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Abstract: Image-based reconstruction of 3D shapes is inherently biased under the occurrence of interreflections, since the
observed intensity at surface concavities consists of direct and global illumination components. This issue is
commonly not considered in a Photometric Stereo (PS) framework. Under the usual assumption of only direct
reflections, this corrupts the normal estimation process in concave regions and thus leads to inaccurate results.
For this reason, global illumination effects need to be considered for the correct reconstruction of surfaces
affected by interreflections. While there is ongoing research in the field of inverse lighting (i.e. separation
of global and direct illumination components), the interreflection aspect remains oftentimes neglected in the
field of 3D shape reconstruction. In this study, we present a computationally driven approach for iteratively
solving that problem. Initially, we introduce a photometric stereo approach that roughly reconstructs a surface
with at first unknown reflectance properties. Then, we show that the initial surface reconstruction result can
be refined iteratively regarding non-distant light sources and, especially, interreflections. The benefit for the
reconstruction accuracy is evaluated on real Lambertian surfaces using laser range scanner data as ground
truth.

1 INTRODUCTION

The problem of image-based shape reconstruction has
been examined by Horn (Horn, 1970) using a single
image and regularization constraints for “Shape from
Shading (SfS)". The Photometric Stereo (PS) princi-
ple evolved later on (Woodham, 1980), favorably re-
moving the constraints, but needing at least three in-
tensity measurements per pixel obtained under vary-
ing illumination directions. Both, the SfS and the PS
setup, assume distant light sources with known illu-
mination direction and intensity, which is nowadays
termed “calibrated Photometric Stereo". Addition-
ally, the observed surfaces are assumed to be strictly
Lambertian (Lambert, 1760).

The case of uncalibrated PS has been examined
extensively, starting with Hayakawa’s seminal work
(Hayakawa, 1994), where the problem of an ambigu-
ity in the determinable light source position from PS
image data becomes exposed. That “Generalized Bas-
Relief (GBR) ambiguity" (Belhumeur et al., 1999)
was subject to extensive research and has been solved
using e.g. the generic viewpoint constraint (Freeman,
1994; Yuille et al., 2000), minimization of the surface
albedo distribution entropy (Alldrin et al., 2007), by

modeling the illumination conditions using spherical
harmonics (Basri et al., 2007), or with special relative
light source arrangements (Zhou and Tan, 2010).

In parallel, non-Lambertian surfaces have been
approached by different authors. (Ikeuchi, 1981)
assume purely specular surfaces, (Nayar et al.,
1988; Nayar et al., 1990a) assume hybrid sur-
faces with Lambertian and superimposed specu-
lar components. For these methods, the im-
age formation and object reflection properties be-
come relevant. Well-known reflectance function
models are e.g. Lambert (Lambert, 1760), Oren-
Nayar (Oren and Nayar, 1994), Blinn (Blinn,
1977), Phong (Phong, 1975), Lafortune (Lafortune
et al., 1997), Beckmann-Spizzichino (Beckmann and
Spizzichino, 1987), Torrance-Sparrow (Torrance and
Sparrow, 1967), Ward (Ward, 1992), Ward-Dür-
Geisler-Moroder (Geisler-Moroder and Dür, 2010).

Since PS works robustly on Lambertian surfaces,
there has been research regarding the separation of
diffuse and specular components, which then al-
lows performing PS on the diffuse component only.
These use e.g. polarization (Wolff, 1989; Wolff and
Boult, 1991), color (Tan and Ikeuchi, 2005; Thomas
and Sugimoto, 2010), or both (Nayar et al., 1997).
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The model-based reflectance description has been re-
laxed by BRDF1-independent approaches like (Zick-
ler et al., 2002; Alldrin et al., 2008).

A new formulation of the problem using a projec-
tive framework has been published by (Tan and Zick-
ler, 2009; Tankus et al., 2005). Further variations of
the PS framework regard e.g. exploiting the effects of
non-distant light sources (Iwahori et al., 1990; Clark,
1992).

PS itself determines only pixelwise surface nor-
mals or gradients, while absolute depth determination
requires a postprocessing step, which was elaborately
examined by (Agrawal et al., 2006).

Due to the common assumption of single sur-
face reflections (direct illumination) and disregarding
higher orders (interreflections, a subset of global il-
lumination), it is not possible to infer the underly-
ing surface normal from the observed intensity cor-
rectly. Fig. 1 depicts an image separated into direct
and global illumination components and illustrates
the intensity aggregation in concavities.
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(a) camera image
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(c) global component

Figure 1: Measured illumination components of a camera
image using the method by (Seitz et al., 2005) for (b) and
a variant of that method with an inverse illumination pat-
tern for (c). Note that all images have the same grayvalue
scaling.

