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Abstract: Incident detection systems for the urban traffic network are still lacking efficient algorithms or models for 
better performance. This paper presents a new urban incident detection system based on the application of 
Fuzzy Logic modeling. Offline urban incident and corresponding non-incident scenarios are generated using 
a microscopic simulation model assuming varying traffic link flows, phase timing, cycle times, and link 
lengths. The traffic measures are extracted from three detectors on each link. Statistical significance analysis 
was utilized to identify the significant input variables to be used in developing the Neuro-fuzzy model. A set 
of data was generated and used for training of the proposed Neuro-fuzzy model, while another set was used 
for validation. The performance of the proposed model is assessed using the success and the false alarm 
rates of detecting an incident at a specific cycle time. 

1 INTRODUCTION 

The loop detector-based freeway incident detection 
algorithms in literature could be generally 
categorized into adopted analytical and heuristic-
based techniques (Parkany, 2005). Notable roadway 
detector-based recent urban incident detection 
models are mostly based on statistical regression 
(Ahmed and Hawas, 2012), Bayesian network 
(Zhang and Taylor, 2006) and fuzzy logic modeling 
(Hawas, 2007) techniques. Non-parametric 
optimization technique (Liu et al., 2007) and 
discriminant analysis (Sermons and Koppelman, 
1996) was used for the probe-vehicle based urban 
incident detection system. Neural network models 
were also developed (Dia and Thomas, 2011) using 
both loop detector and probe-vehicle data. 

Typically, the focus of these algorithms was 
primarily on estimating the performance measures 
using the percentage of the total number of incidents 
detected or falsely identified incidents for the 
simulated duration where the whole incident as a 
single unit. These algorithms do not particularly 
account for the true start or the terminating times of 
individual incidents as a criterion of evaluation. 
Moreover, these do not consider the effects of the 
link lengths of the approaches, the hourly traffic 
volumes, the signal settings and the cycle times of 

the intersections. This study strives to fill in some of 
these research gaps of urban incident detection areas 
for more efficient detection model. 

This study assumes that the duration of an 
incident is divided into smaller time steps and the 
algorithm is operated repeatedly each (shorter time 
resolution) step to detect incidents. The proposed 
fuzzy-model is capable of identifying whether there 
is an incident or not during each time step. The 
simulation period may be divided to hundreds of 
such shorter time steps. With this approach the 
actual incident start and clearance time could be 
identified to a great extent.  

Therefore, this paper comes up with a new form 
of urban incident detection model using fuzzy-logic.  
The model detects the incident status each time step, 
under various signal cycle times, link lengths and 
traffic volumes combinations.  

2 METHODOLOGY 

The conceptual assumption is that the average 
detectors’ readings in the case of incident may 
significantly vary from the counter readings in the 
case of no incident. A micro-simulation based 
methodology is adopted. A typical pre-timed urban 
intersection network that consists of four links of 
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similar geometry and traffic conditions (Figure 1) 
was selected as it represents the simplest case of a 
signalized urban network. The overall methodology 
that this study followed could be summarized as 
with the following steps: 
Step 1: Preparing a specific simulation test-bed (with 
upstream, midblock and downstream detectors) for 
the base inputs of a specific Cycle Time (sec) of 
downstream signal, associated link length (m) and 
hourly traffic volume (veh/hr) combination. 
Step 2: Run this specific simulation model without 
incident and extract the raw detectors count and 
speed data (at every approach split time of the signal 
cycle). 
Step 3: Run this specific simulation model test-bed 
again with an incident generated at a specific time 
with specific incident duration, and hence extract the 
raw detectors count and speed data. 
Step 4: Estimate detectors count and speed data for 
every analysis time step [analysis time step = cycle 
time] for the both incident-free and incident-induced 
runs. 
Step 5: Estimate the traffic measures of interest (i.e. 
independent variables) for every analysis time step. 
Step 6: Repeat steps 1 to 5 for a different base input 
specifics (cycle time, link length and hourly traffic 
volume) and collect all the traffic measures of 
interests for all analysis time-steps from all input 
specific combinations. 
Step 7: Develop some statistical significance tests 
(ANOVA) for extracting the most significant 
independent variables to be used in the proposed 
incident detection model. 
Step 8: Develop a Neuro-Fuzzy Model [A fuzzy 
model for each specific base model that is trained 
with neural net for calibrations. 
Step 9: Validate this Neuro-Fuzzy Model with 
validation data set. This data set is developed 
following step 1 to step 5 for slightly altered input 
specifics from the base cases. 
Step 10: Comparison of the measures of 
performance estimated by the calibrated models 
using the validation data. 

