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Abstract: Wireless Sensor Networks (WSNs) are prone to security attacks. To protect the network from potential adver-
saries, it is necessary to secure communications between sensor nodes. If we consider a network of hetero-
geneous objects including WSNs, security requirements may be far more complex. A single application may
deal with different traffic flows, each one of which may have different security requirements, that possibly
change over time. In this paper, we present STaR, a software component which provides security transparency
and reconfigurability for WSNs programming. STaR allows for securing multiple traffic flows at the same time
according to specified security policies, and is transparent to the application, i.e. no changes to the original
application or the communication protocol are required. STaR can be easily reconfigured at runtime, thus
coping with changes of security requirements. Finally, we present our implementation of STaR for Tmote Sky
motes, and evaluate it in terms of memory occupancy, communication overhead, and energy consumption.

1 INTRODUCTION

In the recent years, Wireless Sensor Networks
(WSNs) have received an increasing amount of at-
tention and have been adopted in many application
scenarios, from environmental to healthcare monitor-
ing applications. In such scenarios, sensor nodes col-
lect environmental data, and transmit them to a central
base station through a wireless network. Sensor nodes
are typically resource constrained devices deployed in
unattended, possibly hostile environments. Given the
nature of WSNs, it is an easy task for an adversary to
eavesdrop messages and alter or inject fake ones. It
follows that secure communication is vital to assure
messages confidentiality, integrity, and authenticity.

WSNs have been used chiefly for scientific pur-
poses, where an adversary has little incentive to at-
tack sensors (Cardenas, A.A., Roosta, T., and Sastry,
S., 2009). Now WSNs are employed also in Coop-
erating Objects Systems (COS) where mobile physi-
cal agents share the same environment to fulfill their
tasks, either in group or in isolation (CONET, 2008;
PLANET, 2010). Such agents not only sense the envi-
ronment, but also act on it. COS are a tempting target
for an adversary, since a security infringement may
easily translate into a safety one, with possible conse-
quences in terms of damages to things and injures to
people. Same considerations hold for WSNs in Crit-

ical Infrastructures (Albano, M., Chessa, S., and Di
Pietro, R., 2008; Buttyan, L., Gessner, D., Hessler,
A., and Langendoerfer, P., 2010).

Many solutions have been devised for WSNs se-
curity, including (Karlof, C., Sastry, N., and Wagner,
D., 2004) for secure communication, (Wong, C.K.,
Gouda, M., and Lam, S.S., 2000; Su, Z., Lin, C.,
Ren, F., Jiang, Y., and Chu, X., 2009; Gu, W., Dutta,
N., Chellappan, S., and Xiaole, B., 2011; Maerien,
J., Michiels, S., Huygens, C., and Joosen, W., 2010;
Dini, G., and Tiloca, M., 2010) for key management,
and (Hyun, S., Ning, P., Liu, A., and Du, W., 2008;
Lanigan, P.E., and Gandhi, R., and Narasimhan, P.,
2006) for secure code dissemination. Particular atten-
tion has been paid to component-based security archi-
tectures tailored to WSNs (Matthys, N., Huygens, C.,
Hughes, D., Michiels, S., and Joosen, W., 2012; Dini,
G., and Savino, I.M., 2010).

We present STaR, a modular, reconfigurable and
transparent software component for secure commu-
nications in WSNs. STaR guarantees confidential-
ity, integrity, and authenticity by means of encryption
and/or authentication.

STaR is modular because it separates interfaces
from their implementations. This makes it easily
portable on different hardware (Moteiv Corporation,
2006; Crossbow Technology Inc., 2004) and network
stacks (IEEE, 2006; ZigBee Alliance, 2008). Modu-
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larity allows for loading/unloading STaR modules to
match security requirements, add new features, or ex-
tend existing ones.

STaR allows for protecting multiple traffic flows at
the same time, according to different security policies.

STaR is reconfigurable because it makes it possi-
ble to change security policies on a per packet basis at
runtime. That is, it assures a fine grained adaptability
to possible changes in security requirements.

STaR is transparent, because the application can
still rely on the communication interface already in
use. The application does not require to be redesigned
or recoded in order to exploit a certain security pol-
icy. This clearly separates the implementation of the
application from the STaR component. STaR char-
acteristics allows for reusing application components
in scenarios where security becomes relevant. Also,
STaR allows unskilled people to secure their applica-
tions, by simply selecting security policies to be ap-
plied. Besides, application developers need neither to
implement complex security procedures, nor to con-
figure unfriendly tools, such as network firewalls.

