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Abstract: The Invasive Weed Optimization algorithm (IWO) is an optimization metaheuristic inspired by dynamic 
growth of weeds colony. The authors of the present paper have expanded the strategy of the search space 
exploration of the IWO algorithm introducing a hybrid method along with a concept of the family selection 
applied in the phase of creating individuals. The goal of the project was to evaluate the expanded IWO 
version (exIWO) as well as the original IWO by testing their usefulness for solving some test instances of 
the traveling salesman problem (TSP) taken from the TSPLIB collection which allows to compare the 
experimental results with outcomes reported in the literature. The results produced by other heuristic 
algorithms as well as the methods based on the self-organizing maps served as the reference points. 

1 INTRODUCTION 

The Invasive Weed Optimization (IWO) algorithm 
is an optimization metaheuristic, in which the 
exploration strategy of the search space (similarly to 
the evolutionary algorithm) is based on the 
transformation of a complete solution into another 
one. The authors of the original version of the 
algorithm from University of Tehran were inspired 
by observation of dynamic spreading of weeds and 
their quick adaptation to environmental conditions 
(Mehrabian and Lucas, 2006). 

Usefulness of the IWO was confirmed for both 
continuous and discrete optimization tasks. The 
research was focused inter alia on minimization of 
the multimodal functions and tuning of a second 
order compensator (Mehrabian and Lucas, 2006), 
antenna configurations (Mallahzadeh et al., 2008), 
electricity market dynamics (Sahraei-Ardakani et al., 
2008), a recommender system (Sepehri Rad and 
Lucas, 2007), and the join ordering problem for 
database queries (Kostrzewa and Josiński, 2011). 

The goal of the present paper is to introduce an 
expanded version of the IWO (exIWO) 
distinguished by the hybrid strategy of the search 
space exploration proposed by the authors. 
Evaluation of the suggested modification is based on 
the solution of some test instances of the traveling 
salesman problem (TSP) taken from the TSPLIB 

collection (Reinelt, 1991) of the Research Group 
Discrete and Combinatorial Optimization at the 
Ruprecht-Karls-Universität Heidelberg (available at 
www.iwr.uni-heidelberg.de/groups/comopt/software/ 
TSPLIB95/tsp/). 

The overview of bibliography describing the 
methods for solving the TSP would be unusually 
spacious. Numerous studies related to the usage of 
exhaustive, greedy, and evolutionary methods were 
mentioned in (Michalewicz and Fogel, 2004), 
whereas the IWO algorithm, according to the 
authors’ knowledge, has never been used to this 
purpose by other researchers. 

The organization of this paper is as follows – 
Section 2 contains a brief description of the modi-
fied IWO algorithm taking into serious consideration 
the proposed hybrid method of the search space 
exploration. Discussion of the transformations used 
for creation of a new individual in case of the TSP is 
presented in Section 3. Section 4 deals with proce-
dure of the experimental research along with its 
results. The conclusions are formulated in Section 5. 

2 DESCRIPTION OF THE 
EXPANDED IWO ALGORITHM 

The simplified pseudocode mentioned below 
describes the exIWO algorithm by means of 
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terminological convention consistent with the 
“natural” inspiration of its idea. Consequently, the 
words “individual”, “plant”, and “weed” are treated 
as synonyms. 

 
Create the first population. 
For each individual: 
  Compute the value of the fitness  
  function. 
While the stop criterion is not 
satisfied: 
  For each individual from the  
  population: 
    Compute the number of seeds. 
    For each seed: 
      Choose the dissemination  
      method. 
      Create a new individual. 
      Compute the value of its  
      fitness function. 
  Create a new population. 
 
The population of initial solutions of the given 

optimization task is randomly or greedily generated 
over the search space. Next, the degree of 
individuals’ adaptation to environmental conditions 
is estimated by the value of their fitness function, 
which at the same time determines the number of 
seeds produced by each plant according to the 
following formula: 
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where Smax, Smin denote maximum and minimum 
admissible number of seeds generated, respectively, 
by the best population member (characterized by 
fitness fmax) and by the worst one (fitness fmin). 