2.1 Experimental Set up of the Incident 
Modeling 

An incident is modeled here as a “lane-blocking” 
event that persists at least for 6 minutes on a typical 
three-lane urban arterials in the simulation models. 

It is quite rational that longer time incidents, 
reported in previous studies, could be detected easily 

as these might have some significant impacts on the 
traffic parameters. The true challenge (and that is 
one of the premises of this work) is to detect the 
incidents of relatively shorter times. Herein, we 
focus on a single-lane blocking incidents of 6, 8 and 
10 minutes incident clearance intervals. Such shorter 
events will be harder to detect. 
 

 

Figure 1: A simple signalized (pre-timed) urban 
intersection: four approaches, detector placements and a 
randomly generated incident on the Lane 1 (i.e. rightmost 
lane in the direction of traffic flow) of the West bound 
approach. 

2.2 Incident Data Development 

In the absence of detailed data of real-field detector-
based traffic measures, it is a common practice to 
use well-validated simulation data to generate 
incident scenarios. Previous studies ((Khan and 
Ritchie, 1998); (Yuan and Cheu, 2003) and (Zhang 
and Taylor, 2006)) also used simulation models to 
generate the incident scenarios. However, these 
studies used calibrated simulation models from the 
field data. Similarly, this study also adopted 
NETSIM to generate incident data. NETSIM places 
the incidents randomly on the designated lane with 
specific time duration; however, it cannot be 
actually used to model an incident at a very specific 
designated place (Yuan and Cheu, 2003). 

2.3 Incident Data Analysis and Fuzzy 
Models Development 

The detector data were extracted for both incident 
and non-incident simulation cases for various 
operating configurations models. The term 
‘operating configuration’ refers the combination of a 
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specific cycle time, link length and traffic volume. 
Specific traffic measures that are likely to vary 
between incident and no incident cases were chosen 
to develop the fuzzy-logic models. Incident 
detection and false alarm rates were chosen as the 
measures of effectiveness (MOEs) of the calibrated 
fuzzy-logic models.  

3 INCIDENT MODELING 

For practicality issues herein, we assume that each 
detector covers all the approaching lanes for 
capturing the traffic data. Each detector was placed 
perpendicularly to the direction of traffic flow. The 
same logic could be easily adapted in case the 
detectors are placed on individual lanes. When a 
vehicle hits a detector, the corresponding detector’s 
count is increased by one. The detector also captures 
the vehicle’s speed. 

Only for the simplicity and convenience of the 
data extraction from the detectors, it is assumed that 
incidents starting time is the start of the green phase 
of the incident approach. The incident then lasts for 
multiples of cycle times (based on the incident 
duration).   The incident terminates concurrently by 
the end of a cycle time. However, this assumption 
might have some impact on the time to detect of the 
incidents. 

The detector placements are kept fixed; near the 
stop-line (downstream detector), at mid-block 
position (mid-detector) and at end of the link 
(upstream detector). The vehicle composition is kept 
also fixed; private-cars 90% and heavy-vehicles 
10%. The percentages for left, through and right 
turns at each approach were fixed as 25%, 50%, and 
25%, respectively. The operating speed limit was 
fixed at 60 km/hr. The pre-timed signal operates on 
split phase sequencing for the 4 approach legs. 

The simulation test beds were varied to reflect 
various signal cycle time (60, 80 or 100 seconds), 
approach link length (300, 500 or 1000m) and 
hourly traffic volumes (100, 500, 1000 or 1500 
veh/hr). As the combination of link length of 300 
and traffic volume of 1500 veh/hr resulted in link 
spill back in the no-incident scenarios, and as such it 
was excluded. We have 11 basic link and volume 
(LV) combinations for each signal cycle to develop 
simulation test beds and to extract the detector data 
needed for model calibration. Thus, the LV 
combinations, denoted by (Link length: Veh/hr), are 
(300, 100), (300, 500), (300, 1000), (500, 100), 
(500, 500), (500, 1000), (500, 1500), (1000, 100), 
(1000, 500), (1000, 1000) and (1000, 1500). These 

11 basic LV models for each cycle time also serve as 
the base incident-free models. Then, incidents were 
generated on these base test-beds with different 
start-times for each incident model. The incident 
models were run with the same random seed number 
and initial warm-up period as of the corresponding 
base incident-free models. Finally, we have 66 
incident models for the 60-second cycle time cases, 
55 incident models for the 80-second cycle time 
cases, and 66 incident models for the 100-second 
cycle time cases. 

