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Abstract: This paper presents a novel distance-based classifier based on the multiplicative inverse of Lorentzian mix-
ture, which can be regarded as a natural extension of the conventional nearest neighbor rule. We show that
prototypes and weights can be trained simultaneously by General Loss Minimization, which is a generalized
version of supervised learning framework used in Generalized Learning Vector Quantization. Experimental
results for UCI machine learning repository reveal that the proposed method achieves almost the same as
or higher classification accuracy than Support Vector Machine with a much fewer prototypes than support
vectors.

1 INTRODUCTION

Distance-based classifiers have been widely used in
real applications, because they achieve good perfor-
mance in spite of their simple structures with a few
prototypes. One popular learning algorithm of pro-
totypes is Learning Vector Quantization (LVQ) (Ko-
honen, 1995), and the margin-based theoretical anal-
ysis has proved that LVQ is a family of large mar-
gin classifiers (Crammer et al., 2003). In the early
stage of LVQ research, learning algorithms were im-
proved by heuristic approaches. However, improve-
ments have been conducted based on loss minimiza-
tion, since Generalized Learning Vector Quantization
(GLVQ) (Sato and Yamada, 1996; Sato, 1998) was
proposed. One of the major improvements concerns
the choice of an appropriate distance measure (Ham-
mer and Villmann, 2002; Schneider et al., 2009; Vill-
mann and Haase, 2011).

Meanwhile, kernel classifiers have been investi-
gated, and Support Vector Machine (SVM) (Cortes
and Vapnik, 1995) has become one of the powerful
classification method. Many works have shown that
SVM outperforms conventional classifiers. Exten-
sions of GLVQ by means of kernel functions have
been also investigated (Qin and Suganthan, 2004;
Sato, 2010), and the experiments reveal that the ex-
tended models achieve almost the same classification
accuracy as SVM. However, only weights for the ker-
nels are trained, and positions of prototypes are never

changed in these models, like in SVM. This may lead
to the limit of classification capability, and to the in-
crease of the number of prototypes.

It seems to be natural to train prototypes and their
weights simultaneously to achieve good classifica-
tion performance with a fewer prototypes. A learn-
ing method of prototypes as well as weights has been
proposed (Karayiannis, 1996), but it cannot be suit-
able for classification problems, because it was for-
mulated through unsupervised learning. One possible
alternative is to repeat adding and removing proto-
types during learning to decrease errors (Grbovic and
Vucetic, 2009), but the optimality cannot be ensured,
because the weights for the prototypes are estimated
by a heuristic approach.

In order to train prototypes and their weights
through supervised learning framework, this paper
presents a novel distance-based classifier by utiliz-
ing the multiplicative inverse of Lorentzian mixture.
Lorentzian has been evaluated as a response function
instead of sigmoid in multi-layered neural networks
(Giraud et al., 1995), but in this paper, we utilize it
for nearest neighbor classifiers. We show that the pro-
posed classifier can be regarded as a natural extension
of the conventional nearest neighbor rule. We also
show that prototypes and their weights can be trained
simultaneously by General Loss Minimization (Sato,
2010), which is a generalized version of learning cri-
terion used in GLVQ. Experimental results for UCI
machine learning repository (Blake and Merz, 1998)
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reveal that the proposed method achieves almost the
same as or higher classification accuracy than SVM,
while the number of prototypes is much less than that
of support vectors.

2 PROPOSED METHOD

2.1 Inverse of Lorentzian Mixture

Lorentzian, which is also known as Cauchy-
distribution, has the probability density function

p(x) =
1
π

[

γ
(x− y)2+ γ2

]

, (1)

wherey is the peak location andγ is the half-width
at half-maximum. Then, the discriminant function
for classωk using the mixture of Lorentzian ind-
dimensional space can be written as

gk(x) =
mk

∑
i=1

αki

[

γki

‖x− yki‖2+ γ2
ki

]

, (2)

whereαki ≥ 0 is a weight for thei-th distribution, and
yki’s (i = 1, · · · ,mk) are regarded as prototypes. As-
suming thatαkiγki = 1, we can obtain a more simple
form

gk(x) =
mk

∑
i=1

1

‖x− yki‖2+ bki
2 , (3)

where 1/αki is replaced bybki for ease of description.
As shown in Fig. 1, the height (or weight) of each dis-
tribution in Eq. (3) is defined only by the biasbki, so
the above assumption is found to be useful for simpli-
fying the mixture of Lorentzian.

