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Abstract: We represent the classical Engset-loss model by the stochastic process counting the number of customers in
the system. A fluid limit for this process is established for all the possible values of the various parameters
of the system, as the number of servers tends to infinity along with the number of sources. Our results are
derived through a semi-martingale decomposition method. A numerical application is provided to illustrate
these results. Then, we represent a finite-source retrial queue considering in addition the number of sources in
orbit. Finally, we extend the fluid limit results to a retrial queueing system, discussing different cases.

1 INTRODUCTION

In many real-life queueing systems of finite capacity,
a customer may find a full system upon arrival. In sev-
eral finite-source models, this request can return to the
source and stay there for a randomly distributed time
until it tries again to reach a server. The Engset model
represents a loss queueing system having this input
mechanism for several finite sources producing Pois-
son processes of the same intensity (see, e.g., (Engset,
1918)). We suppose that the system has no buffer,
hence a request is either immediately served or im-
mediately lost, whenever no server is available upon
arrival.

Such a model has been applied to a variety of re-
alistic computer and telecommunication systems and
networks. For exemple, an Engset system is adequate
to represent a radio-mobile network in which the radio
sources emit messages only if no message of the same
source is currently in service. One could think that the
radio sources re-emit the same message as long as the
latter is refused due to the fact that all channels are
busy, and wait to re-issue a new message whenever
the previous message is in treatment.

This model has a wide field of applications, so it
has been studied extensively through analytical and
algorithmic methods as well. However, when the sys-
tem becomes very large, several complexity problems
may appear. The fluid limit technique offers the possi-
bility to approximate the exact values of some charac-
teristics of the system, when one or more parameters

tend to infinity. In our case, the number of servers
tends to infinity along with the number of sources.
Such techniques have been applied fruitfully to many
queueing systems (Robert, 2000; Asmussen, 2003;
Anisimov, 2007; Decreusefond and Moyal, 2012).
Recently, (Feuillet and Robert, 2012) constructed ex-
ponential martingales for the Engset model, allow-
ing to derive asymptotic estimates for several hitting
times of interest. We build on these results to de-
rive the fluid limit of an Engset model having a single
server (Section 3), and then several servers (Section
4). Simulations are presented in Section 5.

In a finite source retrial queue, the messages
which could not reach a server are sent to the so-called
orbit, from which they are re-emitted on and on, at a
rate that is possibly higher than the original one. It is
then easily seen that the Engset model in nothing but a
particular case of a retrial queueing system for which
the two emission rates are equal. Based on this obser-
vation, in Section 6 we investigate some applications
of our initial result to derive the fluid approximation
of a retrial queue, under various conditions on the sys-
tem parameters.

2 THE ENGSET MODEL

We consider an Engset system withS(S≥ 1) servers.
There areK (K > S) independent Poisson sources
emitting requests with intensityλ. The service times
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of the requests are exponentially distributed of param-
eterµ. Whenever a request finds all servers busy, it is
immediately lost. If not, the request enters service
and the corresponding source remain inactive during
its treatment. As soon as the latter service has been
completed, the source becomes active again, and re-
emit jobs according to a Poisson process of intensityλ
that is independent from the past. In particular, there
is no dependence between the holding times and idle
periods of the sources.

Let XS := (XS(t); t ≥ 0) denote the process count-
ing the number of customers in the system (i.e., the
number of busy servers) at current time.XS is a
Markov process, whose stationary measure is well-
known and easily derived.

We first examine the Engset queueing model with
a single server, and denoteX := X1 the corresponding
process.

2.1 Semi-martingale Decompositions

Recall (Jacod and Shiryaev, 2003; Decreusefond and
Moyal, 2012) that for a given Feller Markov processZ
of state spaceE and infinitesimal generatorA defined
for all boundedf : E → R by

A f (i) = lim
h→0

1
h

(

E [ f (X(h)) | X(0) = i]− f (i)
)

, i ∈E,

the process

M f : t → f (Z(t))− f (Z(0))−
∫ t

0
A f (Z(s)) ds (1)

is a martingale w.r.t. the natural filtration ofZ.
For n ≥ 1 fixed, consider an Engset system

M/M/n/n/nK, and add a superscriptn to all the param-
eters involved. It is easily seen that the infinitesimal
generatorA n of Xn reads for all boundedf : R→ R

and alli ∈ {0, ...,n},

A
n f (i) =

=











λ(K− i)( f (i +1)− f (i))+µi( f (i −1)− f (i)) ,

i ∈ {1, ...,n−1};
µn( f (n−1)− f (n)) , i = n.

