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Abstract:  Recent advances have started to uncover the underlying mechanisms of metabotropic glutamate receptor 
(mGluR) dependent long-term depression (LTD). However, it is not completely clear how these 
mechanisms are linked and it is believed that several crucial mechanisms still remain to be revealed. In this 
study, we investigated whether system identification (SI) methods can be used to gain insight into the 
mechanisms of synaptic plasticity. SI methods have shown to be an objective and powerful approach for 
describing how sensory neurons encode information about stimuli. However, to the author’s knowledge it is 
the first time that SI methods are applied to electrophysiological brain slice recordings of synaptic plasticity 
responses. The results indicate that the SI approach is a valuable tool for reverse engineering of mGluR-
LTD responses. It is suggested that such SI methods can aid to unravel the complexities of synaptic 
function. 

1 INTRODUCTION 

Synaptic plasticity in general terms is the change of 
strength of synaptic connections between neurons. 
Long-term potentiation (LTP) and long-term 
depression (LTD), two extensively studied forms of 
synaptic plasticity, are characterised by a persistent 
increase and decrease of synaptic efficacy, 
respectively. Long-term synaptic modifications play 
a key role in the plasticity of behaviour, learning and 
memory (Kandel, 2001); (Malenka and Bear, 2004); 
(Neves et al., 2008); (Richter and Klann, 2009; 
Collingridge et al., 2010). This work focuses on 
metabotropic glutamate receptor (mGluR)-
dependent long-term depression.  

In spite of many research on mGluR-LTD 
[reviewed in (Massey and Bashir, 2007); (Bellone et 
al., 2008); (Collingridge et al., 2010); (Lüscher and 
Huber, 2010)], it is not completely clear how these 
mechanisms are linked and most likely several 
crucial mechanisms still remain to be revealed. 

Most models are dynamical mechanistic models 
describing the considered system based on a priori 
knowledge of the system (Shouval et al., 2002); 

(Nieus et al., 2006); (Manninen et al., 2010).  
In recent years, more and more researchers 

advocate the use of a top-down (data-based) 
modelling approach in addition to an earlier 
mentioned mechanistic (or bottom-up) approach for 
improving the knowledge of biological systems (e.g. 
Jarvis et al., 2004); (Tomlin and Axelrod, 2005); 
(Tambuyzer et al., 2011). The power of the 
dynamical systems approach to neuroscience, as 
well as to many other sciences, is that we gain 
insight into a system without knowing all the details 
that govern the system evolution (Izhikevich, 2007). 

In this study, we hypothesise that it is possible to 
uncover the underlying dominant processes of 
mGluR-LTD by applying mathematical system 
identification methods. This hypothesis resulted in 2 
main objectives: (1) to quantify the dynamics of 
LTD responses for different experimental conditions 
using a discrete-time transfer function (TF) 
approach. The models describe the relation between 
the DHPG application (input) and the long-term 
depression responses (output); (2) to investigate 
whether system identification methods can be 
valuable to gain insight into the mechanisms of 
synaptic plasticity. Therefore, we examined whether 
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the estimated TF models allowed us to identify and 
quantify the major sub-processes involved in mGluR 
dependent long-term depression. 

2 MATERIALS AND METHODS 

2.1 Experiments 

2.1.1 Animals and Brain Slice Preparation 

Wistar rats (10-14 months old) were killed by 
cervical dislocation and the hippocampus was 
rapidly dissected out into ice-cold (4±C) artificial 
cerebrospinal fluid (ACSF), oxygen saturated with 
carbogen (95% O2 / 5% CO2). Transverse 
hippocampal slices (400 m thick) were prepared 
and placed into a submerged-type chamber, 
maintained at 33±C with carbogen saturated ACSF 
perfused at 2.4 ml/min by a peristaltic pump.  

The animals were maintained and experiments 
were conducted in accordance with Institutional (KU 
Leuven), State and Government regulations. 