The seeds are scattered over the search space. 
The hybrid strategy of the search space exploration, 
proposed by the authors of the present paper, makes 
use of the following component methods: dispersing, 
spreading and rolling down. Probability values of 
selection assigned to the particular methods form 
parameters of the algorithm. 

Construction of a new individual according to 
the dispersing method is based on transformations 
(see Section 3) performed on the copy of the parent 
individual. The number of transformations equals to 
the conventional distance between the parent 
individual and the descendant in the search space. 
The distance is described by normal distribution 
with a mean equal to 0 and a standard deviation 
truncated to nonnegative values. The standard 
deviation is decreased in each algorithm iteration 
(i.e. for each population) and computed for the 

iteration iter,  max,1 iteriter  according to the 

following formula: 
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The total number of iterations (itermax), equivalent to 
the total number of populations, can be either used 
with the purpose of determination of the stop 
criterion or can be estimated based on the stop 
criterion defined as the execution time limit. The 
symbols σinit, σfin represent, respectively, initial and 
final values of the standard deviation, whereas m is a 
nonlinear modulation factor. A tendency to gradual 
reduction of the distance for subsequent populations 
resulting from the formula (2) accords with intention 
of the authors of the original IWO algorithm version. 

The spreading is a random disseminating seeds 
over the whole of the search space. Therefore, this 
operation is equivalent to the random construction of 
new individuals. 

The rolling down is based on the examination of 
the neighborhood of the parent individual. In case of 
discrete optimization task the neighborhood 
comprises individuals that differ from the parent by 
exactly one transformation, whereas for the 
continuous optimization the term “neighbors” stands 
for individuals located at the same randomly 
generated distance from the considered one. The 
best adapted individual is chosen from among the 
determined number of neighbors, whereupon its 
neighborhood is analyzed in search of the next best 
adapted individual. This procedure is repeated k 
times (k is a parameter of the method) giving the 
opportunity to select the best adapted individual 
found in the k-th iteration as a new one. 

Creation of the next population is based on the 
concept of the family selection. Each plant from the 
first population is a protoplast of a separate family. 
A family consists of a parent weed and its direct 
descendants. According to the family selection rules 
only the best individual of each family survives and 
becomes member of the next population. 

3 ADAPTATION OF THE 
EXPANDED IWO TO THE TSP 

The expanded IWO algorithm is a metaheuristic. 
Hence, its application for solving a given 
optimization task requires a formulation of a single 
solution representation as well as a definition of 
transformations used for creation of a new solution. 
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From among significant concepts related to the 
form of a single solution it is worthwhile to mention 
three vector representations proposed in the 
literature: path, ordinal, and adjacency as well as a 
matrix representation (Michalewicz and Fogel, 
2004). A plant used by the exIWO was designed 
according to the simple and natural rule of the path 
representation – a tour is an ordered list of cities (i.e. 
expressed as a vector [2 3 9 4 1 5 8 6 7]) and the 
order of visitation is determined by the order of 
vector elements (2–3–9–4–1–5–8–6–7–2). 

Specific character of weeds reproduction 
mechanism functioning in the IWO implies rather 
application of transformations based on a single 
individual used as a sole parent. In case of the TSP 
transformations are realized by means of operators. 
Basic unary operators – inversion, insertion, 
displacement, and reciprocal exchange – are 
discussed in (Herdy, 1991). The inver-over operator 
is admittedly based on the inversion of a segment of 
cities, but the inverted segment is most often 
determined by means of another individual which is 
randomly selected from the same population. Due to 
specific character of this operation a fragment of the 
“second parent” is guaranteed to be a part of the 
offspring. In this way the inver-over operator 
combines features of unary as well as binary 
techniques. However, very promising results 
reported by its inventors (Tao and Michalewicz, 
1998) decided on implementation of both – 
inversion and inver-over – operators in the exIWO. 

In case of the TSP the individuals from the first 
population are greedily generated – the nearest city 
will be visited as the next one. 

