
A POMDP-based Camera Selection Method  

Li Qian1,2, Sun Zheng-Xing1, and Chen Song-Le1 
1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China 

2Institute of Meteorology, PLA University of Science and Technology, Nanjing 211101, China 

Keywords: Camera Selection, POMDP, Video Analysis, Multi-camera System. 

Abstract: This paper addresses the problem of camera selection in multi-camera systems and proposes a novel 
selection method based on a partially observable Markov decision process model (POMDP). And an 
innovative evaluation function identifies the most informative of several multi-view video streams by 
extracting and scoring features related to global motion, attributes of moving objects, and special events 
such as the appearance of new objects. The experiments show that these proposed visual evaluation criteria 
successfully measure changes in scenes and our camera selection method effectively reduces camera 
switching. 

1 INTRODUCTION 

Multiple cameras are widely used for security 
surveillance, human–computer interaction, 
navigation, and positioning. However, they 
introduce issues related to deployment and control 
the cameras, real-time fusion of video streams with 
high resolution and high frame rates, and selection 
and coordination of the cameras (Soro and 
Heinzelman, 2009). Camera selection, which 
involves selection of one or more cameras from a 
group of cameras to extract essential information, is 
a particularly challenging task in multi-camera 
systems.  

A number of previous studies have investigated 
the issues related to camera selection. Li and Bhanu 
(Li and Bhanu, 2009) proposed a game-theoretic 
approach to hand-off the camera with the global 
utility, camera utility, and person utility determined 
by user-supplied criteria such as the size, position, 
and view of the individual being tracked. Daniyal, 
Taj, and Cavallaro (Daniyal et al., 2010) proposed a 
Dynamic Bayesian Network approach that uses 
object- and frame-level features. Bimbo and Pernici 
(Bimbo and Pernici, 2006) selected optimal 
parameters for the active camera on the basis of the 
appearance of objects and predicted motions to solve 
the traveling salesman problem. Tessens et. al 
(Tessens et al., 2008) used face detection and the 
calculated spatial position of the target to select a 
primary view and a number of additional views. All 

methods mentioned above use low-level image 
features to evaluate visual information; high-level 
information in video streams, such as local salient 
movement details and specific events, is more 
informative. 

In this paper, we present a novel method for 
camera selection based on a partially observable 
Markov decision model (POMDP) and use the belief 
states of the model to represent noisy visual 
information. By considering current states and 
anticipated transition trends with the cost generated 
by camera switching, the visual jitters that arise from 
frequent switching can be effectively reduced. Our 
evaluation function are presented for visual 
information, which is designed to reflect the richness 
of information in each view by extracting global 
motion, properties of moving objects in the scene, 
and specific events. 

2 DYNAMIC CAMERA 
SELECTION BASED ON A 
POMDP MODEL  

The camera selection problem can be described as 
follows. A multi-camera system has N cameras 

1 2( , ,... )NC C C  with partially or completely 
overlapped FOVs, and one node is designated as the 
central controller for scheduling according to a 
selection policy that is computed offline. In our 

746 Qian L., Zheng-Xing S. and Song-Le C..
A POMDP-based Camera Selection Method .
DOI: 10.5220/0004228907460751
In Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP-2013), pages 746-751
ISBN: 978-989-8565-47-1
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)



 

method, the central controller selects only one 
camera *C  online as the optimal camera at fixed 
time intervals of duration t . At each time step t , 
visual features indicating global motion, properties 
of objects, and specific events in the view of each 
camera are extracted and scored (see Section 3). The 
scores are then sent to the central controller, which 
makes dynamic selection decisions based on current 
and previous camera view scores. Although the 
camera selection problem can usually be modeled as 
a finite-state Markov decision process (MDP), when 
an observed state contains errors caused by factors 
such as illumination, occlusion, and camera shock 
and does not reflect the actual state, we must 
implement sequential decision making based on 
partially observable states. Owing to uncertainty, we 
model this dynamic process as a POMDP, which is 
an extended version of an MDP. 

2.1 Definition of POMDPs 

A POMDP can be formally defined as a 6-
tuple , , , , ,S A T O R   , where S  is a finite set of 
all possible underlying states, A  is a finite set of 
actions, i.e., available control choices at each time 
instant,   is a finite set of all possible observations 
that the process can provide, T is a state transition 
function :T S A S   that encodes the uncertainty 
about the evolution of the states of the process,O is 
an observation function :O S A   that relates 
the process outputs (camera observations) to the true 
underlying state of the process, and R  is an 
immediate reward function :R S A R  that 
assigns real-valued rewards to the actions that may 
be performed in each of the underlying process 
states.  