Systems for synthetically computing global illu-
mination exist in a large variety. One of the open
source ray tracers that additionally employs physi-
cally plausible BRDFs, which is crucial for correct

1Bidirectional Reflectance Distribution Function

real world object representation, is PBRT2 (Pharr and
Humphreys, 2010).

While extensive research has been carried out re-
garding (non-) Lambertian surfaces and uncalibrated
PS, there is hardly any research regarding the image-
based reconstruction of 3D shapes in the presence of
interreflections. Basic thoughts have been published
by (Nayar et al., 1990b) who iteratively refine concave
v-shapes. The case of inversely computing global
illumination with (at most) second order reflections
along its path has been examined by (Yu et al., 1999),
who use their data for realistic scene modeling and
relighting. The effect of interreflections and the re-
sulting inaccuracies on structured light laser scanning
profiles have been discussed by (Gupta et al., 2011)
and (Couture et al., 2011), but photometric aspects
remain untreated therein.

The work by (Gu et al., 2011) stresses the influ-
ence of interreflections for PS. Their method is based
on multiplexed illumination (Nayar et al., 2006) for
the separation of global and direct illumination in the
image acquisition stage. They apply high frequency
patterns under different incident directions for esti-
mating the two scene illumination components. The
direct component is then used to estimate shapes with
strongly increased accuracy using PS.

To the authors’ best knowledge, there is no publi-
cation that actually deals with a method for the recon-
struction of shapes with interreflection-affected con-
cavities under illumination with simple point light
sources (LEDs).

2 CONSIDERATION OF
INTERREFLECTIONS

We propose a novel method that accounts for inter-
reflections in a fully calibrated photometric stereo en-
vironment. The approach as such imposes no restric-
tions upon their reflective behavior and thus allows
arbitrary and possibly even measured BRDFs. Fur-
thermore, the light sources are not assumed to be dis-
tant, which is not a prerequisite for our algorithm
to work but it improves the reconstruction accuracy.
Calibration of the (point) light source positions and
intensities is achieved using the method described by
(Lenoch et al., 2012). Absolute surface depth data
is computed using Agrawal’s M-estimator approach
(Agrawal et al., 2006). In the following, the con-
catenation of PS and Agrawal’s method is denoted
“PS+Z".

Our key to the consideration of interreflections lies

2Physically Based Ray-Tracer v2, pbrt.org
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Figure 2: Algorithm overview. “PS+Z" denotes photomet-
ric normal estimation and followed by depth integration.
Note that each group of components (green, orange, blue)
can possibly be iterated.

in an iterative scheme: (1) Our method initially recon-
structs the surface based on distant light sources and
Lambertian reflectance. (2) That result becomes re-
fined assuming non-distant light sources. The result-
ing surface is afterwards used (3) to obtain the param-
eters of a parametric BRDF, which additionally re-
fines the surface in another reconstruction step. Lastly
(4), the consideration of interreflections is incorpo-
rated by determination of the amount of global illu-
mination with a physically plausible rendering sys-
tem. This allows us to remove a (significant) amount
of interreflection-based radiance from the captured
scene image data and thus to obtain a refined recon-
struction result. Note that it may be beneficial to re-
peat some of the stages described above in order to
ensure their convergence. Fig. 2 gives an overview of
these elements.

We demonstrate the potential of our method on
real data for a Lambertian and a non-Lambertian sur-
face. The validation of the correctness of these results
is achieved on the one hand by comparison with the
surface data measured by an industry-standard laser
scanner and on the other hand based on synthetically
rendered images with a known underlying surface.

In contrast to related publications, we model point
light sources and are thus not required to illuminate
the scene with specialized projectors like (Gu et al.,

2011); furthermore, there is no shape restriction like
the v-shapes examined by (Nayar et al., 1990b).

3 ALGORITHM DETAILS

In stage 1 (yellow), the surface normals are computed
for each pixel (u;v) based on the standard PS equation
for Lambertian surfaces,

~Iobs(u;v) = I0 r(u;v) L~n(u;v); (1)

where u and v denote the pixel indices, ~Iobs(u;v) 2
Rk�1 denotes the vector of k observed intensity sam-
ples under i = 1:::k varying (distant) normalized il-
lumination directions ~li with j~lij2 = 1. The light
source relative radiance is referred to as I0 and the
light source directions are aligned row-wise in L =
[l1x; l1y; l1z; l2x; l2y; l2z; :::]. The surface normals are
~n = [nx;ny;nz]

T with j~nj2 = 1 and r denotes the sur-
face albedo. The surface normal is thus determined in
the least-mean-square (LMS) sense using