So, taking f as the identity function of{0, ...,n} in
(1), we get

A
n f (i) = λ(nK− i)1{i<n}− iµ,

which leads to the following semi-martingale decom-
position :

Xn(t) = Xn(0)−µ
∫ t

0
Xn(s)ds

+λ
∫ t

0
(nK−Xn(s))1{Xn(s)<n}ds+Mn(t),

whereMn is a martingale andXn(0) ∈ [0,n].

2.2 The Free Process

The free process describes an Engset model without
limitation in the number of servers, hence an infinite
server queues M/M/∞/∞/nK, having the same input
mechanism. As above, the processYn counting the
number of customers in the system, satisfies the semi-
martingale decomposition

Yn(t) =Yn(0)−µ
∫ t

0
Yn(s)ds

+λ
∫ t

0
(nK−Yn(s)) ds+Pn(t)

=Yn(0)− (λ+µ)
∫ t

0
Yn(s)ds+λnKt+Pn(t),

(2)

wherePn is a martingale.

3 FLUID LIMIT

We are interested in the asymptotic behavior ofXn

(properly rescaled), as the number of servers goes to
infinity together with the number of sources. We ob-
tain hereafter a fluid limit that coincides with that of a
loss Erlang system M/M/n/n, and proceed as in Sec-
tion 6.7 of (Robert, 2000).

We normalize the various processes as follows.
For all t ≥ 0,

X̄n(t) =
Xn(t)

n
; Ȳn(t) =

Yn(t)
n

.

Assume that the deterministic initial condition satis-
fies

X̄n(0)−→
n→∞

x,

wherex∈ [0,1] fixed.
We easily check that the semi-martingale equation

(2) is similar to that of an M/M/∞ system of arrival in-
tensityλnK and service durations of parameterλ+µ.
WheneverȲn(0)−→

n→∞
x, it then follows from Theorem

6.13 of (Robert, 2000) that for allT ≥ 0,

E
[

sup
0≤t≤T

| Ȳn(t)−Y∗(t) |
]

−→
n→∞

0, (3)

where, for allt ≥ 0,

Y∗(t) = α+(x−α)e−(λ+µ)t
, (4)

setting

α =
λK

λ+µ
.

Let the hitting times

τn := inf {t ≥ 0; X̄n(t) = 1}
= inf {t ≥ 0; Xn(t) = n}
= inf {t ≥ 0;Yn(t) = n} (5)
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and
τ = inf {t ≥ 0;Y∗(t) = 1} . (6)

3.1 Heavy Traffic

First, we examine the caseα > 1. Then, we get

τ =
1

λ+µ
log

(

α− x
α−1

)

. (7)

The following lemma follows from Proposition 6 of
(Feuillet and Robert, 2012).

Lemma 1. In heavy traffic, the following convergence
in probability holds for the hitting time (5) :

τn P−→
n→∞

τ, (8)

whereτ is defined by (7).

Theorem 1. For all ε > 0 and all T≥ 0, we have

P
(

sup
0≤t≤T

| X̄n(t)−X∗(t) |> ε
)

−→
n→∞

0,

where, for all t≥ 0,

X∗(t) = 1∧
(

α+(x−α)e−(λ+µ)t
)

.

Proof. We have

P
(

sup
0≤t≤T

| X̄n(t)−X∗(t) |> ε
)

≤ P
(

sup
0≤t≤T∧τn

| Ȳn(t)−X∗(t) |> ε
)

+P
(

inf
τn≤t≤T

X̄n(t)< 1− ε
2

)

+P
(

sup
τn≤t≤T

| 1−X∗(t) |> ε
2

)

. (9)

By the continuity ofX∗(.), the first and third term on
the r.h.s. of (9) vanish, respectively in view of (3)
and (8). The second term vanishes as it is less than
P(τ̃n ≤ t), whereτ̃n is the hitting time of⌊nε

2 ⌋+1 by
Zn, the congestion process of an M/M/1 queue with
arrival intensitynµ and service rateλn(K −1). As
nµ<λn(K−1), this queue is stable, so it is a classical

result that̃τn is of the order of
(

λ(K−1)
µ

)⌊ nε
2 ⌋+1

.