4 EXPERIMENTAL RESEARCH 

The goal of the experiments was to compare the 
quality of solutions found by the exIWO with the 
outcomes generated by other methods using 17 test 
instances of the TSP taken from the TSPLIB 
collection. As reference points served the results 
presented in (DePuy et al., 2005), (DePuy et al., 
2002) and (Bai et al., 2006). The former study 
presents application of the metaheuristic for 
randomized priority search (Meta-RaPS), whereas 
the latter discusses results achieved by means of the 
self-organizing maps (SOM). Both papers include 
comparison of the outcomes reported by other 
researchers, who investigated methods from 
different areas of artificial intelligence. Therefore 
the exIWO algorithm operated on the same test 
instances as those used in the aforementioned works. 

It is worthwhile to mention that a number of cities is 
included in the name of each test set (e.g., the route 
described as “bier127” consists of 127 cities). 

The workstation used for experiments is 
described by the following parameters: 2×Intel Xeon 
E5620 2.40 GHz, RAM 16 GB, MS Windows 
Server 2008 R2 Datacenter 64-bit SP1. 

Evaluation of solutions generated by particular 
methods was based on 2 criteria – minimum and 
average difference from optimal or best known 
solution. Average values for the exIWO were 
computed based on results of 100 experiments for 
each test set. 

Table 1 shows the minimum difference between 
the solutions produced by the IWO variants (exIWO 
and the original version) using inversion or the 
inver-over operator and optimal or best known 
solution for particular test instances expressed as a 
percentage.  

Table 1: Minimum difference between the solution 
produced by one of the tested variants of the IWO 
algorithm (exIWO and the original version) and optimal or 
best known solution [%]. 

Test set exIWO IWO 
Inversion Inver-over Inversion Inver-over

kroA100 0 0 0 0 
kroB100 0 0 0 0 
kroC100 0 0.096 0.096 0 
kroD100 0.169 0 0.169 0.169 
kroE100 0 0 0 0 
bier127 0 0 0 0 

eil51 0 0 0 0 
eil76 0 0 0 0 

kroA200 0.200 0.449 0.446 0.446 
lin105 0 0 0 0 
pcb442 1.554 1.829 1.544 1.916 
pr107 0 0 0 0 
pr136 1.588 2.265 1.130 2.585 
pr152 0.294 0.455 0.277 0.563 
rat195 0.689 0.861 0.732 0.646 
rd100 0 0 0 0 
st70 0 0 0.148 0.148 
 
The optimal or best known solution was found 

by the exIWO in case of 12 from among 17 test 
instances. 

Average run times of the exIWO implementation 
in Java for 10000 iterations (equivalent to the 
number of populations) are included in Table 2. The 
number of individuals in a single population depends 
on the number of cities in a test set – for routes with 
less than 150 cities a single population contains 200 
individuals, in other cases – 50. The best exIWO 
results reported in all tables were achieved for 
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particular test instances using different values of 
other algorithm parameters (a nonlinear modulation 
factor m, probabilities of selection of dispersing, 
spreading and rolling down, maximum and 
minimum admissible number of seeds Smax, Smin, 
initial and final values of the standard deviation σinit, 
σfin). Only the number k of neighborhoods examined 
during the rolling down remained equal to 2 in the 
most successful exIWO experiments. 

Table 2: Average run times of the exIWO variants [s]. 

Test set Inversion Inver-over 
Number of 
individuals 

kroA100 58.8 59.9 200 
kroB100 62.2 62.7 200 
kroC100 67.1 67.6 200 
kroD100 70.9 68.8 200 
kroE100 74.1 73.0 200 
bier127 89.4 89.5 200 

eil51 24.4 28.9 200 
eil76 38.3 39.6 200 

kroA200 35.5 25.6 50 
lin105 62.8 61.6 200 
pcb442 69.6 51.9 50 
pr107 70.2 68.8 200 
pr136 79.6 90.6 200 
pr152 27.1 20.4 50 
rat195 37.1 23.2 50 
rd100 58.1 59.6 200 
st70 47.8 43.1 200 

