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Abstract: Mutation operation is used to introduce a small perturbation in the population from time to time so as to 
maintain its diversity. Several mutation operations have been developed for genetic programming. This 
paper is to study the impact of mutation operation on the performance of genetic programming. We present 
six types of mutation operations that have been applied in the simulated annealing programming (SAP) 
algorithm, which is an algorithm used to design stream ciphers using genetic programming and simulated 
annealing. Experiments performed to study the effectiveness of these operations in solving the underlying 
problem.  It has been shown that mutation operation can affect the performance of genetic programming, 
especially when it is used to solve complex problems. 

1 INTRODUCTION 

Evolution is an optimization process, where the aim 
is to improve the ability of a system to survive in 
dynamically changing environment. There are a 
number of evolutionary computation techniques, 
such as genetic programming (GP). In GP, the 
population individuals are computer programs 
represented usually as expression trees (Koza, 
1992), and a number of operations are used to 
update the population individuals, such as crossover 
and mutation.  

In general, the inclusion of mutation step the 
evolutionary algorithms is very important. The main 
aim of mutation operation is to keep certain amount 
of randomness and to introduce a small perturbation 
in the population from time to time so as to maintain 
its diversity. Most of the times the mutation 
operation is applied according to some fixed 
probabilistic rule. In the past few years mutation 
operations based on different probability 
distributions (like Normal, Gaussian, and Cauchy 
etc) have become popular. Also, in our previous 
work (Awad, 2011) adaptive mutation has been 
applied and it has been shown its effectiveness 
comparable with fixed rate mutation.  

Mutation in GP is frequently treated as a 
secondary operator. However, it has been shown that 
mutation can significantly improve performance 

when combined with crossover (Banzhaf , 1996; 
Poli, 1997). Few of Koza’s (Koza, 1992; Koza, 
1994) early experiments include mutation. Koza 
states two reasons for the omission of mutation in 
the majority of problems. First, it is rare to lose 
diversity when using a sufficient population size; 
therefore, mutation is simply not needed in GP. 
Second, when the crossover operation occurs using 
endpoints in both trees, the effect is very similar to 
point mutation. Koza wished to demonstrate that 
mutation was not necessary and that GP was not 
performing a simple random search. This has 
significantly influenced the field, and mutation is 
often omitted from GP runs. While mutation is not 
necessary for GP to solve many problems, it can 
perform as well as crossover based GP in some 
cases. O'Reily (O'Reily, 1995) argued that mutation 
in combination with simulated annealing or 
stochastic iterated hill climbing can perform as well 
as crossover-based GP in some cases. Nowadays, 
mutation is widely used in GP, especially in solving 
complex problems. Koza also advises to use of a low 
level of mutation (Koza, 1999). In (Luke, 1997), the 
authors suggested that the situation is complex, and 
that the relative performance of crossover and 
mutation depends on both the problem. 

Several mutation operations have been 
developed for GP; some of them are listed bellow 
(Koza, 1992; Koza, 1994; O'Reily, 1995; Kinnear, 
1994; Angeline, 1996): 
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 Subtree mutation replaces a randomly selected 
subtree with another randomly created subtree. 

 Node replacement mutation (also known as 
point mutation) is similar to bit string mutation 
in that it randomly changes a point in the 
individual. A node in the tree is randomly 
selected and randomly changed. 

 Hoist mutation creates a new offspring 
individual which is copy of a randomly chosen 
subtree of the parent. Thus, the offspring will 
be smaller than the parent and will have a 
different root node. 

 Shrink mutation replaces a randomly chosen 
subtree with a randomly created terminal. 

 Permutation mutation selects a random 
function node in a tree and then randomly 
permuting its arguments (subtrees).  

In addition to these types, two new methods for 
implementing the mutation operator in GP called 
Semantic Aware Mutation (SAM) and Semantic 
Similarity based Mutation (SSM) have been 
proposed (Nguyen, 2009). 