2.2 Selection Policy 

On the basis of our description of the camera 
selection problem, we formulate the POMDP as 
follows. 

1) System state vector  
The system state vector consists of the currently 

selected results and visual information scores. At 
time step t , the system state is represented as 

1 2[ , , ,..., ] i N
t t t t tS c s s s , where i

tc  is the best camera i  

that is selected at time t , and , {1, 2,..., }k
ts k N  is 

the actual visual information score for camera k . 

And the score values k
ts  are uniformly discretized 

with m  quantization levels and normalized to [0,1] 
to produce the range {0,1,..., 1} k

ts m . 
2) Actions 
An action is a vector represented as 

1[ ,..., ] N
t t ta a a , where at time step t  if the i th 

camera is selected, 1i
ta ; else 0i

ta . 
3) Observation state  
The observation state is a collection of 

observations from all cameras and is defined as the 
vector 1 2[ ' , , ,..., ] i N

t t t t tO c o o o . 'itc  is the camera i  
that is selected at time t . Because this component 
has no error, it should be the same as the component 

i
tc  of the system state, which is similar to the 

definition of system states. Each 
observation , {1, 2,..., }k

to k N  is the visual score 

computed by our method for camera k  at time step 
t  obtained by extracting visual features from the 
video stream and scoring them. The number of 
observations is equal to the number of system states.  

4) State transitions 

The state transition probability '|s a sp  describes 
the differences in the scene between the views taken 
in adjacent time steps. Because the selection action 
does not affect the visual measures and state 
transitions '| '|s as s sp p , the state transition will be 

based on the visual score component k
ts . We assume 

that the visual scores for the cameras are 
independent, i.e.,  

1 2 1 2
1 1 1

1 1 2 2
1 1 1

Pr( ' ( , ,..., ) | ( , ,..., ))

Pr( | ) Pr( | ) ... Pr( | )

N N
t t t t t t

N N
t t t t t t

S s s s S s s s

s s s s s s

  

  

 

   
 (1)

For each discrete state component {0,1,... 1} k
ts m  

probability of transition to a neighboring state is 
higher than that to more distant states. Thus, we set 
the transition probabilities on the basis of distances 
between states as follows:  

2

1
2

1
0

1 ( )
(1 ) , {0,1,..., 1}

1 ( )Pr( =u | )

0 {0,1,..., 1} {0,1,..., 1}






 
      


    


m

i i
t t

r

u v
u v m

m r vs s v

u m or v m

(2)

This equation defines the transition probabilities 
between all states in the state space. 

5) Observation function 
The observation function '| 'o asp  indicates the 

likelihood of the observation state being 'o  if the 
system state 's  performs action a . Because the 
selection actions do not affect the camera 
observations or the computed scores, we set 
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'| ' '| 'o as o sp p . Also, we assume that the states in the 
observation state space for different cameras are 
independent. The observation probability is defined 
as follows: 

2

1
2

0

1 ( )
(1 ) , {0,1,..., 1}

1 ( )Pr( =u | )

0 {0,1,..., 1} {0,1,..., 1}





 
      


    


m

i i
t t

r

u v
u v m

m r vo s v

u m or v m
(3)

6) Immediate rewards 
For each action, we define an immediate reward 

or cost to measure the degree of optimization that 
would result from that action. We use the visual 
score from each camera as a positive reward and use 
the camera switching cost cos tc , which represents the 
visual jitter caused by frequent switching as a 
negative reward. Therefore, the immediate reward 
after camera selection is defined as 

cos 1( , ) (1 ) ( )i i i
t t t t tR S a s c a      , (4)

where [0,1]   is the weight coefficient between the 
positive and negative rewards, and the  function 

1( ) 
i
ta = 1 if the camera selected at time step t  was 

also selected at time step 1t  ; else 1( ) 
i
ta = 0. 