Let us consider the dissimilarity form by taking
the multiplicative inverse of Eq. (3) as follows:

dk(x) =
1

gk(x)
=

[

mk

∑
i=1

(

‖x− yki‖
2+ b2

ki

)p

]1/p

, (4)

wherep = −1. Since this equation is formulated by
usingLp norm, we can extend it by taking appropri-
ate value forp < 0. For example, whenp→−∞, we
can obtain the nearest neighbor rule using biased Eu-
clidean distance as follow:

lim
p→−∞

dk(x) =
mk

min
i=1

(

‖x− yki‖
2+ b2

ki

)

. (5)

Therefore, Eq. (4) can be regarded as a natural exten-
sion of the conventional nearest neighbor rule. If we
use(d+1)-dimensional vectors defined byX← (x,0)
andYki← (yki,bki), Eq. (4) can be rewritten as

dk(X;θ) =

[

mk

∑
i=1

(

‖X−Yki‖
2)p

]1/p

, (6)
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Figure 1: Examples of Lorentzian using different values
for the bias. As the bias becomes larger, the height of the
Lorentzian becomes lower.

whereθ = {Yki|k = 1, · · · ,K; i = 1, · · · ,mk} denotes
a set of classifier parameters. Therefore, to train the
(d +1)-dimensional vectors{Yki} is to train both the
prototypes and ther biases, simultaneously.

2.2 Learning based on GLM

To estimate the values of classifier parameters, Gen-
eral Loss Minimization (GLM) is employed, because
it is a general framework for classifier design (Sato,
2010). GLM can deal with prior probabilities and
various losses as well as zero-one loss for multi-class
classification problems, but more simplified form is
used in this paper. Employing zero-one loss and as-
suming that the prior probabilities are proportional to
the number of samples in each class, the total loss can
be written as follows:

L(θ) =
1
N

N

∑
n=1

K

∑
k=1

K

∑
j 6=k

f (ρk j(xn;θ))1(tn = ωk). (7)

whereθ is a set of classifier parameters,N is the num-
ber of training samples,K is the number of classes,xn
is then-th training sample,tn is the genuine class of
xn, ωk is the k-th class, and 1(·) denotes an indica-
tor function such that 1(true) = 1 and 1( f alse) = 0.
f (ρk j(·)) is a sort of a risk associated with assigning
xn to classω j, andρk j(·) is the misclassification mea-
sure ofxn defined by

ρk j(xn;θ) =
dk(xn;θ)− d j(xn;θ)
dk(xn;θ)+ d j(xn;θ)

, (8)

wheredk(·) andd j(·) are dissimilarity-based discrim-
inant functions of classωk and classω j, respectively,
having positive values. The value ofρk j(·) ranges be-
tween−1 and 1, and leads to a correct (wrong) de-
cision when it is negative (positive.) In other words,
if ρk j(·) is positive, we can know thatxn falls into
a wrong decision region. The functionf (·) is a loss
function with respect to the misclassification measure.
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In this paper, the following semi-sigmoid function
is used, because it resembles the hinge loss used in
SVM:

f (ρ) =











1
1+exp(−ξρ)

for ρ < 0,

(ξρ+2)/4 for ρ≥ 0.

(9)

Since the slant of the loss functionξ(> 0) defines the
margin between classes, we have to tune it with care
(Sato, 2010).

In GLM, the classifier parameters are estimated
by minimizingL(θ) based on gradient search. If we
employ the steepest descent method,θ is updated it-
eratively (t← t +1) as

θ(t+1) = θ(t)+∆θ(t), ∆θ(t) =−ε(t)
∂L(θ)

∂θ

∣

∣

∣

∣

θ=θ(t)
(10)

until θ(t+1) ≃ θ(t), whereε(t)> 0 andt denotes time.
The differential ofL(θ) can be derived as

∂L(θ)
∂θ

=
1
N

N

∑
n=1

K

∑
k=1

K

∑
j 6=k

f ′(ρk j(xn;θ))

×
∂ρk j(xn;θ)

∂θ
1(tn = ωk), (11)

wheref ′(·) denotes the differential off (·) as follows:

f ′(ρ) =

{

ξ f (ρ)(1− f (ρ)) for ρ < 0,

ξ/4 for ρ≥ 0.
(12)

Here, let us use(d+1)-dimensional vectors as shown
in Eq. (6). The differentiation ofρk j(·) in Eq. (11)
depends on the class to which the prototype belongs.
For Yki which belongs to the correct classωk,

∂ρk j(Xn;θ)
∂Yki

=
−4d j(Xn;θ)