3.2 Light Traffic

Assume now thatα < 1.

Theorem 2. In light traffic, for all ε > 0 and all T≥
0, we have

P
(

sup
0≤t≤T

| X̄n(t)−X∗(t) |> ε
)

−→
n→∞

0,

where in that case, for all t≥ 0,

X∗(t) =Y∗(t) = α+(x−α)e−(λ+µ)t
. (10)

Proof. Notice that

P
(

sup
0≤t≤T

| X̄n(t)−X∗(t) |
)

≤ P(τn ≤ T)+P
(

sup
0≤t≤T

| Ȳn(t)−Y∗(t) |> ε
)

,

and apply (3) together with Markov inequality. The
first term vanishes asτn is asymptotically of the or-
der of (nαn)−1, as can be shown along the lines of
(Feuillet and Robert, 2012).

3.3 Critical Case

Suppose thatα = 1. We reason as above :

Theorem 3. In the critical case,τn is of the order of
log

√
n, hence the same convergence as in Theorem 2

holds true.

4 MULTISERVER ENGSET
MODEL

We now check that the results of Section 3 still hold
true for an Engset queue withS identical servers and
the processXS counting the busy servers. We consider
the Engset model M/M/nS/nS/nK. Easily, we obtain
the infinitesimal generatorA n

S of Xn
S

A
n
S f (i) = λ(nK− i)1{i<nS}− iµ,

and the corresponding semi-martingale decomposi-
tion

Xn
S(t) = Xn

S(0)−µ
∫ t

0
Xn

S(s)ds

+λ
∫ t

0
(nK−Xn

S(s))1{Xn(s)<nS}ds+Mn
S(t),

whereMn
S is a martingale andXn

S(0) ∈ [0,nS]. The
free processYn

S is given by

Yn
S(t) =Yn

S(0)− (λ+µ)
∫ t

0
Yn

S(s)ds+λnKt+Pn
S(t),

wherePn
S is a martingale. For allt ≥ 0, we consider

the normalized processes̄Xn
S(t) andȲn

S(t) overn and
the limit of the initial condition :

X̄n
S(0)−→n→∞

xS,

wherexS∈ [0,S] fixed. Moreover, we observe that (3)
holds in the case ofSservers withY∗

S(t) =Y∗(t) and

τn
S= inf {t ≥ 0;Yn

S(t) = nS} ,
τS= inf {t ≥ 0;Y∗

S(t) = S} .
Consequently, the hitting timeτn

S converges in proba-
bility to

τS=
1

λ+µ
log

(

α− xS

α−S

)

.
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Theorem 4. For all ε > 0 and all T≥ 0, we have

P
(

sup
0≤t≤T

| X̄n
S(t)−X∗

S(t) |> ε
)

−→
n→∞

0,

where, for all t≥ 0, we consider the following cases :

if α > S,

X∗
S(t) = S∧

(

α+(xS−α)e−(λ+µ)t
)

; (11)

if α ≤ S,

X∗
S(t) = α+(xS−α)e−(λ+µ)t

. (12)

As a consequence, the fluid limit for the Engset
system can be derived for any arbitrary, but fixed, val-
ues of the number of sources and servers.

5 NUMERICAL RESULTS

In this section, we present a numerical example for
the multiserver Engset model concerning the different
cases discussed in Section 4. Consider a M/M/S/S/K
queueing system with parametersS= 500, λ = 0.1
and µ = 0.5. The critical value for the number of
sources is, therefore,K = 3000. Setting various val-
ues for the number of sources, we may obtain the
heavy traffic (α > 500), the light traffic (α < 500) or
the critical case (α = 500). We set the initial value
xS= 100 for the busy servers.