Each simulated incident model (also, 
corresponding non-incident base model) was run for 
the time-period of around ½ hour (i.e. 30 time steps, 
23 time-steps and 18 time-steps for the 60, 80 and 
100 sec signal cycle times, respectively, where a 
time step is equal to a cycle time). The exact 
incident specifics with the 60-second cycle time are 
denoted here by the [run no: incident start time, 
incident duration].  The exact runs are [R1: 2, 6], 
[R2: 6, 6], [R3: 11, 6], [R4: 16, 6], [R5: 21, 6] and 
[R6: 26, 5]. The 80-second runs are [R1: 2, 6], [R2: 
6, 6], [R3: 11, 6], [R4: 16, 6] and [R5: 21, 3]. The 
100-second runs are [R1: 2, 6], [R2: 6, 6], [R3: 11, 
6], [R4: 16, 6], [R5: 21, 3] and [R6:17, 2].  

4 DATA ANALYSIS 

The approach used for the data analysis is based on 
the assumption that it is likely that the traffic 
measures (extracted from detectors) of the incident-
induced cycle-time will vary from the counter traffic 
average values measured in no incident case. The 
proposed model operates with a time step (cycle 
time) resolution; to detect the incident status at every 
cycle time. 

The considered traffic measures are the 
‘accumulated detector counts’ and the ‘average 
detector speeds’ for all the three detectors. The data 
extraction period is equal to the green split time of 
that cycle. That is, for every cycle time, there are 
four data extraction periods. 

For the upstream detector and mid-lane 
detectors, the traffic measures are estimated for each 
cycle time including 4 split phases. For the 
downstream detector, only the traffic measures 
during the green phase are used. During the red 
phases, it is expected that detectors will indicate 
fixed counts and zero speed. Except for the front 
leading vehicles near the STOP line (near the 
downstream detector), no other vehicles would hit 
the downstream detector during the red phases. 
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5 DEVELOPMENT OF  
FUZZY-BASED INCIDENT 
DETECTION MODEL 

A neuro-fuzzy approach was adopted to develop the 
incident status prediction models presented in this 
paper. In developing the fuzzy model, the 
independent variables (as indicated above in Table 
1) are the traffic measures extracted from the 
simulation detectors. The parameters UC, US, MC, 
MS, DC and DS of Table 1 are the recorded detector 
data for each of the simulation time-step of the 
incident models or the operating time-step in reality. 
The parameters C1, C2, C3, S1, S2 and S3 are also the 
recorded detector data for each time step with no-
incident scenarios out of the corresponding base LV 
model of each operating configuration. In reality, 
based on the detector readings of (say) the previous 
3 to 5 time steps, the model could identify the 
closest base scenario for the retrieval of the 
parameters. 

After some comprehensive statistical 
significance tests with Factor Analysis in Minitab, it 
was observed that Y1, X2, Y2 and Y3 in Table 1 are 
the most significant independent variables in 
predicting the incident status by some general linear 
regression (GLM) models. So, the same four 
independent variables were considered as the input 
membership functions for the fuzzy logic models. 

The dependent variable of the fuzzy model is 
either an incident status (yes) or a normal recurrent 
traffic condition (no incident) of a single time-step. 
Because of the unavailability of the neuro-fuzzy 
training for the discrete binary dependent variables, 
the dependent variable of the proposed fuzzy-logic 
was considered as continuous variable while using 
the program FuzzyTECH 5.5 (INFORM, 2001). 

The ‘true’ range of the dependent variable of an 
incident status is allocated the central value of 1 for 
an incident, and the ‘false’ range of the dependent 
variable of a non-incident status is allocated the 
central value of 0. 

In applying the fuzzy-logic model to predict the 
incident status, a threshold value is utilized.  If the 
estimated dependent variable is higher that the 
threshold value (say 0.500) an incident is indicated, 
otherwise it's a normal condition. The threshold 
value is chosen to maximize the incident detection 
rate and minimize false alarms. Such threshold was 
determined through comprehensive iterative 
analyses. Initially, the value of 0.500 was set as the 
intuitive separating point between incident and non-
incident status. Then, a brute-force search was 

adopted with 0.001 units of increase/decrease for 
next iteration until the improvement in the incident 
detection rate is noticed, while keeping the false 
alarm rate within some acceptable limits. 

