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Abstract: The use of a strong classifier that is combined by an ensemble of weak classifiers has been prevalent in 
tracking, classification etc. In the conventional ensemble tracking, one weak classifier selects a 1D feature, 
and the strong classifier is combined by a number of 1D weak classifiers. In this paper, we present a novel 
tracking algorithm where weak classifiers are 2D disjunctive normal form (DNF) of these 1D weak 
classifiers. The final strong classifier is then a linear combination of weak classifiers and 2D DNF cell 
classifiers. We treat tracking as a binary classification problem, and one full DNF can express any particular 
Boolean function; therefore 2D DNF classifiers have the capacity to represent more complex distributions 
than original weak classifiers. This can strengthen any original weak classifier. We implement the algorithm 
and run the experiments on several video sequences.  

1 INTRODUCTION 

Interest in motion analysis has recently increased in 
tandem with the development of enhanced motion 
analysis methodology and processing capabilities. 
Tracking entails following the motion of a smaller 
set of interest points or objects in video sequences, 
and is accordingly one of the most significant 
categories of motion analysis. Many applications of 
tracking (Avidan, 2004, Stauffer, 2000, etc.), 
including human face tracking, pedestrian tracking, 
and vehicle tracking, have been developed in 
accordance with the widespread use of surveillance. 
Taking tracking as a binary classification problem 
was first addressed in the mean-shift algorithm of 
(Comanciu, 2003), which trains a classifier to 
differentiate an object from the background. As 
encouraging results have been obtained (Parag, 2008, 
Tieu, 2000, Kalal, 2010, etc.), this approach has 
come into wide use. The classifier can be trained 
offline or online. The difference between offline 
learning and online learning is that offline learning 
requires the entire training set to be available at 
once, and sometimes it requires random access to the 
data, while online learning only involves one pass 
through the training data (Oza, 2001). Furthermore, 
offline learning methods have limited adaptability to 

variation of the objects. (Oza, 2001) and (Freund,  
1995) present both the theoretical and experimental 
evidence that online boosting can achieve 
comparable performance to its offline counterparts. 
Our work concentrates on online boosting. 

Online boosting has been studied by many 
researchers, and it is the most successful ensemble 
learning method. Shai Avidan proposed ensemble 
tracking, which combines a collection of weak 
classifiers into a single strong classifier, and treats 
tracking as a binary classification problem. A feature 
selection framework based on online boosting is 
introduced in (Grabner, 2006). An online semi-
supervised boosting has been presented in (Grabner, 
2008); it ameliorates the drifting problem in tracking 
applications by combining the decision of a given 
prior and an on-line classifier. (Stalder et al., 2009) 
further amalgamated a detector, recognizer, and 
tracker to track various objects. (Danielsson et al., 
2011) used two derived weak classifiers to suppress 
combinations of weak classifiers whose outputs are 
anti-correlated on the target class. If a drifting 
problem occurs, it suggests that the error, which may 
be magnified, results in an incorrect decision of the 
object in object tracking, i.e., adapting to other 
objects. Though an error accumulation can also lead 
to a drifting problem, the fundamental reason for 
drifting is the erroneous estimation of the object, 
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which is determined by the classifier when tracking 
is considered as a binary classification problem. 

In this paper, we propose a 2D disjunctive 
normal form (DNF) of weak classifiers. The 
conventional weak classifier uses linear classifiers or 
stumps, which label samples just better than random 
guessing. Generally, this classifier takes the form of 
a threshold. A sample is tagged to an object category 
when the feature of the sample is larger or lower 
than the threshold. This conventional weak classifier 
is termed 1D weak classifier in our paper. The input 
data of the 2D DNF of weak classifiers are 
constituted by all the pairwise combinations of data 
utilized by all the 1D weak classifiers, and thus this 
approach is more accurate. As one full DNF can 
represent any particular Boolean function, the 2D 
DNF can express more difficult distributions than 
the conventional weak classifiers, and it also can be 
employed on top of any original weak classifier. To 
resolve the drifting problem, we combine it with a 
reset mechanism. On the one hand, the DNF can 
substantially decrease the error rate, which is the 
fundamental cause of drifting, and on the other hand, 
the reset mechanism suppresses error accumulation. 