Given the belief state ( )b s for the camera system 
state s  at time step t , the scheduling agent attempts 

to maximize the total reward 
*

( ( ))V b s  by selecting 

the best camera k
ta  on the basis of the optimal 

policy * . This condition is represented as follows: 
* *

1
'

( ( )) max{ ( ( ), ) ( , , ') ( ( '))},
k
t

k k
t t t t

a A s S

V b s R b s a p s a s V b s  
 

   (5)

where [0,1]   is a discount factor that controls the 
future impact of rewards so that the effect of a 
reward decays exponentially with respect to elapsed 
time. If o  is the observation after action a  has been 

executed, the next belief state ( ')o

ab s  is calculated 

on the basis of Bayesian theory as follows: 

| '

|

( ') ( ' | , ) ( )o s ao
a

s So ab

p
b s p s s a b s

p 

  , (6)

where |o abp  is a normalized constant defined as 

| | ' '|
'

( )
 

  o ab o s a s sa
s S s S

p p p b s .  

Formula (5) can usually be computed iteratively 
using dynamic programming; the computational 
complexity increases exponentially with respect to 
the scale of the problem. Therefore, a direct solution 

to our POMDP is unfeasible because the problem is 
intractable, and thus, we use the Perseus method 
(Spaan and Vlassis, 2005), which is a point-based 
approximation. We sample randomized a number of 
belief state points b  as a belief set and compute the 
reward values  for this belief set. We save the results 
as a set of value vectors 1 2{ , ,..., }  n  in which 

each vector i  is associated with a selected action 

ia  so that the vector contains the same number of 
components as the state space. When the central 
controller selects the best camera online, it 
transforms the observed states into belief states and 
makes its decision on the basis of the following 
relation: 

arg max( ( ') )


 
i

i
a A

a b s , (7)

The value vector i that has its inner product with 
the current belief state at maximum is selected, and 
the corresponding action ia  is selected as the best 
camera. 

3 VISUAL INFORMATION 
MEASURE  

In this section, we propose a measure that evaluates 
the quality of the image captured by a camera by 
extracting features indicating motion, properties of 
objects, and special events and expressing features 
as a motion score i

mS , an object score i
obsS , and an 

event score i
eS , respectively. The final visual score 

as then calculated as follows: 

1 2 3
i i i i

m obs eS w S w S w S   , (8)

where 1w , 2w , and 3w  are weight coefficients such 

that 
3

1

1


 i
i

w . To simplify the exposition that follows, 

we denote the motion scores, object scores, and 
event scores without a superscript for the camera as 

mS , obsS , and eS , respectively. 

3.1 Global Motion  

The degree of motion in a video stream reflects the 
ability of the camera to capture real world changes. 
We adopt the method presented in (Zhang et al., 
2011) for detecting moving objects and mitigating 
the effects of illumination and shadows. Then we 
determine the degree of global motion in a video 
frame by calculating the ratio of the foreground area 
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to the area of the entire image. We assume that the 
ratio will increase significantly when a new object 
enters the scene or objects are close to the camera. 
However, the ratio exceeding a certain threshold 
implies that noise has been introduced by factors 
such as illumination. Thus, we score the global 
motion contained in a binary motion image as 
follows: 

1

1
,

1

m

r r
S

r
r







    
 

, 
(9)

where r  is the ratio of the area of the moving object 
to the area of the entire image, and   is the best 
ratio required by applications. 

3.2 Object Properties  

Individuals and special objects are the most 
attractive elements in video surveillance 
applications. To properly measure the properties of 
objects in video streams, we focus on motion 
saliency for individual objects and the degree to 
which the objects in a scene occlude one another. To 
detect the objects in a scene and appropriately 
separate objects that are partially overlapped, we use 
the method proposed by Hu (Hu et al., 2006) for 
extracting bounding boxes for objects even when 
they overlap. We then use the bounding boxes to 
assign scores on the basis of local motion saliency 
and occlusion between two overlapped objects. 
Finally, we calculate an overall score for the 
properties of the object in this scene as a weighted 
sum of the two scores: 

1
(1 ) ,k

obs l oc
k OBS

S S S
OBS

 


   , (10)

where k
lS  is the local motion saliency score for 

object k , OBS  is the number of objects in the scene, 
ocS  is the occlusion score, and   is a weight factor. 

1) Local motion  
We use the Harris 3D spacetime interest point 

method (Laptev, 2005) to detect salient motion 
details in the bounding boxes of objects and set the 
saliency measure k

lS  of the k th object to be the 
normalized number of 3D interest points detected in 
the bounding box. Although the interest point 
method is computationally expensive, we can 
control the computation process by limiting the 
search to a small region. Our experiments show that 
this method can be effectively applied in real-time 
video surveillance applications. 