[dk(Xn;θ)+ d j(Xn;θ)]2

×

[

dk(Xn;θ)
‖Xn−Yki‖2

]1−p

(Xn−Yki), (13)

and forY ji which belongs to the wrong classω j,

∂ρk j(Xn;θ)
∂Y ji

=
4dk(Xn;θ)

[dk(Xn;θ)+ d j(Xn;θ)]2

×

[

d j(Xn;θ)
‖Xn−Y ji‖2

]1−p

(Xn−Y ji). (14)

Therefore, the update rules are obtained by substitut-
ing θ← Yki or θ← Y ji in Eq. (10). In practice, the
conjugate gradient method is used for optimizing the
parameters. Note that we can obtain the prototypes
and the biases which minimize the total loss, simulta-
neously, becauseYki consists ofyki andbki. In the ex-
periments, the initial values of the prototypes were de-
termined by usingK-means algorithm for each class.

For the biases, the same value was assigned to each
before learning, and they were normalized to satisfy
the following constraint during learning, so that the
biases range within a limit:

K

∑
k=1

mk

∑
i=1

b2
ki =C2. (15)

The outline of the learning algorithm is summarized
in Algorithm I.

Algorithm 1: Learning of the proposed method.

INPUT: p, ξ, C, mk (k = 1, · · · ,K)
INITIALIZE: yki← K-means,bki =C

/√

∑k mk
(i = 1, · · · ,mk;k = 1, · · · ,K)
while not convergeddo
· θ(t+1) = θ(t)+∆θ(t), where L(θ(t+1))≤ L(θ(t))
· bki← bki×C

/
√

∑k ∑i b2
ki

(i = 1, · · · ,mk;k = 1, · · · ,K)
end while
OUTPUT: yki, bki (i = 1, · · · ,mk;k = 1, · · · ,K)

3 EXPERIMENTS

To demonstrate the effectiveness of the proposed
method, hereinafter referred to as ILM, two kinds
of experiments were conducted: one was for two-
dimensional artificial data, and the other was for the
UCI machine learning repository.

3.1 Preliminary Experiments

Preliminary experiments for two-class two-
dimensional artificial data were conducted to
evaluate the effects of hyperparameters in ILM.
Figure 2 shows examples of decision boundaries
using different values forp in Eq. (6) andC in
Eq. (15). Prototypes are shown by white circles, and
the same value is assigned to every bias in each figure
according to the constraint of Eq. (15). As the value
of p becomes smaller, the decision boundaries tend to
approximate Voronoi diagrams, because the decision
rule becomes similar to the nearest neighbor rule.
While, as the value ofC becomes larger, they tend
to form more simple shapes, because the Euclidean
distance between a sample and a prototype becomes
to have a larger bias.

Figure 3 shows the decision boundaries after
learning by ILM. Cross and plus marks denote train-
ing samples for each class, and white circles denote
prototypes. Each figure corresponds to that shown
in the bottom row in Fig. 2, which was used as the
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p =−1 p =−2 p =−4 p =−8

C = 0.0

C = 1.0

Figure 2: Examples of decision boundaries for two classes using different values forp and C in the proposed method.
Prototypes are shown by white circles, and the same value is assigned to every bias in each figure according to the constraint
of Eq. (15).

p =−1 p =−2 p =−4 p =−8

C = 1.0

Figure 3: Decision boundaries after learning by the proposed method. Cross and plus marks denote training samples for each
class, and white circles denote prototypes. Each figure corresponds to that shown in the bottom row in Fig. 2, which is the
initial state before learning.
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Figure 4: The values of biases after learning, sorted in as-
cending order. Each graph corresponds to the result shown
in Fig. 3.

initial state before learning. Note that all training
samples were used as initial values of prototypes in
these experiments. As shown in the figures, the pro-
totypes which belongs to the blue class become closer
each other asp becomes smaller, and the decision
boundary tends to maximize the margin between the
two classes after learning. Therefore, ILM trained by
GLM can be regarded as a maximal margin classi-
fier as discussed in the literature (Sato, 2010). Fig-
ure 4 shows the values of biases after learning. Each
graph corresponds to the result shown in Fig. 3. Since

the bias is defined as the reciprocal of the weight
for Lorentzian, the smaller biases are more important
than larger ones, and the prototypes having larger bi-
ases can be removed. For example, the top three can
be removed forp = −1, and the top two can be re-
moved forp <−1. The decision boundaries after re-
moval were almost the same as shown in Fig. 3. Since
no difference was found to the eye, the figures after
removal are not shown in this paper.