~n(u;v) =
1

I0 r(u;v)
L�1 ~Iobs(u;v) (2)

with a pseudo-inverse L�1. Note, that locally varying
albedos can be obtained when solving for~n and r with
known irradiance I0:

~n� = L�1 ~Iobs(u;v); I0 r = j~n�j2; ~n =
~n�

j~n�j2
(3)

The obtained surface normal field is then integrated to
absolute depth values using the M-estimator approach
described by (Agrawal et al., 2006). For the trans-
formation into a metric depth space, the algorithm is
given the approximate object distance from the cam-
era, which suffices for the determination of pixel ex-
tents and thus metric depth scaling.
In stage 2 (green), the light sources are regarded as
non-distant. This alters the image intensity equation
such that

~Iobs(u;v) =
I0 r

r2
1(u;v) r2

2(u;v)
L(u;v)~n: (4)

Note that we assume locally varying illumination di-
rections ~li(u;v) for each pixel (u;v) and each light
source i = 1:::k, which is due to the scene being il-
luminated by non-distant point light sources. Addi-
tionally, each pixel is assigned the light travel dis-
tance from the light source to the object (r1) and
from the object to the camera sensor (r2). Even on
this small-scaled framework (object height � 50mm,
mean(r1) � 300mm and mean(r2) � 310mm), this
shows a significant effect. Up to this point, the sur-
face has been assumed to be perfectly Lambertian and
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free of global illumination.
In stage 3 (orange), the BRDF of the underlying ma-
terial is estimated globally based on the extracted sur-
face from stage 2 and the obtained images. This
is achieved by minimizing the RMSE of the inten-
sity data I = I(u;v) and the rendered intensities R =

R(~P;u;v) of the surface with respect to the parameter
~P of the chosen BRDF:

~Popt = argmin
~P

s
1

U �V

U

å
u=1

V

å
v=1

[I�R]2: (5)

For Lambertian surfaces, the only parameter is the
surface albedo r, which can be computed by deter-
mination of I0 using (Lenoch et al., 2012) and thus
having white balance data available.
In stage 4 (blue), the interreflection component is (it-
eratively) compensated before starting the PS+Z algo-
rithm: Two separate images of the last stage’s PS+Z
surface result are rendered under (1) direct Rd;i and (2)
global Rg;i illumination for each light source i = 1:::k.
Afterwards, the global component is determined as
the difference between Rg;i and Rd;i, which is used to
compensate these in the real camera images Ii:

Inew;i = Ii� (Rg;i�Rd;i)| {z }
interreflections

i = 1:::k (6)

As a last step for this stage, the PS+Z algorithm is
started on the new image data basis Inew;i.

4 EXPERIMENTS AND RESULTS

Figure 3 gives an overview of the setup used for data
acquisition. Due to using the same camera for im-
age acquisition and ground truth depth measurement
(structured light laser scanning system), it is possible
to capture pixel synchronous depth and image data,
which facilitates the evaluation process significantly.
The description and discussion of our experiments is
structured as follows: Initially, we analyze the pro-
gressing change in PS+Z depth with increasing al-
gorithm iterations (Sec. 4.1). Afterwards (Sec. 4.2),
we show the beneficial effect of our approach quali-
tatively based on an analysis of the reflectance maps
with global illumination.

Sec. 4.3 then shows the comparison of the PS+Z
depth result with independently measured scanner
depth data zRS for a region of the surface that is es-
pecially affected by interreflections. To conclude the
evaluation, the aspect of algorithm convergence is dis-
cussed in Sec. 4.4 along with suitable criteria that ter-
minate the execution at a reasonable state.

Figure 3: Overview of the experimental setup. The object
has a height of about 50mm, the distance between object
and camera (2) / object and illumination (3) amounts to ap-
proximately 250 mm. Note that the laser range scanner (1)
is used for validation only.

4.1 Progressing Change in
Reconstructed Depth

Fig. 4 shows the differences between the naive PS+Z
depth zPS;1 (no interreflection compensation) and its
iterations zPS;2:::5 using image data with compensated
interreflections. It becomes clear that the compen-
sation of the global (interreflection) component pro-
duces deeper concavities compared to the uncompen-
sated case. The results show that less deep concav-

(a) zPS;2� zPS;1 (b) zPS;3� zPS;1

(c) zPS;4� zPS;1 (d) zPS;5� zPS;1

Figure 4: Difference between the naive PS depth zPS;1 (no
interreflection compensation) and the iterations using im-
age data with compensated interreflections zPS;2:::5. Scale:
�0:5mm (dark blue) to 2:5mm (red).

ities on the one hand (e.g. neck and ear region) ex-
hibit only a change in depth over the early iterations
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of the algorithm, but remain static on the late itera-
tions. Deep concavities on the other hand progress in
their depth over several iterations. This already gives
a hint that the algorithm converges suitably, since re-
gions with shallow and deeper concavities converge
independently.