2) Object occlusion  
One of the most serious issues in video 

surveillance, tracking, and other applications is 
occlusion between objects in a scene. In multi-
camera systems, selecting a camera with the least 
occlusion is an effective solution. For this purpose, 
we measure the degree of occlusion between the 
objects in a scene on the basis of intersection of the 
bounding boxes for different targets and use this 
measure to assign a score that reflects the occlusion. 
The larger the areas with intersections, the lower the 
score. Therefore, we define the occlusion score as 
follows: 

1 1

1 1

#( )
1 1

m in(# , # )

O BS O BS
oc i j

i j i i j

O BS

S Rc Rc
O BS

Rc Rc  

 


   


 


, 
(11)

where iRc  denotes the bounding box of the i th 
object and #  denotes the area of the box. 

3.3 Event Detection  

It is necessary to detect events of interest in videos. 
In this paper, we focus on the entrance of new 
objects in a video Frame. We determine an entrance 
region in the image called the “inner region” either 
by predefining it or through training and monitoring 
the ratio 1r  of the area of motion in the inner region 

to the entire area of the inner region. When 1r  

exceeding the threshold 1Th ， it indicates that an 
object possibly enters the scene. To avoid false 
detection with the ratio 1r  due to the movement of 
individuals present in the scene, we introduce an 
external region around the entrance called the “outer 
region” and determine the ratio 2r  of the area of 
motion in the outer region to the area of the entire 
outer region. When 2r  exceeds a threshold 2Th , 
motion in the entrance is assumed to be the motion 
of an object that is already in the scene. Also, an 
entrance event is related to time. Therefore, we set  

2

1 1 2 2

0 ,


   



T

e
e r Th and r ThS

otherwise

, (12)

where T is the time that has elapsed since the 
condition for a new object entering the scene is 
satisfied, so that the event score is gradually lowered 
as time elapses. 
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4 EXPERIMENTS AND RESULTS 

4.1 Experimental Setup 

We conducted experiments on a personal computer 
to simulate the process of camera selection. We 
generated optimal policies offline using the Perseus’ 
point-based method implemented using C++ and 
quantified the camera scores on an eight-point scale 
( =8m ) and saved the optimal policies as value 
vectors. We used publicly available datasets 
composed of sequences from POM (Fleuret et al., 
2008) and HUMANEVA (Leonid et al., 2010) to 
evaluate the performance of our method. The POM 
dataset use four cameras, while the HUMANEVA 
dataset uses seven cameras. 

4.2 Visual Information Measurement 
Analysis  

In this section, we evaluate visual information scores 
obtained from our method for the POM Terrace1 
sequence. We denote the images from the four 
cameras as C0, C1, C2, and C3. In the scene 
captured by frames 1 through 700 of the Terrace1 
sequence, no individual is present in the scene, 
thereafter, one person enters the scene, followed by 
two people with no occlusion, two people occluding 
each other, and eventually three people are present 
in the scene. After several experiments and analysis, 
we set the parameters  ,  , 1 2,w w , and 3w  
respectively. Therefore the global motion score 
curve with 0.6   shown in Figure 1(a) reflects the 
ability of the camera to capture the motion in the 
observed scene, as well as the number of objects and 
their distance from the camera. The numbers of 
salient points for different views are shown in Figure 
1(b). The object property scores with 0.6   in 
Figure 1(c) indicate that cameras can detect the same 
significant object properties, when global motion 
plays a dominant role in the videos. Also, when 
cameras provide similar global information, the local 
motion saliencies are different owing to different 
camera orientations and relative directions of motion 
of the objects from these perspectives, for example, 
the scores for frames 160 to 200 in Figure 1(c) and 
the occlusion between objects is appropriately 
detected. The curves in Figure 1(d) show the scores 
for measuring entrance events that appropriately 
indicate that two people have entered the scene 
during this period. Finally, Figure 1(e) displays the 
overall visual information score curves with the 
weights 1w , 2w , and 3w  set to 0.5, 0.2, and 0.3, 

respectively. Thus, the evaluation of visual 
information by our method in the analyzed video 
streams can appropriately reflect changes in the 
scene and details and special events of interest to 
observers. 

(a) Global motion scores 

(b) Numbers of local salient points 

(c) Object property scores, 0.6   

(d) Entrance event scores for C2  

(e) Visual information scores 

Figure 1: Visual information measurement results. 