3.2 UCI Machine Learning Repository

3.2.1 Experimental Setup

Experiments for the UCI machine learning repository
were conducted to evaluate the performance of ILM.
Some data preprocessing was employed beforehand
as used in the literatures (Meyer et al., 2003): 1) all
records containing any missing values were removed
from the dataset, 2) a binary coding scheme was used
for handling categorical variables, and 3) all metric
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Table 1: Experimental results for UCI machine learning repository. “Ins.” denotes the number of instances after removing
missing data, “Att.” denotes the number of attributes excluding class attribute, and “#” denotes the number of support vectors
or prototypes. The proposed method, referred to as ILM, was evaluated with different parameter sets: some parameters were
fixed as (a)C = 0, p =−28, (b)C = 0, (c) p =−1, and the other parameters were varied.

SVM ILM
Dataset Ins. Att. (a) (b) (c)

Error # Error # Error # Error #
(%) (%) (%) (%)

BreastCancer 683 9 2.8 61 2.3 4 2.2 4 2.3 64
Cards 653 15 12.9 218 12.6 4 12.4 4 12.3 8
Heart1 297 13 14.1 139 13.5 8 13.5 8 13.1 2
HouseVotes84 435 16 3.7 102 3.7 2 3.4 8 3.2 4
Ionosphere 351 34 4.3 149 6.8 32 3.4 16 3.1 16
Liver 345 6 27.0 211 28.1 4 26.4 4 24.9 8
P.I. Diabetes 768 8 22.3 423 21.9 2 21.6 4 21.6 4
Sonar 208 60 11.5 154 8.7 32 7.7 32 11.1 8
Tictactoe 958 9 1.5 813 0.2 16 0.2 16 1.5 16
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Figure 5: Error rates for BreastCancer in UCI machine learning repository by the proposed method with parameter set (c).

variables were scaled to zero mean and unit variance.
Nine datasets1 as shown in Table 1 were evaluated
based on 10-fold cross validation. That is to say, the
data were divided into 10 partitions, and 9 partitions
were used for training and the rest was used for test-
ing. This process was then repeated 10 times, and
the obtained results were averaged to produce a single
estimation. All of the datasets are two-class classifi-

1The actual names in UCI machine learning reposi-
tory are Breast Cancer Wisconsin (Original), Credit Ap-
proval, Heart Disease, Congressional Voting Records, Iono-
sphere, Liver Disorders, Pima Indians Diabetes, Connec-
tionist Bench (Sonar, Mines vs. Rocks), Tic-Tac-Toe
Endgame, respectively.

cation problems, so that we can compare the perfor-
mance of ILM with SVM.

The proposed method has several hyperparame-
ters: p and mk in Eq. (6), C in Eq. (15), andξ in
Eq. (9). In the experiments, the same number given
by m was used formk (k = 1, · · · ,K), so the per-
formance was evaluated using different values forp,
C, m and ξ. Specifically, p = {−2i|i = 0, · · · ,8},
C = {0,2i|i = 0, · · · ,10}, m = {2i|i = 0, · · · ,5}, and
ξ = {2i|i = 1, · · · ,8} were used.
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Figure 6: Error rates for UCI machine learning repository bythe proposed method with parameter set (c).

3.2.2 Experiment I

Results by ILM are shown in Table 1. The lowest er-
ror rates are listed for different parameter set: some
parameters were fixed as (a)C = 0, p = −28, (b)
C = 0, (c) p =−1, and the other parameters were var-
ied. Set (a) corresponds to GLVQ (p→−∞), set (b)
corresponds to an extension of GLVQ usingLp norm-
based mixture, and set (c) corresponds to the multi-
plicative inverse of thelinear mixture of Lorentzian.
Overall, the classification accuracy for set (c) is bet-
ter than set (a) and set (b), except Sonar and Tictac-
toe. This means that the learning of biases is very ef-
fective to improve classification accuracy, while the
Lp norm-based mixture is also important for some
datasets. Figure 5 shows the error rates for Breast-
Cancer by ILM with set (c). The horizontal axis de-
notes the value ofC, and the error rates using differ-
ent values forξ are shown. It is noteworthy that the
lowest error in each figure is not so different. This
means that ILM does not seem to suffer from the over-
fitting even though many prototypes are used. Fig-
ure 6 shows similar graphs to Fig. 5, but the best result

in variousm was selected for each dataset. Note that
the number of prototypes by ILM as shown in Table 1
is just twice as many as the selectedm.