 
The average run times of both exIWO variants 

are similar in most cases.  
Tables 3-6 present average difference from 

optimal or best known solution for the chosen 
methods expressed as a percentage. Test instances 
considered in Table 3 belong to the Kro?100 
collection (the question mark substitutes for one of 
the following symbols {A, B, C, D, E}), whereas 
results of the optimization methods other than 
exIWO were taken from (DePuy et al., 2005) and 
(DePuy et al., 2002). Particular names represent the 
following approaches: Meta-RaPS TSP – a Meta-
heuristic for Randomized Priority Search, Priority 
rule based on the simple TSP heuristics – cheapest 
insertion and node insertion, GRASP – Greedy Ran-
domized Adaptive Search Procedure – all algorithms 
were described in (DePuy et al., 2005), Christofides 
& 2opt 3opt, Convex hull & 3opt, NN & 2opt 3opt 
(“NN” denotes “Nearest Neighbor”), 2opt 3opt – 
algorithms using local search methods (Lawler et al. 
1985), Lin-Kernighan algorithm (Padberg and 
Rinaldi, 1991), Modified Lin-Kernighan algorithm 
(Mak and Morton, 1993), CCAO – Convex hull, 
Cheapest insertion, Angle selection and Or-opt – a 

heuristic which exploits geometrical properties of 
symmetric Euclidean TSP (Golden and Stewart, 
1985), Triangul. – a Delaunay triangulation-based 
heuristic (Krasnogor et al., 1995), I^3 – a composite 
heuristic consisting of 3 phases: construction of an 
Initial envelope, Insertion of the remaining vertices, 
and Improvement procedure (Renaud et al., 1996), 
P-SEC, F-SEC – a Preliminary and a Full Subpath 
Ejection Chain method, respectively (Rego, 1998). 
Abbreviations related to the IWO variants have the 
following meanings – “inv” denotes inversion, whe-
reas “i-o” represents the inver-over operator. The 
underlined values outperform results produced by 
the exIWO. 

Table 3: Average difference from optimal or best known 
solution for the chosen methods mentioned in (DePuy et 
al., 2005), (DePuy et al., 2002) and variants of the IWO 
based on the Kro?100 test sets [%].  

Method A B C D E 
Meta-RaPS 

TSP 
0 0.25 0 0 0.17 

Priority rule 0.5 2.46 0.82 1.43 1.1 
GRASP 0 0.55 0.31 0.42 0.37 

Christofides 
& 2opt 3opt 

2.51 1.4 1.53 0.17 3.03 

Convex hull 
& 3opt 

0.37 1.46 1.06 0.04 2.46 

NN & 2opt 
3opt 

0.14 1.46 1.06 0.73 2.46 

2opt 3opt 0.81 1.44 0.53 1.74 0.18 
Lin-

Kernighan 
0.26 0 0.7 0.17 0.16 

Modif. Lin-
Kernighan 

0 0.17 0 0 0.21 

CCAO 0 0.97 0.5 0.97 2.54 
Triangul. 0.51 2.13 2.79 3.81 2 

I^3 0 0.9 0.5 2 2.6 
P-SEC 0 0.32 0.02 0.75 0.33 
F-SEC 0 0 0 0 0 

exIWO inv 0 0.01 0.24 0.49 0.19 
exIWO i-o 0 0.01 0.25 0.51 0.20 
IWO inv 0 0.01 0.25 0.54 0.20 
IWO i-o 0 0.01 0.24 0.54 0.21 
 
Results presented in Tables 4-6 are related to the 

SOM-based methods and were taken from (Bai et 
al., 2006) and compared with outcomes produced by 
the IWO variants. Particular acronyms represent the 
following approaches: PKN – Pure Kohonen 
Network (Hueter, 1988) and (Fort, 1988), GN – 
Guilty Net (Burke and Damany, 1992), AVL – the 
procedure of Angéniol, de la Croix Vaubois and Le 
Texier (Angéniol et al., 1988), KL, KG – 2 variants 
of the Kohonen Network Incorporating Explicit 
Statistics (KNIES) – Local and Global, respectively 
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(Aras et al., 1999), SETSP – SOM Efficiently 
applied in the TSP (Vieira et al., 2003), MGSOM – 
the Modified Growing ring SOM approach for TSP 
(Bai et al., 2006). 