4.2 Qualitative Evaluation

Fig. 5 shows reflectance maps from different stages
of the algorithm. Note that at iteration 5 (Fig. 5(c)),
the object surface appears more similar to the physi-
cal image (Fig. 5(a)), especially in the interreflection-
affected regions. For a human observer, it is obvious

(a) image

(b) stage 4, iteration 1 rendering re-
sult (global illumination)

(c) stage 4, iteration 5 rendering re-
sult (global illumination)

Figure 5: Rendered PS+Z results. Note the appearance dif-
ference at surface concavities.

that the underlying surface resembles the one of the
physical image more closely due to the perceived in-
tensities and due to the plausibility of where and how
shadows are cast. In summary, the qualitative assess-
ment result of the surface is very favorable, due to fine
surface details being visible and surface concavities
being shaped as expected from the real world object
image.

4.3 Quantitative Evaluation

Fig. 6 shows a comparison of the reconstructed depth
zPS,n and quantitatively measured depth data obtained
using a laser range scanner zRS for the iterations
n = 1:::8. The registration of both (already pixelsyn-
chronous) depth profiles has been achieved by align-

ing the absolute depth of a convex surface part in
the “hand"-region. This ensures that the PS+Z depth
zPS,n is unaffected by interreflections in that area, and
thus allows unbiased registration. With naive photo-
metric reconstruction (no compensation of interreflec-
tions, zPS;1, Fig. 6(a)), there are very strong differ-
ences visible between the reconstructed surface zPS;1
and the ground truth scanner depth zRS, which are in
the range of some mm. The differences initially reach

(a) zRS� zPS;1 (b) zRS� zPS;2 (c) zRS� zPS;3

(d) zRS� zPS;4 (e) zRS� zPS;5 (f) zRS� zPS;6

(g) zRS� zPS;7 (h) zRS� zPS;8 (i)
scale

Figure 6: Ground truth validation. Scale: �0:5mm (dark
blue) to 2:5mm (red).

more than 2mm (Fig. 6(a)), which is unacceptable in
terms of measurement accuracy for e.g. industrial ap-
plications. Tn the course of the iterations, the differ-
ences decrease quickly and already after the second
iteration with interreflection-compensated image data
(zPS;3, Fig. 6(c)), the error has decreased over a wide
range of the concavity.

4.4 Convergence Criterion

Although it seems to be of less importance when to
stop iterating due to e.g. shallow concavities remain-
ing unchanged while deeper concavities still deepen,
it makes sense to include another criterion for robust-
ness and for saving computational time. We found
it particularly useful to examine the mean absolute
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Figure 7: Average change in depth Dzn = mean(jzPS;n �
zPS;1j) per iteration in the “bag"-section.

change in depth of the photometrically reconstructed
depth data of iteration n (i.e. zPS;n) compared to the
initial PS+Z result without compensation of inter-
reflections (i.e. zPS;1) such that Dzn = mean(jzPS;n�
zPS;1j). Once that change is lower than a certain
threshold (here: Dzn < 0:02mm), the computation is
regarded as complete. In our case, convergence is
then reached after the 4th iteration.

5 SUMMARY
AND CONCLUSIONS

We have presented a novel, iterative approach for
dealing with interreflections in the context of PS
based shape reconstruction. The algorithm initially
reconstructs the depth profile without consideration of
interreflections using a PS approach and subsequent
absolute depth estimation based on the PS gradient
fields. Since that profile mainly bares errors in re-
gions affected by excessive light emission due to in-
terreflections, we have introduced an iterative scheme
that computes the intensity of the global illumination
at surface concavities and then removed these from
the physical image data before using that improved
data for PS and absolute depth reconstruction.

The evaluation showed a qualitatively and quan-
titatively beneficial effect for the extracted surface.
The results show furthermore, that convergence is
reached already after� 4 iterations (for the given sur-
face). Furthermore, a criterion (mean absolute depth
change) has been presented that allows to determine
when the computation has finished.

In future work, there is mainly the need to perform
experiments with non Lambertian surfaces, which are
significantly more common in the real world than the
applied Lambertian surfaces. Conceptually, this re-

quires the algorithm to handle the BRDF estimation
and absolute depth estimation step with greater ro-
bustness, but the basic functionality and algorithm
principle will remain unchanged.
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