The adopted measures of effectiveness of this 
model are as follows: 

Incident Detection Rate: The percentage of time 
steps that the FLM predicts the incident time steps 
correctly. The true detection of incident status of a 
time step is defined as the prediction of an incident 
status by the model while this time step was truly an 
incident-induced simulated time step.  

False Alarm Rate: The percentage of time steps 
that the FLM predicts an incident status out of all 
normal incident-free time steps. The false detection 
of a time step is defined as the prediction of an 
incident status by the FLM while this time step was 
truly incident free.  

It is to be noted that the average time to detect the 
incident is the duration of one time step (which is 
equal to one cycle time) as this model detects 
whether an individual time step is incident-induced 
or incident-free. 

6 FUZZY SYSTEM STRUCTURE 

The simple FLM structure shown in Figure 2 was 
adopted. The connecting lines symbolize the data 
flow.  

Four input variables with the associated 
linguistic terms were identified for the logic as 
shown in Table 2. The output ‘Incident_Status’ is an 
index for incident possibility with two linguistic 
terms (False and True); the higher the index the 
higher the possibility of an incident. 

6.1 Fuzzification 

The linear (L-shaped) membership function (MBF) 
was adopted for all variables. The membership 
functions are initially set equally distributed over the 
range of all possible values. Each variable’s term is 
defined by that single value that corresponds to a 
term membership value (µ) of 1 as shown in Figure 
3. 

The Neuro-Fuzzy training algorithm is used to 
optimize these confidence levels and the 
membership functions via data training as will be 
explained later. 
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Table 1: Traffic measures used in the incident detection models. 

Detector 

Traffic measures of the incident 
scenarios 

[for each analysis 
time-step (cycle time)] 

Traffic measures of the no-
incident 
scenarios 

[for each analysis 
time-step (cycle time)] 

Parameters to be used in the models (for 
each cycle time) 

n: total number of simulated cycle times 
for a specific combination 

[n= 30, 23 and 18 for the cycles of 60 , 
80 and 100 seconds, respectively] 

Vehicle count 
measures 

Speed measures 
Vehicle count 

measures 
Speed measures

Vehicle count 
measures 

Speed measures 

Upstream 
detector 

[data at each 
cycle] 

Total vehicle 
count 
(UC) 

Average speed 
(US) 

Total vehicle 
count 
(C1) 

Average speed
(S1) 

deviation of 
upstream detector 

count: 

n

C
UCX  1

1
 

deviation of 
upstream detector 

speed: 

n

S
USY  1

1
 

Midblock 
detector 

[data at each 
cycle] 

Total vehicle 
count 
(MC) 

Average speed 
(MS) 

Total vehicle 
count 
(C2) 

Average speed
(S2) 

deviation of 
midblock detector 

count: 

n

C
MCX  2

2
 

deviation of 
midblock detector 

speed: 

n

S
MSY  2

2

Downstream 
detector 

[data at each 
cycle] 

Total vehicle 
count [during 
green phase] 

(DC) 

Average speed 
[during green 

phase] 
(DS) 

Total vehicle 
count [during 
green phase] 

(C3) 

Average speed 
[during green 

phase] 
(S3) 

deviation of 
downstream 

detector count: 

n

C
DCX  3

3
 

deviation of 
downstream 

detector speed: 

n

S
DSY  3

3

 

Input 
(Fuzzification) 

Inference Engine 
(Inference Rule 

Base) 

Output 
(Defuzzi-
fication) 

Figure 2: The FLM structure of the urban incident 
detection model. 

6.2 Fuzzy Inference Process 

The fuzzy inference consists of three computational 
steps: Aggregation, Composition, and Result 
Aggregation (INFORM, 2001). The rules (IF-THEN 
logics) were generated to describe the logical 
relationship between the input variables (IF part) and 
the output variable (THEN part). Initially, all the 
possible combinations of rules (3*3*3*3*2=162) 
were set initially with equal degree of support (DoS) 
of 0.5 as shown in Table 3. The initial value of the 
DoS for each rule is adjusted by neuro-fuzzy 
training. 

Table 2: The FLM input and output variables, numerical 
ranges, and linguistic terms.  