The contributions of this paper include: (i) the 
formulation of a novel type (DNF) of weak 
classifiers, and (ii) diversified features used in the 
tracking system, which is implemented by analyzing 
manifold features in the feature pool from the first 
frame of the video and determines the most 
appropriate features.  

The reminder of this paper is organized as 
follows: Section 2 provides a brief introduction of 
AdaBoost. DNF tracking is illustrated in Section 3, 
along with definitions and applications of DNF 
classifiers. Section 4 presents the experiments and 
conclusions follow in Section 5. 

2 ADABOOST AND ENSEMBLE 
TRACKING 

To explain the basic notation, we will first briefly 
review AdaBoost (Freund, 1995). A strong classifier 
of AdaBoost is implemented by combining a set of 
weak classifiers. Many tracking algorithms are 
developed based on AdaBoost (Avidan, 2005). 
Generally, the algorithm is based on pixels, and the 
strong classifier determines if a pixel belongs to the 
object or not. It employs the addition and removal of 
weak classifiers to adapt to variation of the object 
appearance or background. The weak classifier used 
in (Avidan, 2005) is a linear classifier in a least-

squares manner or other classifiers (such as stumps, 
perceptrons). Each pixel is represented by an 11D 
feature vector, which is created by a combination of 
the local orientation histogram and pixel colors. This 
feature vector can be computed easily, and is 
appropriate for object detection tasks (Levi, 2004). 

Weak classifier: 
Let N

iiy 1i },{ =x denote N examples and their 

labels, respectively, and 11
i R∈x and }1,1{ +−∈iy ; 

the weak classifier can then be represented by 

],1[},1,1{:)( 11 TtRht ∈+−→x  (1) 

where T is the number of weak classifiers. 

Strong Classifier: 
The strong classifier is defined as a linear 

combination of a collection of weak classifiers. It is 
given by sign(H(x)) and  
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where wi is the weight of the ith example, and 
weights are updated in the process of training weak 
classifiers (Eq. (5)).  

|))(|( i itt yh
ii eww −= xα  (5) 

3 DNF TRACKING  

In this session, we propose a novel tracking method 
that is based on the 2D DNF classifier.  Session 3.1 
describes the motivation for using the 2D DNF 
classifier rather than the 1D weak classifier in 
tracking, and defines the 2D DNF classifier. 
Procedures for tracking based on 2D DNF classifiers 
are illustrated in Session 3.2. 

3.1 DNF Classifier 

The proposed 2D DNF classifier is first motivated 
by the drifting problem in ensemble tracking. The 
drifting problem entails two important aspects: the 
fundamental cause of drifting is the misclassification  
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Let },...,,{ w21 ddd=S be the set of feature data 
that weak classifiers have used; then }f{p  is a set of 
all the pairwise combinations of the set S, that is, fp
is a subset of two distinct elements of S (as shown in 
Eq. (10)).  

},{}{ ji
,,1

f ddp
jiwji <≤≤

= U  
(10) 

w is the row number of feature data that weak 
classifiers have employed in Eq. (10), and it is no 
larger than the dimension of the feature space. 

3.2 2D DNF Classifiers for Tracking 

To start tracking, feature data are first extracted. 
Diverse kinds of features are obtained from the first 
frame of the video sequence, and they are employed 
to train the new weak and DNF cell classifiers. The 
best kind of feature according to the performance of 
these features on the first frame is then selected by 
the feature pre-selector. Classifiers are trained in 
initialization, and are constantly updated in the 
following frames. We use an ensemble of weak and 
DNF classifiers to determine whether a patch 
belongs to the object or not, and a confidence map is 
also constructed during this process. The peak of the 
map, which is achieved by the integral image (P. 
Viola, 2001) of the confidence map, is believed to be 
the new object position. The feature data of the new 
position of the object are used to update classifiers. 