We evaluated our STaR implementation (Daidone,
R., Dini, G., and Tiloca, M., 2012) for TinyOS
(TinyOS Working Group, 2012) on Tmote Sky motes
(Moteiv Corporation, 2006), showing it is affordable
as to memory occupancy, communication overhead,
and energy consumption. STaR features a generic ar-
chitecture, and can be implemented for other hard-
ware platforms and WSNs operating systems.

The rest of this paper is organized as follows. Sec-
tion 2 presents the STaR architecture. Sections 3
describes STaR interfaces providing communication
and configuration services. In Section 4 we discuss
the performance of our implementation of STaR. In
Section 5 we draw our conclusive remarks.

2 STaR ARCHITECTURE

STaR allows for securing multiple traffic flows ac-
cording to different security policies. Possible secu-
rity policies include packet encryption, packet authen-
tication, or both of them. The choice of appropriate
security policies is related to the specific application
and threat model, and is out of the scope of this paper.

As shown in Figure 1, the STaR component stays
between the application and the communication stack.
STaR intercepts both incoming and outgoing traffic,
segments it into flows, and secures them according
to the corresponding security policies. STaR assures
reconfigurability by allowing users to dynamically
change security policies, provides transparency of se-
curity with respect to the application, and exports the

Figure 1: STaR component overview.

Figure 2: Example of packet processed by STaR.

same interface as that of the underlying communica-
tion stack to the application.

The StarToApplication component provides the
application with the same communication interface
exported by the communication stack. The StarTo-
Communication component connects STaR to the un-
derlying communication stack. The StarLabelling
component classifies packets into traffic flows, and de-
termines the associated label. The StarConfig compo-
nent allows users to enable/disable security policies,
and change their association to traffic flows, providing
reconfigurability at runtime. The StarEngine compo-
nent actually processes packets, according to the se-
curity policy associated to the traffic flow they belong
to. Distribution and revocation of necessary security
material are left to other system components, which
are not part of STaR and are out of the scope of this
paper. Figure 2 shows a packet processed by STaR,
with the Label field prepended to the packet payload.

STaR modularity eases the porting of STaR onto
different communication stacks. Actually, a differ-
ent communication stack requires to customize the
StarToCommunication and StarToApplication com-
ponents, while other components remain unmodified.

Although the application developer is not required
to change the application code and/or behavior, she
has certain obligations in order to exploit STaR,
namely i) implementation of security policies; ii) traf-
fic segmentation; iii) association of security policies
to traffic segments; and, iv) STaR initialization.

3 SECURE SECURITY SERVICES

As described in Section 2, STaR relies on packet la-
bels to protect multiple traffic flows at the same time.
All packets belonging to a given packet flow can be
associated to a common label, and secured before be-
ing transmitted, according to a specified security pol-
icy. Incoming packets can be unsecured upon being
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received, according to the security policy associated
to the traffic flow they belong to.

STaR is responsible for securing/unsecuring pack-
ets and mapping flow labels into security policies.
These tasks are totally transparent to the application.
The application can still rely on the original commu-
nication interface provided by the available commu-
nication stack, and does not require to be modified.
In order to manage associations between traffic flows
and security policies, STaR maintains two tables: i) a
Security Policy Table (SPT), and ii) a PolicyDB.

The SPT is formatted as follows. The Label field
is one byte in size. Thus, STaR manages up to 256
different traffic flows at the same time. The PolicyID
field specifies the security policy to be adopted for a
given traffic flow. PolicyID entries in the SPT refer
to security policies specified in the PolicyDB by the
specific STaR implementation. The Active field indi-
cates whether the security policy associated to a given
label has to be applied or not to packets belonging to
such traffic flow. The Active field is set to TRUE by
default in all entries. SPTs of all network nodes are
supposed to be initialized in the same way at the net-
work startup. In order to manage the SPT at runtime,
STaR provides a set of configuration functions, which
are described in Section 3.2.

The PolicyDB is formatted as follows. PolicyID
values in the PolicyDB have to match PolicyID entries
of the SPT to correctly retrieve the security policy im-
plementation provided by STaR. The EntryPoint field
contains a reference to the code section which imple-
ments the policy (e.g. a C++ function pointer).

3.1 STaR Communication Support

The following communication functions are provided.

bool send(packet, size);

Provide the packet packet of size size to STaR. Return
TRUE in case of success, FALSE otherwise.

bool receive(packet, size);

Provide the application with the packet packet of size
size coming from STaR. Return TRUE in case of suc-
cess, FALSE otherwise.

int retrieveLabel(packet);

Return the label associated to the traffic flow which
the packet packet belongs to.

Policy retrievePolicy(label);

Return the security policy associated to label. Return
an error code if the Active field in the SPT is set to
FALSE, or the policy is not present in the PolicyDB.