Variable 
category 

Variable name 
(Denoted in FLM) 

Numerical 
ranges Linguistic 

terms 
Min Max 

Input 
variables 

deviation of 
upstream detector 

speed (Y1) 
-17.96 24.11 

Low, 
Medium, 

High 
deviation of 

midblock detector 
count (X2) 

-14.56 42.28 
Low, 

Medium, 
High 

deviation of 
midblock detector 

speed (Y2) 
-31.51 21.74 

Low, 
Medium, 

High 
deviation of 
downstream 

detector speed 
(Y3) 

-28.75 43.53 
Low, 

Medium, 
High 

Output 
variable 

Incident Status 
(Incident_Status)

-1 +2 
False, 
True 

 
Among the several available operators (such as 

AND, OR, Min–Max, Min–Avg, Gamma), the 
‘Min–Max’ operator resulted in minimum training 
error.   
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(a) 

(b) 

Figure 3: (a) the initial and (b) finally calibrated MBF of 
input Y2 (60-second cycle, 50-m link length and 1000 
veh/hr scenario). 

Table 3: Examples of sample IF-THEN rules. 

IF THEN 

Y1 X2 Y2 Y3 
DoS 

(initial: 
final) 

Incident_
Status 

low low low low (0.50: 0.97) False 
low low low low (0.50: 0.98) True 
low low high low (0.50: 0.49) False 
low low high low (0.50: 0.50) True 
low low high high (0.50: 0.45) False 
low low high high (0.50: 0.50) True 

6.3 Defuzzification 

Among the several defuzzification methods, the 
adopted MoM (Mean-of-Maximum) method delivers 
the "most plausible" result that is mostly used in 
pattern recognition problems. The MoM method 
generates the mean value (z0) of all output units, 
whose membership functions (from Figure 4) reach 
the maximum as follows: 





k

j

j
o k

z
z

1  
Where  
zj: output unit whose membership functions reach 
the maximum 
k: number of such output units. 

6.4 Neuro-Fuzzy Data Training 

The neuro-fuzzy system can be viewed as a three-
layer feed forward neural network similar to the 
above traditional fuzzy system (Figure 2) with a 
layer of hidden neurons used to perform each 
process. The first layer represents the input variables 
fuzzification process, the middle hidden layer 

represents the fuzzy rule inference process and the 
third layer represents the output variable 
defuzzification process.  

 

Figure 4: The final values of output (Incident_Status) after 
nuero-fuzzy training of the MBF (60-second cycle, 500-
meter link length and 1000 veh/hr scenario). 

The ‘calibration’ here refers to finding the 
‘optimal’ fuzzy membership shape and the Degree 
of Support (DoS) for the IF–THEN rules. In the first 
step, all MBFs and rules were selected for the neuro-
fuzzy training to find the optimised FLM. Then, the 
parameters (step width for DoS and terms) were 
selected for the training. The whole neuro-fuzzy 
training was carried out for five cycles with each 
cycle for 1000 iterations. 

The step width for the DoS values has been set to 
0.1 for each cycle. The step width for the terms has 
been set to 5% in the first cycle, which was 
increased by 5% in later cycles. The maximum and 
average deviations were observed after completion 
of each cycle. The cycle, for which the deviation 
values are less, was selected as the final FLM. After 
the training phase, the MBFs and the DoS values 
were determined as shown in Table 3 and Figure 
3(b). 

7 RESULTS 

For the 60-second signal time models, the 
performance measures, denoted by (FLM threshold, 
incident detection rate, false alarm rate), for the 
mentioned 11 LV combinations are (0.500, 26%, 
10%), (0.500, 69%, 0%), (0.200, 77%, 24%), (0.200, 
46%, 39%), (0.200, 46%, 15%), (0.500, 77%, 9%), 
(0.500, 31%, 1%), (0.500, 40%, 19%), (0.500, 66%, 
9%), (0.500, 34%, 9%) and (0.500, 43%, 9%), 
respectively. With the 80-second signal time models, 
the performance measures are (0.500, 41%, 8%), 
(0.500, 96%, 0%), (0.500, 78%, 0%), (0.500, 22%, 
5%), (0.500, 67%, 3%), (0.500, 85%, 6%), (0.500, 
70%, 0%), (0.500, 56%, 51%), (0.500, 0%, 0%), 
(0.500, 0%, 0%) and (0.500, 56%, 1%), respectively. 
With the 100-second signal time models, the 
performance measures are (0.500, 0%, 0%), (0.500, 
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90%, 0%), (0.500, 90%, 0%), (0.500, 61%, 21%), 
(0.500, 90%, 23%), (0.500, 77%, 17%), (0.500, 
81%, 1%), (0.500, 48%, 9%), (0.500, 65%, 5%), 
(0.500, 87%, 25%) and (0.500, 68%, 10%),  
respectively. Thus, the incident detection rates range 
from 0% to 96%, while the false alarm rates range 
from 0% to 51%. Except for few operating 
conditions, the average detection rate is mostly 
above 55%. 