3.2.1 Feature Pre-selector 

In order to track different objects, the most suitable 
features to employ are not always the same, and 
feature selection techniques have been researched by 
many researchers (see Ref (R. Collins, 2005) as an 
example). In order to apply the most appropriate 
features in diversified tracking missions, the feature 
pre-selector is constituted. It is a product of the 
compromise of the amount of computation and the 
adaptability of different objects to be tracked. All 
kinds of the features are calculated from the first 
frame of the video sequence. Features of a fixed 
number of patches used for learning are randomly 
selected, and the performance of classifiers for each 
kind of feature is assessed on other randomly 
selected patches for the first frame. The feature pre-
selector chooses the feature with the best 
performance. After the type of feature is determined, 
the remaining frames will only calculate this kind of 

feature. Therefore, the time required for calculating 
features is reduced as only the pre-selected feature is 
employed once tracking has commenced. The 
features used in this work include the local binary 
pattern (LBP) (T. Ahonen, 2004), Haar feature (P. 
Viola, 2001, Papageorgiou, 1998), and local edge 
orientation histograms (EOH) (Levi, K., 2004). All 
these features are extracted based on patches and are 
combined with the average R, G, and B values in 
each channel of the patches. 

3.2.2 Outlier Elimination 

Outliers in our work are defined as patches in the 
bounding box of the object but do not belong to the 
object. Outliers can affect weak and DNF classifiers 
in the processes of training and updating.   

In the initialization step when training classifiers, 
even though the object is given by a bounding box, 
patches in this bounding box do not always belong 
to the object to be tracked, because the object is not 
always a shape of rectangle. This kind of outliers is 
represented as minority points in the bins of feature 
space because outliers are minority compared to the 
majority features of the object in the bounding box. 
To apply it to our work, Eq. (8) is changed to Eq. 
(11) in the real implementation as shown below. The 
parameter r should be a positive integer (we set it to 
5 in our experiments). 

{ | 1} { | 1} , [1, ]ij k fk ij k k fk ij k
ij

b y b y y b y r k N
Cb

otherwise

⎧ ∈ ∧ = − ∈ ∧ =− > ∈⎪=⎨
∅⎪⎩

p p
(11)

We first attempted to use the labeled data in the 
last frame to update classifiers, i.e. semi-supervised 
learning, which lends adaptability to the system; 
however, if mistakenly estimated data are used, the 
system can easily drift. In other words, when 
classifiers are updated, patches in the bounding box 
are labelled as positive example (Eq. 12, ipa
represents the ith patch), whereas in fact they should 
be labeled as negative examples.  

⎪⎩

⎪
⎨
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−

+
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y

i
i

1

1
 (12) 

If we do not reject these patches, they will be 
trained as the object, which may lead to drifting. 
Employing it in our algorithm, patches in the 
bounding box that have a relatively larger 
confidence can be labelled as positive (Eq. (13)).  
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3.2.3 Specific DNF Algorithm of Tracking 

Algorithm 1: DNF algorithm for tracking 
Input: a video sequence with n frames;  
          a bounding box for the object in the first 
frame. 
Output: a bounding box of the object for the 
remaining frames. 
 
Initialization (for the First Frame): 
(1) Extract all types of features from the first frame

]},1[,,{ ff Ff ∈yx , where F is the total number of 
types of features. The number of positive and 
negative patches used for training is fixed, and these 
patches are randomly selected.  
(2) Train weak classifiers and 2D DNF classifiers 
for each type of feature. Randomly select patches 
from the first frame, extract features of these patches 
as test examples, and the feature with the minimum 
error is chosen for use in the following frame.  
(3) Set the state of tracking as FOUND, and save 
initial classifiers and data. 
For a New Frame: 
(1) Draw the pre-selected feature of all the patches 
from the background of the current frame. 
Generally, the background is defined as twice the 
size of the object, while the detected region is spread 
to the whole frame in the case of losing the object. 
(2) Examine all the patches with the combination of 
weak classifiers and 2D DNF cell classifiers 
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confidence map is created. 
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(3) Obtain the object position and the current 
confidence from the integral image of the confidence 
map. If the current confidence is not larger than a 
threshold TH1, the state of tracking is determined as 
LOST. The classifiers are restored to their initial 
states, and the detected region is spread to the whole 
frame.  
(4) If the current frame is under the LOST state and 
the current confidence is larger than a threshold 
TH2, the state of tracking is reinstated to the 
FOUND state.  
(5) If the current frame is under the FOUND state, 
update classifiers. 

In the update step, the positive data for updating 
are comprised of the labeled data from the last frame 
and the initial positive data. The updating of weak 
classifiers is the same with (Avidan, 2005), and as 
the weak classifiers update, the data for the DNF 
classifiers are updated and the DNF classifiers are 
renovated. 