Designing good stream cipher automatically is a 
complex process, therefore GP has been used in our 
previous work (Awad, 2011) for designing one class 
of stream cipher systems, and we have showed that 
GP can be used successfully to solve this problem. 
In (Awad, 2011) GP, integrated with simulated 
annealing, (SA) (Kirkpatrik, 1983) i.e., simulated 
annealing programming (SAP), has been used 
successfully to design Linear Feedback Shift 
Register (LFSR)-based stream cipher systems with 
the desired properties, such as random keystream, 
and large period length. However, we still expect 
some improvements. Thus, this paper is to study the 
impact of various mutation operations on the 
effectiveness of SAP algorithm for designing stream 
ciphers. 

Six types of mutation operation are applied in this 
work, which are: 

 GA-Based Terminal Node Mutation 
 Random Terminal Node Mutation   
 GA-Based Semantic Terminal Node Mutation 
 Random Sub-expression Mutation  
 GA-based Shrink Mutation  
 GA-based Semantic Shrink Mutation 

2 SAP ALGORITHM OVERVEIW 

SAP is a general automated design approach for 
designing stream ciphers that satisfy the desired 
properties. It is an integration of GP and SA in order 

to work on a population of individuals and to 
preserve good individuals into the next generation 
(Yuichiro, 2009; Miki, 2007). The output of SAP is 
a keystream generator, which is the main component 
of stream cipher that generates pseudorandom 
Binary sequence (keystream) of length size and 
fulfills the security and efficiency requirements. 
Stream ciphers (Forouzan, 2008; Rueppel, 1986; 
Schneier, 1996; Golomb, 1967) are of great 
importance in applications, and there are different 
types of stream ciphers, only LFSR-bassed stream 
ciphers are considered here, in which, the main 
component of the keystream generators is LFSR, 
where LFSR is a shift register with linear feedback 
function. 

The following is the complete SAP algorithm as 
described in (Awad, 2011): 

Algorithm:  SAP  
Input : Keystream period length 
(size). 

Output : LFSR-based keystream 
generator. 

Begin 
Generate the initial population 
(pop) randomly; 
Evaluate pop; 
Temp 250.0;   //temperature  
Repeat 
Generate a new population (pop1) by 
applying crossover and mutation;  
Evaluate the fitness of the new 
generated chromosomes of pop1; 
Calculate the averages of fitness 
values for pop and pop1, av1 and av2 
respectively; 
If (av2 > av1) then  replace the old 
population by the  new one, i.e.  
pop  pop1; 

   Else 
 Begin 

e  av1-av2;         
Pr   e / Temp; 
Generate a random number (rnd);  
If (exp(-pr) > rnd)   then   
pop  pop1; 

 End; 
Temp  Temp * 0.95; 
Until (Max Number of generations);   
Return the best chromosome of the 
last generation; 

End. 

In SAP algorithm, SA is the technique used for 
the construction of the keystream generators. The 
structure under adaptation is the set of GP 
expressions, and the GA operations are used to 
update the population of expressions.  
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In this algorithm, the genetic operations used are 
1-point crossover with probability pc=1.0, and 
terminal node mutation with probability pm=0.1. 
The mutation operation used to replaces a randomly 
selected one gene from a LFSR feedback function 
with a new one. The function library includes the 
functions: LFSR, XOR, AND, OR. The terminal 
nodes are strings of characters (which are converted 
to Binary digits during the process of fitness 
evaluation) that represent the linear feedback 
functions of LFSRs.  

For example, the following population individual 
(chromosome):  

"& SR adfe SR ddeab" is an expression of two 
shift registers combined by AND function, and 
"adfe" and "ddeab" are feedback functions of the 
LFSRs in the expressions. 

3 MUTATION OPERATION 
DESCRIPTIONS 

Different types of mutation operation are applied in 
SAP algorithm. The descriptions of theses 
operations are given bellow. 

3.1 Terminal Node Mutation 

This operation randomly changes a point (terminal 
node) in the individual. The point is the feedback 
function of a LFSR. Three variations of this 
operation are considered in this study, as follows. 

