹ ሺ࢟ െ ሻࢉ۹ ൅

λ
2
 ,		ࢉ۹ࢀࢉ

࢟ ∈ Թℓ with coordinates  ݕ௜. 
(16) 

The problem is brought forward to find the ℓ-dim 
weight vector ࢉ where the minimization of (16) with 
respect to ࢉ  has the closed form solution: 

 

ࢉ ൌ ሺ۹ ൅ λℓ۷ሻିଵ࢟	 

۷ ∈ Թℓൈℓ is the identity matrix. 
(17) 

Once the weight vector ࢉ	 is found, the 
determination of class membership of a test point ࢚ܠ 
is possible. Thus, 

݂∗ሺܠ௧ሻ ൌ෍ ௝ܿKሺܠ௧, ௝ሻܠ

ℓ

௝ୀଵ

. (18) 

In binary classification, the label (or class) of ܠ௧ 
is determined by the sign of 	݂∗ሺܠ௧ሻ . 

2.5.1 Tuning the Regularization 
Parameter ૃ 

The weight vector ࢉ is a function of the 
regularization parameter λ. Rifkin and Lippert, 
(2007) proposed an elegant way of tuning λ by 
rewriting (17) using the eigendecomposition of the 
kernel matrix . Let ۹ ൌ and ൌ ܂ۿ઩ۿ  ,then , ܂ۿۿ

 
ࢉ ൌ ሺ઩ۿ ൅ λℓ۷ሻିଵࢅ܂ۿ	(19) , 

where ઩ ൌ ,ሺλଵ	܏܉ܑ܌ … , λℓሻ. Writing ࢉ in the form 
given by (18) allows one to vary λ between the 
minimum and maximum eigenvalues of ۹ 
efficiently. Note that the matrix  ሺ઩ ൅ λℓ۷ሻ is 
diagonal, hence; ሺ઩ ൅ λ۷ሻ௜௜

ିଵ ൌ
ଵ

ሺ઩ା஛۷ሻ೔೔
.  

3 RESULTS AND DISCUSSION 

The performance of the proposed algorithm is 
evaluated on clinical ECG data selected from the 
MIT-BIH arrhythmia database. The database is the 
most frequently used database for arrhythmia 
classification. It contains 48 half hour recordings of 
two-channel ambulatory ECG filtered from 0.1 to 
100 Hz then sampled at 360 Hz (Mark and Moody, 
1997).  The data set used in this study is collected 
from six patients with large number of PVCs 
namely, records with identification numbers 116, 
208, 210, 228 and 233. The selected data set consists 
of 12245 normal beats and 2882 PVCs.  
Each of the extracted heartbeats is transformed into  
a five-dimensional feature vector (Residual error 
energy, the largest singular value of H, EBR and 2 
RR-intervals).  
Two metrics are used to assess the performance of 
the proposed algorithm, namely Sensitivity (Se) and 
specificity (Sp). Sensitivity is the fraction of PVCs 
that are correctly classified, and is given by: 

Se = TP / (TP + FN) 
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Specificity is the fraction of normal beats that are 
correctly classified, and is given by: 

Sp = TN/ (TN + FP) 

TP, FP, FN and TN stand for true positives , false 
positives , false negatives  and true negatives, 
respectively.  

Two different tests are carried out: 

First Scenario:  
The whole data set is randomly split into two non-
overlapped parts: a training set and a test set. The 
training set is used to tune the regularization and the 
kernel parameters while the test set is held-out for 
validation. This approach is referred to as “intra-
patient” classification since the training set contains 
samples from all patients.  

We increase the number of training points taken 
from each class from initially 250 to 500 then to 
750. We run each experiment 5 times. The average 
values of specificity (Av Sp) and sensitivity (Av Se) 
are shown in Table.1. 

Table 1 : Intra-patient classification performances. 

Number of 
Training points 
per class 

Number of Test 
points 

Av.Se Av.Sp 

250 14627 97.67 098.77 
500 14127 97.69 99.14 
750 13627 98.18 99.02 

Second Scenario: 
In this scenario, the training points are randomly 
extracted from records 116, 208 and 210 and then 
tested on the unseen data which are composed from 
records 221,228 and 233. This approach is referred 
to as “inter-patient” classification.  Similar to the 
first scenario, each experiment is run 5 times. Table 
2 summarises the results. 

Table 2 : Inter-patient classification performances. 

Number of 
Training points 

per class 

Number of 
Test points 

Av. Se Av.Sp 

250 7743 92.54 92.69 
500 7743 93.79 92.52 
750 7743 95.18 96.92 

In the first scenario we notice that the increase of the 
number of training points does not considerably 
improve the performances of the classifier (When 
the number of training points was increased by 
150%, the improvement of performances was less 
that 1% in both metrics ). The best results achieved 
were 98.18 sensitivity and 99.02 specificity. 

On   the   other   hand,  the  second  scenario  has  

demonstrated the stability of the proposed features 
where only a slight decrease (less than 3%) in 
performances was recorded when compared to the 
first scenario. In addition, we notice that unlike the 
first scenario, the increase of the training points 
improves the performances by around 3% in both 
metrics.  

In order to assess the merit of the proposed 
classification scheme, Table 3 depicts the overall 
classification performance of the proposed RLSC 
along with some benchmark methods. Bortolan, 
Jekova and Christov (2005) investigated four 
classification techniques namely, neural networks 
(NN), K-nearest-neighbour (KNN), linear 
discriminant (LD) and Fuzzy logic using 26 
morphology features and patient adapting (PA) 
strategy. The best results were achieved by NN 
classifier. Mai1 and Khalil (2011), on the other 
hand, adopted PA strategy to discriminate between 
normal and PVC conditions where Cardioid loop 
coordinates were extracted from the ECG heartbeats 
and serve as input to the NN classifier. Meanwhile, 
Shyu, Wu, and Hu (2004) implemented a Fuzzy-
Neural networks (FNN) classifier with features 
extracted from wavelet decomposition of the ECG 
signal and by adopting inter-patient scenario.  
The achieved results were very encouraging as the 
performances obtained were comparable to many 
state-of-the-art inter-patients algorithms.  

Table 3: Comparison of the proposed RLSC with 
benchmark methods. 

Classification 
strategy 

Training 
strategy 

Se Sp 

NN [19] 
NN [20] 
FNN [21] 

PA 
PA 

Inter-patient 

95.8 
97.34 
99.86 

98.3 
98.62 
99.79 

KNN [19] PA 91.3 98.7 
DA[19] PA 97.0 94.4 
Fuzzy logic [19] PA 92.8 98.4 
RLSQ  (proposed) Inter-patient 95.18 96.92 
RLSQ (proposed) Intra-patient 98.18 99.02 

4 CONCLUSIONS 

The main contribution of this paper is 
thedevelopment of stable features for Arrhythmia 
classification. The performances of the proposed 
features are appreciated when implemented with 
RLS classifier and validated on selected records 
from the MIT-Arrhythmia database.  When the 
linear prediction coefficients are used with the 
aforementioned features, the classifier achieved 
lower performance results. For instance, the average 
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specificity and sensitivity were respectively, 98.43 
and 97.28 in the first scenario. Further work should 
focus on the extraction of more features from the 
residual signal. 
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