The application developer must determine the best
security policy to protect each traffic flow, and bind

each one of them to a specific label value. Specifi-
cally, the retrieveLabel function must implement the
criteria according to which it is possible to infer which
traffic flow a given packet belongs to.

Packet P is transmitted according to the follow-
ing steps. The application provides STaR with packet
P, through the send function. Then, STaR retrieves
the label L associated to packet P through the re-
trieveLabel function, and the associated security pol-
icy SP through the retrievePolicy function. Then,
STaR builds a one byte field, fills it with the label
L, and inserts it between the header and the payload
of packet P. Then, packet P is secured, according to
the security policy SP. Finally, STaR provides the se-
cured packet P to the communication stack, to deliver
it to the recipient node(s). The label must never be
encrypted, in order to assure that packet P is correctly
unsecured at the recipient side. However, the label
can be authenticated, in order to guarantee that it has
been actually generated by the STaR component. Fig-
ure 3 shows an outgoing packet processed by STaR.

Figure 3: Outgoing packet processing.

Packet P is received according to the following
steps. STaR receives the secured packet P from the
communication stack, and retrieves the label L from
the additional label, which can then be removed.
Then, STaR retrieves the security policy SP associ-
ated to label L, through the retrievePolicy function,
and unsecures packet P, according to SP. Finally,
STaR provides the unsecured packet to the applica-
tion, that receives it through the receive function. Fig-
ure 4 shows an incoming packet processed by STaR.

3.2 STaR Configuration Services

STaR allows users to change security settings at run-
time, and provides a specific configuration interface
aimed at changing how security policies are used, and
their association to traffic flows. In the following, we
describe the configuration functions.

void enablePolicy(label);
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Figure 4: Incoming packet processing.

Set to TRUE the Active field of the label SPT entry.
void disablePolicy(label);

Set to FALSE the Active field of the label SPT entry.
void changePolicy(label, newPolicy);

Write newPolicy in the PolicyID field of the SPT entry
related to label. The Active field remains unchanged.

4 STaR TinyOS Implementation

We implemented the STaR component (Daidone, R.,
Dini, G., and Tiloca, M., 2012) for TinyOS 2.1.1,
which is available at (TinyOS Working Group, 2012).
We implemented the described security features with
reference to the Tmote Sky motes (Moteiv Corpora-
tion, 2006) and the CC2420 chipset (Texas Instru-
ments, 2012). We have implemented the Skipjack
encryption module (U.S. National Security Agency
(NSA), 1998) and the SHA-1 module for integrity
hashing (Eastlake, D., and Jones, P., 2001), and are
working to provide more standard security protocols.

4.1 STaR Memory Footprint

ROM memory available on Tmote Sky motes is 48
kB, and may be a severe constraint while dealing with
complex modules like those composing STaR. In or-
der to evaluate memory consumption on Tmote Sky
motes, we considered the TinyOS image size wiring
the STaR submodules separately.

S is the image size in bytes of the original TinyOS
stack and the RadioCountToLeds application, which
is one of the provided demo applications.

Ĉ = S+C is the image size in bytes of the original
TinyOS stack and the RadioCountToLeds application
(S), wired to the StarConfig module (C). C = Ĉ�S is
the memory occupancy of the StarConfig module.

Ê = S+C+E is the image size in bytes of the
original TinyOS stack and the RadioCountToLeds ap-
plication (S), wired to the StarConfig module (C) and

the Skipjack submodule of the StarEngine module
(E). E = Ê� Ĉ is the memory occupancy of the Skip-
jack submodule of the StarEngine module.

Â = S+C+A is the image size in bytes of the
original TinyOS stack and the RadioCountToLeds ap-
plication (S), wired to the StarConfig module (C) and
the SHA-1 submodule of the StarEngine module (A).
A = Â� Ĉ is the memory occupancy of the SHA-1
submodule of the StarEngine module.

Table 1: Detailed memory occupancy.

Memory Memory
occupancy (B) occupancy (%)

Application and TinyOS stack 13372 27.86
StarConfig 854 1.78

StarEngine (Skipjack) 2046 4.26
StarEngine (SHA-1) 3900 8.12
Available memory 27828 57.98

Table 1 provides information on memory occu-
pancy, and shows the percentages of Tmote Sky
ROM occupied by the original application and
STaR (sub)modules. If we sum the contributions of
the StarConfig, Skipjack and SHA-1 modules, we ob-
serve our STaR implementation totally requires the
14:16% of the overall memory available on a Tmote
Sky mote. Since the application together with the
TinyOS stack requires the 27:85% of the available
memory, we have the 57:99% of 48 kB available for
other uses. Thus, memory required by STaR is rea-
sonable with respect to the available memory.