In the following figures, we present a realization
of the processX1

S of the model described above in the
time interval[0,50], along with the fluid limit, for the
three cases as given in (11) and (12).

Notice that, in Figure 1, the hitting time ofS
servers for the realization (4.6381) is fairly close to
the theoretical value ofτS (5.3648).

6 APPLICATION TO SINGLE
SERVER RETRIAL QUEUES

Retrial queues follow the following scenario : when a
customer arrives with all servers and waiting positions
(if any) being busy, he leaves the service area but after
some randomly distributed time repeats his demand.
For a review of the main results on the topic see (Falin
and Templeton, 1997) and the references therein.

The general queueing system with retrials is de-
scribed more precisely as follows. There are finitely
many identical independent fully available servers at
which requests arrive. Each source can generate a re-
quest with rateλ. If an arriving request finds at least
one server free, it immediately occupies the server
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Figure 1: Heavy traffic (K > 3000).
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Figure 2: Light traffic (K < 3000).
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Figure 3: Critical case (K = 3000).

and leaves it after completion of service. The rate of
service time is denoted byµ. If all servers are busy
at arrival time, then the source goes into the orbit (a
secondary queue of infinite size) and starts the gener-
ation of requests with rateν until it finds a free server.
After completion of service, the source returns to the
initial state and it can generate a new request, while
the server may serve a new request. All the times in-
volved in the model are assumed to be mutually inde-
pendent of each other.

The presence of the orbit makes the retrial queue-
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ing model more flexible than the Engset one, once the
source may generate a message with a different rate
from the rate of the initial state. Actually, an Engset
queue is a special case of the certain finite-source re-
trial system under the conditionν= λ. Because of this
fact, we can apply the results of the previous section
to a retrial queue, and, therefore, investigate different
cases under diverse system parameters.

Consider a single-server retrial queue with finitely
many sources. LetE = {0,1, . . . ,K − 1} and F =
{0,1}. Let N := (N(t); t ≥ 0) be the number of
sources of in orbit andC := (C(t); t ≥ 0) the num-
ber of busy servers, with state spacesE andF respec-
tively. The system state at timet can be described
by the coupled processA(t) := (N(t),C(t)). The pro-
cessA := (A(t); t ≥ 0) is a continuous-time Markov
process with finite state spaceE×F. Since the state
space of the processA is finite, the process is ergodic
with stationary measurẽπ(·, ·) defined as follows

π̃(i, j) = lim
t→∞

P(N(t) = i,C(t) = j) , i ∈ E, j ∈ F.

We consider a sequence of retrial systems with then-
th one havingn servers andnK sources. LetEn =
{0,1, . . . ,nK− 1} andFn = {0,1, . . . ,n}. Let An =
(Nn,Cn) be the corresponding process for then-th
system, with state spaceEn×Fn.

For all i ∈ En, j ∈ Fn, we consider the functions
f (i, j) := i and g(i, j) := j. Then, the infinitesimal
operatorQ n of An applied tof andg reads

Q
n f (i, j) =−iν1{ j<n}+(nK− i −n)λ1{ j=n}

and

Q
ng(i, j) = [iν+(nK− i − j)λ− jµ]1{ j<n}

−nµ1{ j=n}.

which yields the following semi-martingale decom-
positions :

Nn(t) =Nn(0)−ν
∫ t

0
Nn(s)ds

+(ν−λ)
∫ t

0
Nn(s)1{Cn(s)=n}ds

+λn(K−1)
∫ t

0
1{Cn(s)=n}ds+Mn

1(t);

〈Mn
1〉t =ν

∫ t

0
Nn(s)1{Cn(s)<n}ds

+λ
∫ t

0
(nK−Nn(s)−n)1{Cn(s)=n}ds

and

Cn(t) =Cn(0)+ (ν−λ)
∫ t

0
Nn(s)1{Cn(s)<n}ds

+λ
∫ t

0
(nK−Cn(s))1{Cn(s)<n}ds

−µ
∫ t

0
Cn(s)ds+Mn

2(t);

〈Mn
2〉t =

∫ t

0
(nK−Nn(s)−Cn(s))1{Cn(s)<n}ds

+
∫ t

0
νNn(s)1{Cn(s)<n}ds

+nµ
∫ t

0
1{Cn(s)=n}ds.