4 EXPERIMENTS 

In this section, we implement the proposed 
algorithm in Matlab, evaluate it on several video 
sequences, and compare its performance with that of 
three other tracking methods. We also use sequences 
of PROST dataset and the evaluation method 
provided by (Santner, 2010) to demonstrate the 
performance of our algorithm. Furthermore, the 
performance of the DNF cell classifier is weighed 
against that of a weak classifier in Section 4.1, the 
performance comparison of DNF classifier and 
strong classifier is presented in Section 4.2, and the 
effects of exclusion of outliers are illustrated in 
Section 4.3. All of the experiments are executed on 
an Intel(R) i5 2.80GHz desktop computer. 

4.1 2D DNF Cell Classifier VS Weak 
Classifier 

This experiment is carried out to evaluate the 
performance of the DNF cell classifier, the 
performance of which is also compared with that of 
weak classifiers (Avidan, 2005). The data used in 
this experiment are the 9th dimension and 10th 
dimension data of EOH feature and are normalized 
to the range [0, 1].  The feature is calculated based 
on patches, the radius of which is set to 5. Classifiers 
are trained on the first frame of the video sequence 
and updated in the following frames; Fig. 2 shows 
the results of the fifth frame. Features of all the 
patches in the fifth frame are extracted. Classifiers 
are then applied to these features and the patches are 
classified to the object category or background 
category. Each point in Fig. 2 represents a patch in 
the image, where a red plus sign indicates an object 
patch and a green point denotes a background patch. 
We show two situations of the ground truth. Only 
object patches are set to positive data (Fig. 2 (a)) for 
the first situation, that is, with ideal outliers 
excluded. For the other situation, patches in the 
bounding box are all put to the positive data set (as 
shown in Fig. 2 (b)). It is obvious that the red plus 
signs in the black ellipses of Fig. 2 (b) are outliers. 
For instance, patches of the background coat (green 
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color) in the solid red rectangle (object bounding 
box) in Fig. 1 (b) are this kind of outlier. We can see 
that the performance of the DNF cell classifier (Fig. 
2 (e)) is much better than that of weak classifiers 
(Figs. 2 (c, d)) even though it is slightly influenced 
by the outliers in the object bounding box. If the 
performance of the cell classifiers is good, we can 
expect the final DNF classifier will be better. 

4.2 2d DNF Classifier Vs Strong 
Classifier 

Fig. 2 (f) shows the error rates of three classifiers to 
demonstrate to what extent 2D DNF classifier can 
improve the performance, compared with the strong 
classifier. As the experiment is to compare the 
classification capability of these three classifiers, no 
updates or other techniques are used (such as outlier 
elimination). We train the three classifiers on the 
first frame, and test on more than 260 other frames 
(the video sequence used here is “car”, see also Fig. 
3 (a)). For each frame, features of all the patches are 
calculated (EOH feature is employed), and the error 
rate is defined as the number of correctly classified 
patches divided by the whole number of patches. 
Furthermore, we add the only-DNF classifier, which 
is only a linear combination of DNF cell classifiers. 
The combined classifier in the Fig. 2 (f) is the 
classifier used in Algorithm 1, which is a linear 

combination of weak classifiers and 2D DNF cell 
classifiers. It is clear that the combined classifier has 
the best classification capability compared to the 
other two classifiers. 

4.3 Outlier Elimination Experiment 

The goal of this experiment is to view the effects of 
outlier elimination (shown in Fig. 1). In the 
initialization step, positive training data that are 
obtained from the object bounding box of the first 
frame (Fig. 1(b)) include data that do not belong to 
the object, and if these data are not rejected in the 
updating process, the outliers will be trained in the 
same manner as the object, which leads to the 
drifting of the tracker. In each bin of feature space, 
there are more patches from the object than from 
outliers, even though these outliers are labelled as 
the object, many of them cannot win over the object 
data (Eq. (11)). Furthermore, most of the winning 
outliers can be restrained in the updating procedure, 
as patches with lower confidence are not updated to 
the next frame. As shown in Fig. 1(c), patches from 
the green coat in the background are initially trained 
as the object, but are soon restricted in the following 
frames (Fig. 1(d)) as the outlier exclusion takes 
effect. 