2.1.2 Electrophysiological Recording 

Synaptic responses were elicited by stimulation of 
the Schaffer collateral afferents using a teflon-coated 
tungsten electrode. A glass electrode (filled with 
aCSF, 1-4 M) was used to record the evoked 
extracellular field Excitatory Postsynaptic Potentials 
(fEPSPs) in the CA1 region of the hippocampal 
slices. The slope of the fEPSP curves (mV/ms) was 
used as an indicator for the synaptic strength as 
described previously (Balschun et al., 2003). The 
stimulus intensity (A) was adjusted to elicit an 
fEPSP response with a slope 35% of the fEPSP 
slope maximum, determined by input/output curves. 

A dataset was generated with a stimulation 
frequency of 0.033 Hz. Every generated data-point 
corresponded with a single stimulus. In total nine 
repetitions were performed resulting in 9 time series 
of fEPSP slopes. 

2.1.3 Drug Application 

After the brain slice preparation and the tuning of 
the electrode settings, the experiments started. First, 
there was a period of baseline recording (50 
minutes) during which no drug was applied. After 
the baseline recording, metabotropic (mGluR)-LTD 
was induced in the rat brain slices by bath-
application of dihydroxyphenylglycine (DHPG). 
The drug was applied for 2hours, in a concentration 

of 30 M by the peristaltic pump. 

2.2 Modelling 

2.2.1 Dynamic Data-based Models 

For the modelling, discrete-time Transfer Functions 
(TF) models were used. The models were single-
input single-output (SISO) models. For this work, 
brain slices were exposed to a specific DHPG 
concentration to induce synaptic plasticity in the 
brain slices. The DHPG concentration (M) was 
used as input and the synaptic strength was the 
output (measured fEPSP slopes as percentage of the 
initial fEPSP slopes before drug application; see 
Figure 1). The dataset consisted of nine repetitions 
for the same experimental conditions.  

The obtained responses (time series of fEPSP 
slopes) were averaged and the resulting mean 
response curve was used to estimate the TF models. 
A SISO discrete-time TF model can be described by 
the following general equation (Young, 1984): 
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where y(k) is the output (synaptic strength); u(k) is 
the input (DHPG concentration); k is the time for 
discrete time steps;  is the time delay (>0);  is 
additive noise, a serially uncorrelated sequence of 
random variables with variance that accounts for 
measurement noise, modelling errors and effects of 
unmeasured inputs to the process. A(z-1) and B (z-1) 
are polynomials of the model parameters which can 
be written as: 
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Every polynomial is a function of z-1, which is a 
backward shift operator that is defined as z-1y(k) = 
y(k-1). Finally, ai and bi are the model parameters. 
Here, n represents the order of the system.  

Simplified refined instrumental variable (SRIV) 
algorithms were used for the identification and 
estimation of the model parameters (Young, 1984). 
All calculations were performed in Matlab using the 
Captain Toolbox (Taylor et al., 2007). Different 
numbers of denominator and numerator parameters 
(n and m ranging from 1 to 5) and different time 
delays (0 to 10) were investigated resulting in 275 
(5x5x11) model structures. For each of these model 
structures, TF models were estimated. 

Three criteria were used to select the best 
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models: R2
T values (Young, 1984), the Akaike 

Information Criterion (AIC; Akaike, 1974) and the 
Young Identification Criterion (YIC; Young, 1984). 
In addition to these three statistical criteria, each 
candidate model was also evaluated by visual 
inspection (Ljung, 1987). The three statistical 
criteria are described below: 
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In these equations, 2ˆ e  refers to the variance of the 

residuals, 2ˆ y is the variance of the output and h is 

the number of estimated parameters (i.e. n+m+1) in 
the parameter vector p̂ (i.e. 