The worst performance of the FLM (low 
detection rate and/or very high false alarm rate) is 
evident with low traffic volumes. At low traffic 
volumes, incidents do not significantly impact the 
detector readings or the adopted traffic measures 
(especially for the cases of partial blockage). Even 
with long incident durations, vehicles could easily 
bypass the blocked lane through other free lanes. 

This limitation (low detection rates at low traffic 
volumes) is quite similar to that of the freeway 
incident detection models. At such low traffic 
volumes one may argue that traffic control centre 
does not necessarily have to respond by control 
adjustments as the incident does not impact the 
traffic flow significantly. Also, for the case of 80-
second cycle time, the FLM for the case of long link 
length (i.e. 1000 m) seems performing worse with 
relatively low detection rates. This may be attributed 
to the delay in detecting incidents caused by the 
longer travel times on links. 

By excluding the scenarios of low traffic volume 
(100 veh/hr), the average detection rate of the 
proposed FLM is 64.3% (55%, 57% and 81% for the 
signal cycles of 60, 80 and 100 seconds, 
respectively), and the average false alarm rate is 7%. 
This FLM seems performing better with lower false 
alarm rate (7%) as compared to the GLM based 
regression models (11.7%) developed by Ahmed and 
Hawas (2012). The average detection rate of the 
GLM models (64.6%) is close to that of the FLM 
(64.3%). 

8 VALIDATION TESTS 

Another set of different incident scenarios was 
modeled with NETSIM for validation test. This 
would also test the robustness of the devised FLMs. 
Here, all scenarios were modeled with 8 time steps 
incident duration (480, 640 and 800 seconds for the 
cycle times of 60, 80 and 100 seconds, respectively),  
where the incidents starting and ending time steps 
were set to 9 and 16, respectively. The calibration 
data set was from the lane 1 incidents only, but the 
validation data set were generated from the incidents 

of both lane 1 and lane 2. Thus, it reflects significant 
changes to incident occurrence specifics as 
compared to the data used for calibration.  Some of 
the lane-2 incidents were generated with hourly 
traffic volumes of 500 and 1000 veh/hr with various 
link lengths and cycle time of 60 seconds. Others 
were generated with hourly traffic volumes of 100 
and 1500 veh/hr, various link lengths and cycle time 
of 80 seconds. Also, some incidents were generated 
with hourly traffic volumes of 500 and 1500 veh/hr 
with various link lengths and cycle time of 100 
seconds.  

The developed FLM of each specific 
combination (i.e. from the 33 operating 
configurations) was used to predict the incident 
status using the data of the validation scenarios. 
Lane-2 incident validation scenarios resulted in 
average detection rate of 32% (standard deviation 
20%), and average false alarm rate of 14% (standard 
deviation 17%). Lane-1 validation scenarios resulted 
in 19% average detection rate (standard deviation 
21%) and 8% average false alarm rate (standard 
deviation 12%).  

It is to be noted that the lower detection rates of 
the validation scenarios (as compared to the results 
reported in the calibration of the FLM) might be 
attributed to the insufficient data as for each specific 
combination of cycle time, link length and volume; 
only one incident scenario for each combination 
whereas there were at least 5 incident scenarios in 
calibration. Furthermore, the calibration data was 
somehow limited in the sense that it did not consider 
overall random variations in incident durations, start 
and end times. 

9 CONCLUSIONS 

This paper presented an FLM approach that 
combines simple fuzzy logic models and threshold 
values for each specific combination of cycle time, 
link length and hourly traffic volume. Except the 
relatively lower hourly traffic volumes, the incident 
detection and the false alarm rates were satisfactory 
for all the cases.  

There is still a significant room for improving the 
presented FLM to obtain more efficient and robust 
models. Also, further challenges remain in 
predicting the incident status with significantly wide 
variations of the input attributes accounting for other 
aspects such as the malfunctioning of the detectors 
and the variations with detector placements. Further 
research is intended to focus on improving the FLM 
by considering the impact of random incident 
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locations, durations, and different detector 
placements. Other improvements could include the 
generalization of the FLM to account for over-
saturated traffic conditions when link spill back 
occurs. Further research would also consider 
different settings of the FLM structure in terms of 
reduced number of input parameters. Also, a general 
FLM (for various operational conditions) will be 
strongly needed.  
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