6.1 Law of Large Numbers

We apply the same normalization as in Section 3:

N̄n(t) =
Nn(t)

n
; M̄1

n
(t) =

Mn
1(t)

n
;

C̄n(t) =
Cn(t)

n
; M̄1

n
(t) =

Mn
1(t)
n

.

Assume that

N̄n(0)−→
n→∞

n0; C̄n(0)−→
n→∞

c0,

wheren0 ∈ [0,K] andc0 ∈ [0,1]. Thus, for allt ≥ 0,
we obtain

N∗(t) =n0+λ(K−1)
∫ t

0
1{C∗(s)=1}ds

+(ν−λ)
∫ t

0
N∗(s)1{C∗(s)=1}ds

−ν
∫ t

0
N∗(s)ds; (13)

C∗(t) =c0+(ν−λ)
∫ t

0
N∗(s)1{C∗(s)<1}ds

+λ
∫ t

0
(K−C∗(s))1{C∗(s)<1}ds

−µ
∫ t

0
C∗(s)ds. (14)

Theorem 5. The following weak convergence holds :

(N̄n
, C̄n)⇒ (N∗

,C∗),

where the deterministic functions N∗ and C∗ are the
unique solutions of (13) and (14), respectively.

Proof. We follow the classical steps for proving weak
convergence of processes. The increasing processes
〈M̄n

1〉 and 〈M̄n
2〉 vanish uniformly on any compact
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interval asn goes large. Moreover, the Aldous-
Reboledo tightness criterion for semi-martingales
(see, e.g. (Joffe and Mtivier, 1986)) is easily met by
bothN̄n andC̄n. Thus, the sequence

(

N̄n(·), C̄n(·)
)

is
tight, and any subsequential limit(N∗(·),C∗(·)) reads
for all t ≥ 0, the equations (13) and (14). The weak
limit is then a solution of this system. The unique-
ness of the latter is easily checked by showing that
the underlying mapping is locally-Lipschitz continu-
ous.

6.2 Discussion

We discuss applications of the latter result in several
cases.

(i) If λ = ν, from (4) and (14),C∗ coincides with the
fluid limit Y∗ of Section 3, in the various cases.
Setting, wheneverτ is finite (i.e. in the heavy traf-
fic case),

τ0 = n0e−λτ
,

from the equation (13), we obtain that

N∗(t) =n0e−λt1{t<τ}

+(K−1+[τ0− (K−1)]e−λ(t−τ))1{t≥τ}.

We check as well the intuitive result that asymp-
totically, the orbit is either full (heavy traffic case)
or empty (light traffic/ critical case).

(ii) Suppose now thatKλ ≤ λ+ µ, and fix the initial
conditionn0 = 0. Let

ρn = inf {t ≥ 0; Nn(t)> 0} .
Up to ρn, no arrival occurs from the orbit, so the
value ofν is irrelevant. It is easily seen that

ρn = τn in distribution,

whereτn corresponds to the previous hitting time
for an Engset model. So, from the results of the
previous section in the light traffic and critical
cases, a proof similar to that of Theorem 2 shows
that, for allt ≥ 0,

N∗(t) = 0; C∗(t) =Y∗(t),

whereY∗(t) is given in (10).

(iii) All the same, if finallyλ < ν andKλ > ν+µ, we
show by stochastic comparison of Markov pro-
cesses that

ρn ≤st τn
,

whereτn corresponds to a heavily loaded Engset
model of arrival rateλ. So, Theorem 1 entails that
for some 0< ρ ≤ τ, whereτ is defined by (6),

C∗(t) = 1, for all t ≥ ρ,
i.e. the server is busy all the time afterρ, at the
fluid level.

7 CONCLUSIONS

We have derived the fluid limit of an Engset queueing
system with several servers. After discussing the con-
nection between the Engset queue and retrial queue-
ing models, we present several fluid limit results for
retrial queues. The generalization of the fluid limit
for all possibles values of the parametersλ, µ andν
of the retrial model, and the numerical confirmation
of their accuracy is a challenging problem that is cur-
rently under investigation.
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