Similar experiments by SVM were conducted for
comparison. Actually, SVMlight was used for evalua-
tion. The hyperparameters in SVM are the trade-offC
and RBF parameterγ in K(x,y) = exp(−γ‖x− y‖2).
The performance was evaluated using different values
for C andγ. Specifically,C = {2i|i = −5, · · ·12} and
γ = {2i|i = −10, · · · ,5} were used. The lowest error
rates and the number of the obtained support vectors
are listed in Table 1. Clearly, the error rates by ILM
are lower than those by SVM, while the number of
prototypes is much less than that of support vectors.
For BreastCancer, the number of prototypes by ILM
(c) listed in the table is larger than that of support vec-
tors, but the error rates stayed lower even though a
fewer prototypes were used. For example, it was 2.6
(%) for two prototypes (i.e.m = 1). Figure 7 shows
the results by SVM. These graphs are similar to Fig. 6,
but the horizontal axis denotes log2C, and the error
rates using different values for RBF parameterγ are
shown.
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Figure 7: Error rates for UCI machine learning repository bySVM with RBF kernel.

3.2.3 Experiment II

The results in Table 1 show that the proposed method
has capability to improve classification accuracy for
any datasets used in the experiments. However, in
practice, the hyperparameters should be estimated
without testing data. Table 2 shows similar experi-
mental results for UCI machine learning repository,
but the hyperparameters in ILM and SVM were tuned
with only training data through two-fold cross valida-
tion. Of course, the error rates are slightly worse than
those in Table 1, but ILM retains almost the same as
or better performance than SVM on the whole.

4 DISCUSSION

Experimental results for UCI machine learning repos-
itory revealed that ILM achieves almost the same as or
higher classification accuracy than SVM with a much
fewer prototypes than support vectors. The main ad-
vantage of ILM seems to train prototypes as well as

biases (or weights), while only weights are trained in
SVM. This may lead to reducing the number of pro-
totypes for achieving good performance. Since the
training of prototypes needs distance calculation at
every iteration in gradient search, it results in time
consumption as increasing the number of samples or
prototypes, or the dimensionality. In addition, the cost
function defined by Eq. (7) does not seem to ensure
the convexity. However, as shown in the experiments,
ILM gives a good performance for real datasets, so
it can become one of the powerful methods for clas-
sification. It was also shown that prototypes having
larger biases can be removed without degrading per-
formance in the preliminary experiments, but this re-
dundancy removal should be investigated further.

5 CONCLUSIONS

A novel distance-based classifier based on the multi-
plicative inverse of Lorentzian mixture was proposed,
which can be regarded as a natural extension of the

Inverse�of�Lorentzian�Mixture�for�Simultaneous�Training�of�Prototypes�and�Weights
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Table 2: Experimental results for UCI machine learning repository. Hyperparameters were tuned withonly training data
through cross validation. “Ins.” denotes the number of instances after removing missing data. “Att.” denotes the number
of attributes excluding class attribute, and “#” denotes the number of support vectors or prototypes. The proposed method,
referred to as ILM, was evaluated with different parameter sets: some parameters were fixed as (a)C = 0, p =−28, (b)C = 0,
(c) p =−1, and the other parameters were varied like in Table 1.

SVM ILM
Dataset Ins. Att. (a) (b) (c)

Error # Error # Error # Error #
(%) (%) (%) (%)

BreastCancer 683 9 2.8 66 2.5 32 2.6 64 2.6 64
Cards 653 15 13.6 189 13.2 8 13.9 8 14.6 4
Heart1 297 13 14.5 159 16.5 2 18.2 64 14.8 2
HouseVotes84 435 16 3.7 101 3.7 2 3.9 16 3.7 32
Ionosphere 351 34 4.8 148 8.3 8 3.7 32 4.3 64
Liver 345 6 28.1 203 28.1 4 27.5 4 26.3 4
P.I. Diabetes 768 8 22.3 418 22.5 2 22.3 32 21.9 64
Sonar 208 60 12.1 125 11.1 16 9.6 8 11.5 16
Tictactoe 958 9 1.7 349 1.7 2 0.9 16 1.7 2

conventional nearest neighbor rule. It was shown that
prototypes and biases can be trained simultaneously
by General Loss Minimization, which is a general
framework for classifier design. The preliminary ex-
periments raised the possibility that prototypes having
larger biases can be removed without degrading per-
formance, but this redundancy removal should be in-
vestigated further. Experimental results for UCI ma-
chine learning repository revealed that the proposed
method achieves almost the same as or higher clas-
sification accuracy than SVM for all of nine datasets
with a much fewer prototypes than support vectors.
In future, the proposed method will be evaluated for
various classification problems in real world.
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