I. GA-Based Terminal Node Mutation 
Here, Genetic Algorithm (GA) is used to find the 
best LFSR feedback function to replace a randomly 
selected terminal node (LFSR feedback function) of 
an individual. The description of this operation is as 
follows. 

The population chromosomes in GA are 
represented as fixed length Binary strings. The 
lengths of these strings are equal to the length of the 
randomly selected terminal node S of SAP 
individual, where S is the Binary feedback function 
of a LFSR. Each chromosome in GA population is a 
mask used to modify S, by Xoring GA chromosome 
with S. The probability of generating the gene "1" in 
the GA initial population is 0.2, while the 
probability of the gene "0" is 0.8.  

The fitness value is a measurement of the 
goodness of the keystream generator, and it is used 
to control the application of the operations that 
modify a population. The fitness function used in 
SAP is also used in GA. After modifying S, the SAP 

program is executed to generate the keystream. The 
generated keydtream is then evaluated as described 
in (Awad, 2011). Eqs. (1), (2), and (3) are used to 
evaluate the GA chromosomes. Eq. (1) is used for 
the evaluation of keystream randomness using the 
frequency and serial tests, in which, nw is the 
frequency of w (where w = 00, 01, 10, or 11) in the 
generated binary sequence. 
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There is another randomness requirement which 
is: (1/2i * nr) of the runs in the sequence are of 
length i, where nr is the number of runs in the 
sequence. Thus, we have eq. (2).  
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where M is maximum run length, and ni is the 
desired number of runs of length i. Thus, the fitness 
function used to evaluate the chromosome x will be 
as given by eq. (3), where wt is a constant and size is 
the keystream period length: 
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The parameters used in this work were set based 
on the experimental results, the parameter value that 
show the highest performance was chosen to be used 
in the implementation of the algorithm. Thus, the 
genetic operations used to update the population are 
1-point crossover with probability pc=1.0. The 
selection strategy, used to select chromosomes for 
the genetic operations, is the 2- tournament 
selection. The old population is completely replaced 
by the new population which is generated from the 
old population by applying the genetic operations. 
The run of GA is stopped after a fixed number of 
generations. The solution is the best chromosome of 
the last generation.  

II. Random Terminal Node Mutation   
Using this operation, S is replaced by randomly 
generated LFSR feed back function. 

III. GA-Based Semantic Terminal Node Mutation 
GA is used to find the best LFSR feed back function, 
in term of the big differences in the generated 
keystreams, to replace a randomly selected terminal 
node (LFSR feed back function) of an individual. 
The description of this operation is as follows. 

The population chromosomes GA are 
represented as fixed length Binary strings. The 
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lengths of these strings are equal to the length of the 
randomly selected terminal node S of SAP 
individual. Each chromosome in GA population 
represents the candidate LFSR feedback function to 
replace S.  

The chromosomes of GA population are 
evaluated based on the big difference in the 
generated keystreams generated by S and GA 
individuals. Thus, eq. (4) used to compute the fitness 
value of the GA chromosome x. 



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size
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ii keystreamkeystreamxfit

1

')(      (4) 

Where keystreami  is the ith bit of the keystream 
generated by S, and keystreami

'  is the ith bit of the 
keystream generated by the LFSR with the GA 
chromosome x as feedback function.  

The genetic operations used to update the 
population are 1-point crossover with probability 
pc=1.0. The selection strategy, used to select 
chromosomes for the genetic operations, is the 2- 
tournament selection. The old population is 
completely replaced by the new population which is 
generated from the old population by applying the 
genetic operations. The run of GA is stopped after a 
fixed number of generations. 

3.2 Sub-expression Mutation 

By applying this operation, a sub-tree is selected 
randomly from SAP expression, and then is replaced 
by a new sub-expression. In this work, different sub-
expression mutations have been studied. The 
following is the description of each one.  

I.  Random Sub-expression Mutation  
Using this operation the sub-expression of SAP 
expression is replaced by randomly generated 
expression.  

II. GA-based Shrink Mutation  
This operation is used to reduce the size of SAP 
expression, by finding a LFSR that is equivalent to a 
randomly selected sub-expression.  The root node of 
the sub-expression should be any function other than 
LFSR. GA is used to find an equivalent LFSR that 
generates the same keystream generated by the 
selected sub-expression. 