4.3 Selection Results and Analysis 

We compared our method of camera selection 
(POMDP) to the state-of-the-art camera selection 
methods based on greedy criteria for maximum 
visual scores (Max), game theory 0 (LYM), and 
Dynamic Bayesian Networks 0 (DBN). Our 
experiments used the visual information scores 
presented in Section 3 as the measures for Max and 
POMDP, and the weight coefficient for the 
immediate reward was =0.8 . Figures 5(a) and 5(b) 
show the camera selection results for the video 
sequences POM Terrace1 and HUMANEVA Walk1; 
the best camera was selected for each frame of the 
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POM Terrace1 sequence on the basis of the camera 
quality measures described in Section 4.2, and the 
best camera was selected for the other sequences at 
intervals of 5 frames. The camera selection results 
indicate that there are some frequent camera 
switches using LYM and DBN owing to false 
selection because errors were introduced in the 
motion detection process when there are two people 
in the scene. Moreover, the LYM method was 
especially prone to frequent switching when the 
person utility is approximated to zero. In contrast, 
our method effectively predicted future trends of the 
visual information scores on the basis of history, and 
this reduced the number of false selections, resulting 
in smoother visual effects. 

(a) POM Terrace1 selection results 

(b) HUMANEVA Walk1 selection results 

Figure 2: Selection results for the different methods. 

5 CONCLUSIONS 

Real-time selection of the most informative video 
stream from a number of video streams has become 
one of the key issues in visual analysis and 
processing. The experimental results show that our 
proposed POMDP-based method has a higher degree 
of accuracy and is more stable than other methods. 
In addition, we have proposed a visual information 
score function for extracting and scoring visual 
features associated with global motion, object 
properties, and special events, and this function can 
accurately reflect and describe the visual 
information in a scene. 

ACKNOWLEDGEMENTS 

This work is supported by The National Natural Scie
nce Foundation of China (61272219, 61100110 and 
61021062), The National High Technology Researc
h and Development Program of China (2007AA01Z
334), The Program for New Century Excellent Talen
ts in University of China (NCET-04-04605) and Th
e Science and technology program of Jiangsu Provin
ce (BE2010072, BE2011058 and BY2012190). 

REFERENCES 

Soro S, Heinzelman W. 2009. A survey of visual sensor 
networks. Advances in Multimedia. 

Li Y, Bhanu B. 2009. Utility-Based Camera Assignment 
in a Video Network: A Game Theoretic Framework. 
IEEE Sensors Journal 11(3). 

Daniyal F., Taj M., Cavallaro 2010. A Content and task-
based view selection from multiple video streams. 
Multimedia Tools and Applications ,46. 

Bimbo A. D., Pernici F. 2006. Towards on-line saccade 
planning for high-resolution image sensing. Pattern 
Recognition Letters, 27(15). 

Tessens L., Morbee M., Huang Lee, Philips W., Aghajan 
H. 2008. Principal view determination for camera 
selection in distributed smart camera networks. In 
Second ACM/IEEE International Conference on 
Distributed Smart Cameras. 

Littman M. 2009. A tutorial on partially observable 
markov decision processes. Journal of Mathematical 
Psychology, 53(3). 

Spaan M, Vlassis N. 2005. Perseus: Randomized point-
based value iteration for POMDPs. Journal of 
Artificial Intelligence Research, vol 24. 

Zhang S., Ding H., and Zhang W. 2011. Background 
Modeling and Object Detection Based on Two-Model. 
Journal of Computer Research and 
Development,48(11). 

Hu W. M., Hu M., Zhou X., et al. 2006. Principal axis-
base correspondence between multiple cameras for 
people tracking. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 28(4). 

Laptev I. 2005. On space-time interest points. 
International Journal of Computer Vision. Vol 64. 

Fleuret F., Berclaz J., Lengane R., Fua P. 2008. Multi-
camera people tracking with a probabilistic occupancy 
map. IEEE Transaction on Pattern Analysis and 
Machine Intelligence, vol 30(2). 

Leonid S., Alexandru O., Michael J. 2010. HUMANEVA: 
Synchronized Video and Motion Capture Dataset and 
Baseline Algorithm for Evaluation of Articulated 
Human Motion. Journal of Computer Vision. 

A�POMDP-based�Camera�Selection�Method�

751