4.2 STaR Performance Evaluation

In our analysis, we assumed STaR operates on top of
the 2.4 GHz physical layer, with a 250 Kb/s bit rate
(Texas Instruments, 2012). We modeled the impact
of security considering i) network performance degra-
dation due to security processing and extra trasmis-
sions overhead, and ii) the extra energy consumption,
due to extra processing and transmissions. We evalu-
ated the security processing overhead by means of ex-
periments. The extra transmission overhead has been
computed considering the bit rate and the packet size.
Energy consumption has been evaluated analytically.

Figure 5: Send and Secure events nesting.

Figure 5 shows events which take place when we
transmit a secured packet with STaR, according to the
TinyOS Send/SendDone schema. The STaR process-
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Table 2: STaR dproc contributions overview.

Policy dproc (µs) Standard deviation (µs)
NONE 142 0
ENC 1239.70 1.96

HASH 32853.50 2.53
ENC + AUTH 33948.65 3.01

ing overhead time interval is the extra time required
to process the packet according to the chosen security
policy. This time has been evaluated experimentally.

In our experiments, we observed one sender de-
vice at a time transmitting secured packets whose pay-
load is 8 bytes in size. In order to increase the accu-
racy of our results, we performed 10 repetitions of 20
transmissions for each experiment. Results shown in
Table 2 are averaged over all the different repetitions.
We also report the standard deviation we derived from
the independent replication method.

Considerable delays are due to the standard en-
cryption and authentication algorithms, while the ac-
tual STaR contribution to the processing delay is just
142 µs. This is the additional delay required to add the
label field, which is negligible if compared to the one
introduced by standard cryptographic computations,
such as those performed by Skipjack and SHA-1.

The transmission overhead has been evaluated an-
alytically, considering a 250 Kb/s bit rate (Texas In-
struments, 2012). Specifically, we have considered
the time required to transmit the additional bytes
added by STaR, according to the specific security pol-
icy. The original application packet size, including
the header and the Cyclic Redundancy Check (CRC)
is 21 bytes. The time dtx required to transmit the orig-
inal application packet is the ratio between the packet
size in bits and the bit-rate: dtx =

21�8
0:250 = 672 µs.

Table 3: STaR dtx contributions overview.

Policy dtx (µs) Increase (%)
NONE 32 4.76
ENC 32 4.76

HASH 672 100
ENC + AUTH 672 100

Table 3 provides an overview of the transmis-
sion overhead, considering different security policies.
Considerable delays of the HASH and ENC + AUTH
policies are due to the standard SHA-1 hashing out-
put size, which is 20 bytes long. In fact, the actual
STaR contribution to the transmission delay is just
32 µs, that is the time required to transmit the one byte
label field added to the original packet. We believe
that this delay is affordable, since it is due to the in-
crease of just one byte of the original packet size.

We expressed energy consumption contributions
as Ei = Pi�di. Let di be the delay due to the consid-

Table 4: STaR energy consumption contributions.

Policy

Processing Transmission
Pproc = 1:08mW Ptx = 31:32mW
dproc Eproc dtx Etx
(µs) (mJ) (µs) (mJ)

NONE 142 153.4 32 1002.2
ENC 1239.7 1338.9 32 1002.2

HASH 32853.5 35481.8 672 21047.0
ENC + AUTH 33948.7 36664.6 672 21047.0

ered operation i. Pi = Vi� Ii is the single power con-
tribution, i.e. the product between voltage and current
of the MSP430 and CC2420 components.

Table 4 provides an overview of such contribu-
tions. Considerable increases in per packet energy
consumption are due to the standard encryption and
authentication algorithms, while the actual STaR con-
tribution to energy consumption is the one reported
in the NONE policy entry: Eproc +Etx = 1155:6 mW
that is the energy consumed to add the label field to
the original packet and transmit it. The extra energy
consumption is affordable, if compared to contribu-
tions due to standard security mechanisms as SHA-1.

5 CONCLUSIONS

We have presented STaR, our security software com-
ponent for WSNs. It protects multiple traffic flows at
the same time, according to different security policies.
STaR is transparent to the application, which can rely
on the same communication interface already in use.
STaR allows users to change security policies and
their association to traffic flows at runtime. Finally,
we have considered our preliminary implementation
of STaR for Tmote Sky motes, and provided a per-
formance evaluation in terms of memory occupancy,
communication overhead, and energy consumption.
Our results show that STaR is efficient as well as af-
fordable even in the considered resource scarce hard-
ware platform. In fact, the heaviest impact on perfor-
mance is due to the adopted standard security algo-
rithms, and not to the presence of STaR. Future works
will extend STaR interfaces, add services such as key
management, and compare STaR implementations on
different architectures.
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