The population chromosomes in GA are 
represented as variable length Binary strings. Each 
chromosome in GA population represents the 
candidate LFSR feedback function.  

The solution of GA is an equivalent LFSR that 
generates the same keystream generated by the sub-
expression selected randomly from a SAP 

expression. Thus, Eq. (6) is used to compute the 
fitness value of the GA chromosome x. 
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Where keystreami  is the ith bit of the keystream 
generated by the sub-expression, and keystreami

'  is 
the ith bit of the keystream generated by the LFSR 
with the GA chromosome x as feedback function.  

The genetic operations used to update the 
population are 1-point crossover with probability 
pc=1.0. The selection strategy, used to select 
chromosomes for the genetic operations, is the 2- 
tournament selection. The old population is 
completely replaced by the new population which is 
generated from the old population by applying the 
genetic operations. The run of GA is stopped after a 
fixed number of generations. The solution is the best 
chromosome of the last generation.  

III. GA-based Semantic Shrink Mutation 
It is the similar to previous operation, but GA is used 
here to find an equivalent LFSR that generated 
different keystream, thus the fitness function used is 
given by eq. (4). 

4 RESULTS 

This section presents the findings and results of the 
experiments carried out to demonstrate the impact of 
different types of mutation operations on the 
effectiveness of SAP algorithm. Therefore, SAP has 
been implemented with six types of mutation 
operations mentioned above. The six algorithms 
have been applied with different mutation rates. The 
best algorithms parameters used in the experiments 
are: 

 Max number of generations of SAP = 30 
 Max number of generations of GA = 10 
 Pop size of SAP = 100 
 Pop size of GA (if used) = 10 

The results of applying the six algorithms are 
presented in table 1. These results are obtained by 
running each algorithm 100 times for different 
values of mutation rates. The results of table 1 
represent the average of the fitness values of the best 
chromosomes in 100 runs. According to the results 
and by applying Wilcoxon signed-rank test, GA-
Based Terminal Node Mutation has been greatly 
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Table 1: Fitness values averages of 100 runs. 

Mutation 
Rate% 

GA-Based 
Terminal 

Node 
Mutation 

Random 
Terminal 

Node 
Mutation 

Random 
Sub-

expression 
Mutation 

GA-Based 
Semantic 
Terminal 

Node 
Mutation

GA-based 
Shrink 

Mutation 

GA-based 
Semantic 

Shrink 
Mutation 

0 31.6738 
5 37.3666 30.4139 31.1553 29.4109 24.4812 29.2382 

10 43.7615 31.3691 31.4582 33.307 27.5608 29.8604 
15 44.2341 31.3691 33.2401 35.4674 26.6744 26.5393 
20 44.4663 33.5122 34.5481 35.4996 23.0873 25.3877 
30 45.1159 32.8931 35.4401 32.9202 24.6556 23.365 
40 47.338 34. 264 35.9812 37.2787 30.7147 25.3943 
50 47.452 33.8621 35.5944 38.1934 30.6348 25.9628 
60 49.1361 35.3515 36.1849 37.4782 31.3748 26.4893 

 
improved the performance of SAP algorithm; it can 
evolve keystream generators that generate 
keystreams of good statistical properties and of large 
period length. Also, increasing the mutation rate 
improves the results. That is because; the feedback 
function of LFSR has great effect on the output the  
keystream generators. Thus, by using GA to find the 
best feedback function can highly improve the 
results. 

5 CONCLUSIONS 

In this paper, different types of mutation operations 
have been applied in SAP algorithm in order to 
study the impact of mutation operation on the 
algorithm performance. It has been shown that 
mutation operation can affect the performance of 
GP, especially when it is used to solve complex 
problems, such as designing stream ciphers. Six 
mutation operations have been applied. We found 
that GA-Based Terminal Node Mutation that 
replaces the feedback function of LFSR (terminal 
node) by a new feedback function evolved by GA 
can highly improve SAP algorithm.  
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