Table 4: Average difference from optimal or best known 
solution for the SOM-based methods and variants of the 
IWO – part I [%]. 

Method bier127 eil51 eil76 kroA200 
PKN 3.322 4.202 6.171 5.311 
GN 31.181 10.493 14.182 34.058 

AVL 3.713 4.108 6.190 5.540 
KL 2.762 2.864 4.981 2.836 
KG 3.079 2.864 5.483 3.667 

SETSP 1.850 2.221 4.234 3.119 
MG SOM 1.097 1.398 3.384 1.972 

exIWO 
inv 

0.061 0.099 0.338 0.757 

exIWO i-o 0.069 0.127 0.292 0.716 
IWO inv 0.090 0.131 0.346 0.749 
IWO i-o 0.097 0.129 0.323 0.747 

Table 5: Average difference from optimal or best known 
solution for the SOM-based methods and variants of the 
IWO – part II [%]. 

Method lin105 pcb442 pr107 pr136 
PKN 6.921 – 0.454 7.343 
GN 7.584 – 81.661 – 

AVL 6.487 17.472 1.791 6.893 
KL 1.985 11.072 0.734 4.531 
KG 1.291 10.447 0.425 5.147 

SETSP 1.301 10.160 0.409 4.400 
MG SOM 0.028 8.577 0.172 2.154 

exIWO 
inv 

0.070 2.580 0 3.768 

exIWO i-o 0.033 3.011 0 3.834 
IWO inv 0.078 2.713 0.001 3.993 
IWO i-o 0.106 3.199 0.001 3.895 

 
The column “avg” in Table 6 includes average 

values computed on all 12 test sets taken into 
account in Tables 4-6. 

 
The exIWO variants produce results which 

outperform the most of the outcomes of the SOM-
based methods with the exception of the MGSOM in 
case of 3 test instances. 

 
In the majority of cases solutions obtained by the 

exIWO are slightly better than those of the original 
version. 

Similarity of both exIWO variants concerns not 
only the run times but the minimum and average 
differences from optimal or best known solution as 
well. 

Table 6: Average difference from optimal or best known 
solution for the SOM-based methods and variants of the 
IWO – part III [%]. 

Method pr152 rat195 rd100 st70 avg 
PKN 1.523 – – 2.637 – 
GN 42.817 – 10.382 11.956 – 

AVL 1.302 15.420 4.498 2.711 6.344 
KL 0.968 12.238 2.095 1.511 4.048 
KG 1.285 11.916 2.622 2.326 4.213 

SETSP 1.169 11.192 2.601 1.600 3.688 
MG 

SOM 
0.741 5.984 1.172 1.183 2.322 

exIWO 
inv 

0.863 1.721 0.127 0.533 0.905 

exIWO 
i-o 

0.924 1.868 0.105 0.594 0.969 

IWO inv 0.943 1.857 0.123 0.624 0.971 
IWO i-o 0.944 2.055 0.153 0.636 1.024 

 
The average difference from optimal or best 

known solution for both exIWO variants computed 
on all 17 test instances mentioned in this paper 
amounts to 0.741 % in case of the inver-over 
operator and 0.693 % for the inversion. 

5 CONCLUSIONS 

The authors of the present paper have modified the 
IWO metaheuristic introducing a hybrid strategy of 
the search space exploration as well as a concept of 
the family selection. Analysis of the exIWO results 
presented in this paper enables to expect solutions of 
good quality in a reasonable amount of time. It is 
also worth mentioning that each iteration of the 
exIWO generates a population of individuals 
representing feasible tours. 

The experiments revealed the usefulness of the 
exIWO algorithm for solving discrete optimization 
tasks and confirmed the concept of using 
randomness as a mechanism to avoid local optima. 
The method can compete with other heuristics, 
although the influence of the hybrid strategy 
components (dispersing, spreading, rolling down) on 
the solution found by the exIWO requires further 
research – at present the algorithm takes part in the 
World TSP Challenge (www.tsp.gatech.edu/world/ 
index.html) and in the Mona Lisa TSP Challenge 
(www.tsp.gatech.edu/data/ml/monalisa.html). 
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