     

   
Figure 2: Experiments for comparisons of weak classifiers and DNF cell classifiers. a) Ground truth with only patches from 
the object set as positive data; b) Ground truth with patches in the object bounding box set as positive data; c) classifying 
results of weak classifier 1; d) classifying results of weak classifier 2; e) classifying results of DNF cell classifier; f) 
comparative results of strong classifier and DNF classifier. 
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about the 700th frame (as shown in Fig. 5(3e) and 
(3f)) and could not recover the detection of the 
pedestrian thereafter (see Fig. 3(c)). Our method 
provides a relatively good performance, but the 
center difference is somewhat large (the other three 
methods suffer the same problem). The reason for 
this is that the pedestrian in this clip was sometimes 
standing near the camera and appeared larger than 
that in the initial frame but the size of the object 
bounding box in our method is fixed during the 
tracking process. The object of the fourth clip is a 
cup. The cup disappeared twice in the video 
sequence. The first disappearance was at about the 
165th frame, and OBV lost the object from this frame 
on (see Fig. 3(d)). In the case of the SST method, the 
object was lost and recovered a number of times. 
BSST provided relatively stable tracking but it failed 
to track the object between two disappearances. 
Adaptation to other objects occurred occasionally in 
our method as well. However, this was remedied 
quickly, which is manifested as sharp peaks in Fig. 
3(d). 

Besides these video sequences, we also testify 
our method on the PROST dataset, the video 
sequences in which were newly created by the 
authors of (Jakob Santner, 2010) (The video 

sequences and the code of the evaluation method are 
available at 
http://gpu4vision.icg.tugraz.at/index.php?content=su
bsites/prost/prost.php), and the two evaluation 
methods shown in Fig. 4 are also provided by (Jakob 
Santner, 2010). The first evaluation is the distance 
score that represents the mean center location error 
in pixels. The second evaluation method is PASCAL 
score based on PASCAL challenge (M. Everingham, 
2009). A frame is determined as a corrected tracked 
frame if the overlap score of the frame proceeds 0.5. 
The overlap score is calculated by Eq. (14), where 
BBD denotes the detected bounding box and BBGT 
represents the ground truth bounding box. Each 
point on the PASCAL score curve of Fig. 4 is the 
overlap score for each frame, and the number in the 
graph legend of PASCAL score figure represents a 
percentage of correctly tracked frames for a 
sequence. 

)(
)(

GTD

GTD

BBBBarea
BBBBareascore

∪
∩

=  (14) 

 
The benchmarked methods of Fig. 4 involves the  

   

 

 

 
Figure 5: Parts of frames of experimental results on video sequences. Processing methods: 1d-1f: SST, 2d-2f: BSST, 3d-3f: 
OBV, 4d-4f: BSST, 1a-1c,2a-2c,3a-3c,4a-4c: our method. 

4a #24 4b #166 4c #201 4d #24 4e #166 4f 
#201

3a #28 3b #690 3c #719 3d #28 3e #690 3f #719 

2a #542b #126 2c #185 2d #54 2e #126 2f #185 

1e #241 1d #227 1a #2271b #2411c #268 1f #168 

Disjunctive�Normal�Form�of�Weak�Classifiers�for�Online�Learning�based�Object�Tracking

145



methods of PROST (Jakob Santner, 2010), 
MIL_TR004_c (B. Babenko, 2009), FragTrack (A. 
Adam, 2006), and GRAD (Klein, 2011). It shows 
that our method achieves a best performance in 
sequences of board and lemming, and a slightly less 
good performance than PROST in sequences of 
liquor and box. An average PASCAL score of our 
method over the four sequences is 88.75%, which is 
much better than the average of 80.375% for PROST 
method. 

5 CONCLUSIONS 

This paper described a novel tracking method based 
on a 2D DNF of weak classifiers. The data of the 
DNF cell classifiers are constituted by pairwise 
combinations of the data of weak classifiers, and 
therefore the DNF can be utilized on top of any 
weak classifiers. The image patch is determined to 
belong to the object category or the background 
category by an ensemble of weak classifiers and 
DNF cell classifiers. The experiments demonstrate 
that our method provides a good performance 
compared to other methods but sometimes the center 
difference is somewhat large due to the unvaried 
object bounding box. For better tracking, we will 
continue the present line of research with a scalable 
object bounding box in the future. 
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