 1 0
ˆ ,... , ,...n ma a b bp ). N is the number of 

samples. ˆ
iip  is the ith diagonal element of the 

covariance matrix generated by the estimation 

algorithm and 2ˆ ia  is the square of the ith parameter 

in the p̂  vector. RT
2 is a statistical measure for the 

goodness of fit of the simulation response. AIC is 
partly dependent on the fit of the simulation but 
there is also a second component which takes into 
account the number of parameters, penalising the 
AIC value for relatively high order models. The YIC 
criterion is more complex and uses log terms so that 
improved models are indicated by increasingly 
negative values. The first term is a relative measure 
of how well the model explains the data. The second 
term relates to the conditioning of the instrumental 
variable cross product matrix and is a measure of 
potential over-parameterisation in the model. In 

particular, iie p̂ˆ 2   in equation (5) are the standard 

errors of the parameter estimates, with larger 
standard errors implying poorer YIC values. The TF 
models were validated by an autocorrelation test for 
the residuals and a cross correlation test between the 
residuals and the inputs (Ljung, 1987). 

2.2.2 Identification and Quantification of 
Sub-processes 

Higher order TF models (n > 1) can be described as 
a configuration of first order models (n = 1), which 
represent the dynamics of the sub-systems. For 
example, a second order model can be decomposed 
into two such first order TF models corresponding 
with three important types of coupling: a serial 
coupling, a parallel coupling or a feedback coupling 
(see Figure 1). Models with a model order higher 
than two result in more complex configurations, but 
are not required for the analysis in this article (as 
discussed later).  

Based on such first order models, the dynamics 
of the subsystems could be quantified by means of 
their time constants. The time constant (TC) of a 
first order model can be determined as (Young, 
1984):  
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Where k   is the sampling interval and a1 the 
denominator parameter. In practical terms the TC is 
the time taken for the output to reach 63% of its 
steady state value, in response to a step input.  
 

 

Figure 1: Possible configurations of two first order 
models. (A) Serial coupling. (B) Parallel coupling. (C) 
Feedback coupling. 

3 RESULTS 

3.1 Dynamic Analysis for Different 
Sampling Rates 

Firstly, a first order model was calculated with an 
RT

2 of 0.90 (see Table 1 and Figure 2). The 
corresponding time constant was 65 s (see equation 
6), which strongly suggested the need for a sample 
rate of 0.033 Hz or higher to optimally represent the 
real underlying system (e.g. mechanisms of mGluR-
LTD). 
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Figure 2: Measured mean LTD response curve +/-std 
(gray) with corresponding best first order model (dashed) 
and best second order model (black) (2 hours application 
of 30 M DHPG). 

Table 1: Best first order model for mean LTD responses: 
parameters a1, b0 with corresponding standard errors, SE, 
YIC, AIC, RT

2 and time constant (TC). 

a1 SE(a1) a2 SE(a2) 
-0.6299 0.0683 -0.3733 0.0684 

YIC AIC RT
2 TC 

-5.352 -13.357 0.90 65 s 
 

Secondly, we identified different higher models. 
The best third, fourth and fifth order models were 
excluded because of over-parameterisation. The best 
higher order model was a second order model with n 
= m = 2 (see Table 2). 

Table 2: Best second order model for mean LTD 
responses: parameters a1, a2, b0, b, with corresponding 
standard errors, SE, YIC, AIC and RT

2. 

a1 SE(a1) a2 SE(a2) 
-1.6023 0.0661 0.6037 0.0644 

b0 SE(b0) b1 SE(b1) 
-0.3957 0.0636 0.3944 0.0655 

YIC AIC RT
2  

-5.075 -20.824 0.89  
 

For this model, the RT
2 value was 0.89 and the fit 

was similar to the one of the first order model (see 
Figure 2). One pole was close to unity, indicating an 
integrator effect. In addition, the sum of the 
numerator parameters of the second order TF model 
was almost equal to zero (b0 + b1= -0.0013; see 
Table 2), which could imply a switch-like effect of 
the DHPG input on the synaptic efficacy (cf. k=0 in 
Figure 2). This effect can be shown starting from 
x(k), the noise free output of the general TF model 
equation: 

 

( ) 1.602 ( 1) 0.604 ( 2)

0.396 ( ) 0.394 ( 1)

x k x k x k

u k u k

    

 
 (7)

 

The synapses react especially at the start of the drug 
application for which u(k) u(k-1) (e.g. for k=0 in 

Figure 2). When the applied drug concentration is 
steady, the effect of the drug will saturate and there 
will be a neglible effect on the synaptic outputs 
since 0,396u(k) 0,394u(k-1) for u(k) = u(k-1). 

3.2 Model-based Identification of 
Dominant Sub-processes 

The accurate second order model suggested that 
there are two coupled dominant processes which 
underlie mGluR-LTD. From a mathematical point of 
view, two possible configurations of first order 
models were suggested: a parallel circuit and a 
feedback circuit (see Figure 1). The serial 
configuration was mathematically impossible for 
this model structure (n = m = 2; see Table 2) and 
could be excluded. The model characteristics of the 
first order models for the feedback and parallel 
solution are shown in Table 3.  

Table 3: First order models, TF1 and TF2, obtained after 
decomposing the second order model for parallel and 
feedback configuration (see Figure 1 and 2). 

TF1 
Configuration a1 b0 TC 
Parallel -0.9965 0.0002 24 hrs 
Feedback -0.6058 -0.3958 60 s 

TF2 
Configuration a1 b0 TC 
Parallel -0.6058 -0.3959 60 s 
Feedback -0.9967 -0.0006 25 hrs 

4 DISCUSSION 

Recent advances of  imaging techniques have made 
possible to visualise and quantify synaptic changes 
on a time scale of months or years. These studies 
have shown that synapses have many dynamic 
properties that appear (and disappear) repeatedly 
over time (Hou et al., 2006); (Kondo and Okabe, 
2011). Therefore, dynamical analyses of synaptic 
plasticity can highly contribute to fully comprehend 
the underlying synaptic mechanisms. In many 
studies, electrophysiological brain slice recordings 
are used to measure the synaptic strength and to 
analyse the different forms of synaptic plasticity. 
However, in most studies the fEPSP recordings are 
only statically analysed and the fEPSP slopes are 
compared for only one time point or a limited 
number of time points after the induction of LTD or 
LTP. To the authors’ knowledge, it is the first time 
that fEPSP slopes of mGluR-LTD responses are 
dynamically described using TF models.  
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The second order model could be decomposed 
into two first order models and suggest that two 
major sub-processes underlie mGluRLTD: one slow 
and one fast sub-process (see Table 3). A parallel 
circuit and a feedback circuit were suggested as 
candidate configurations of these two sub-processes.  

Possibly, the fast time constants describes the 
fast processes immediately after induction mediated 
by activation of the ERK/MAPK pathway and 
tyrosine dephosphorylation (e.g. of GluR2) with the 
tyrosine phosphatase striatal-enriched tyrosine 
phosphatase (STEP) as a main player.  

The slow time constant, in contrast, is likely to 
reflect structural changes, for example in spine 
number and morphology, that were demonstrated in 
other models of synaptic plasticity to be protein-
synthesis-dependent and to occur on a time-scale of 
hours (Fukazawa et al., 2003; Raymond, 2007).  
Many studies show the presence of feedback loops 
in cellular control systems (Mitrophanov & 
Groisman, 2008). Neural mechanisms are known to 
contain many non-linearities, but our modelling 
results confirm other studies in which discrete-time 
linear system identification techniques were 
succesfully used for modelling brain signals (e.g. 
Liu et al., 2003; Westwick et al., 2006; Behrend et 
al., 2009). 

5 CONCLUSIONS 

Discrete-time TF models are interesting to 
investigate mGlu receptor-dependent LTD, because 
of their computational and conceptional simplicity 
and since they are able to combine the advantages of 
a data-based approach (accurate models) with a 
mechanistic approach (meaningful parameters). This 
study suggests that the dynamic data-based 
modelling approach can be a valuable tool for 
reverse engineering of mGluR-dependent LTD 
responses. Moreover, this approach can also be 
extended to other forms of LTD and LTP using 
other induction protocols as input for the TF models. 
It is expected that such system identification 
methods can aid to unravel the complexities of 
synaptic function and its role in disease. 
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