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Abstract: The presence of ocular artifacts (OA) due to eye movements and eye blinks is a major problem for the 
analysis of electroencephalographic (EEG) recordings in most applications. A large variety of methods 
(algorithms) exist for detecting or/and correcting OA’s. We identified the most promising methods, 
implemented them, and compared their performance for correctly detecting the presence of OA’s. These 
methods are based on signal processing “tools” that can be classified into three categories: wavelet 
transform, adaptive filtering, and blind source separation. We evaluated the methods using EEG signals 
recorded from three healthy persons subjected to a driving task in a driving simulator. We performed a 
thorough comparison of the methods in terms of the usual performances measures (sensitivity, specificity, 
and ROC curves), using our own manual scoring of the recordings as ground truth. Our results show that 
methods based on adaptive filtering such as LMS and RLS appear to be the best to successfully identify 
OA’s in EEG recordings. 

1 INTRODUCTION 

Electroencephalographic (EEG) recordings reflect 
the neuronal and electrical activity within the brain. 
They are obtained from electrodes placed on the 
scalp. They are often contaminated by signals from 
other sources, called artifacts. (Artifact is also used 
to denote the local deformation of the signal of 
interest, here the EEG.) One distinguishes between 
physiological artifacts and technical artifacts. The 
most frequent physiological artifacts are due to the 
activity of the eyes, the heart, and the muscles. The 
most common physiological artifacts are the ocular 
artifacts (OA’s), due to the movements of the 
eyeballs and eyelids. Technical artifacts are mostly 
due to electrode placement problems and body 
movements.  

All artifacts result in an EEG recording that may 
be quite different, generally locally, from the true 
underlying EEG signal reflecting the brain activity. 
It is thus critical to do something about OA’s.  

The three usual ways of dealing with OA’s are 
prevention, rejection, and removal. Prevention 
consists in reducing the occurrences of OA’s by 
giving proper instructions to patients. However, 
some OA’s are involuntary and unavoidable. 

Rejection consists in rejecting the epochs affected by 
OA’s. Of course, rejection implies that the OA’s be 
first detected. Although simple, rejection has the 
major drawback of dropping a significant amount of 
valuable data. Removal consists in removing as best 
as possible the OA’s to produce a signal that is as 
close as possible to the true, underlying EEG signal. 
Removal may require that the OA’s be first detected. 
Since removing the OA’s corrects the signals, the 
term “correction” can also be used in place of the 
term “removal”. Any correction method can be 
turned into a detection method by thresholding the 
difference between the raw signal and the cleaned 
one.  

When dealing with OA’s, it is useful to record 
the electrooculographic signals (EOG), which allow 
the observer (and the algorithms) to establish a 
“correlation” between the OA’s in the EEG and the 
features in the EOG.  

Our interest in the handling of OA’s arose from 
the study of drowsiness for subjects actively 
involved in a task, such as driving. Indeed, until they 
fall asleep, these subjects have their eyes mostly 
open. Therefore, the EEG signals recorded for 
studying the evolution of drowsiness are affected by 
OA’s due to eye movements and eye blinks. This 
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should be contrasted with the study of sleep, where 
subjects have their eyes closed. (However, note that 
the eyes and the eyelids can move even when the 
eyes are closed.) 

Several methods have been proposed in the 
literature for cleaning EEG’s from OA’s. 
Comprehensive reviews are found in (Croft and 
Barry 2000) and (Kandaswamy et al. 2005). 
However, we have not found any published paper 
comparing a significant number of the proposed 
methods in terms of a common performance 
measure. The present paper performs such a 
comparison. 

2 MATERIAL AND METHODS 

2.1 Data Recordings 

We acquired data at the “Centre d’Etudes des 
Troubles de l’Eveil et du Sommeil” (CETES) of the 
University Hospital of Liège in the context of the 
study of driver drowsiness. Subjects were presented 
with a driving task in a simulator. We recorded the 
following polysomnographic (PSG) signals: EEG 
(for electrodes Fz, Cz, Pz, C3, C4, A1, A2), EOG, 
and EMG. The subjects received the instruction to 
drive at a constant speed of 80 km/h on a one-way 
road, where there were no other vehicles. This task 
lasted about two hours. The PSG signals were 
recorded with an Embla system at a sampling rate of 
500 Hz. They were partitioned into butting (and thus 
non-overlapping) epochs of 1024 samples. The 
methods described below, except the last one, were 
successively applied to each of these epochs. The 
last method was applied on one whole EEG 
recording. 

2.2 Methods Compared 

We identified 12 potentially useful methods in the 
literature. We organized these methods according to 
the seven signal processing “tools” they use (DWT, 
SWT, LMS, RLS, H∞-TV, ICA, SOBI), which we 
further organized into three broad categories (of 
tools), i.e. wavelet transform (WT), adaptive 
filtering (AF), and blind source separation (BSS) 
tools. The abbreviations are spelled out below. Table 
1 shows the tools used by the 12 methods. For 
example, Method 4 uses both the SWT and LMS 
tools. 

Table 1 shows that Methods 1 and 2 use only 
WT tools, that Methods 3, 5, and 7 use only AF 
tools, and that all BSS tools are used in combination 

with WT tools. Methods 4, 6, and 8 - 12 use two 
tools, each from a different category. 

Table 1: Methods compared, and the “tools” they use. 
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We now successively consider the broad 
categories (WT, AF, BSS) of tools, and, for each, we 
provide the description of the methods that use these 
tools. These descriptions generally do not refer 
explicitly to the method indices of Table 1. 

2.2.1 Wavelet Transform (WT) Tools 

The wavelet transform (WT) (Mallat 1999) is one of 
the leading techniques for analyzing non-stationary 
signals like EEG’s. The major asset of wavelet 
analysis is its capability to decompose waveforms 
into components that are well localized in time and 
in frequency (or, equivalently, in scale). 

The continuous WT (CWT) constructs a 
“family” of wavelets by scaling and translating a 
function called the mother wavelet. 

The discrete WT (DWT) results from the 
discretization of the CWT on a dyadic grid. 

Translation invariance is important in many 
applications such as change detection and denoising. 
The stationary WT (SWT) is a WT algorithm 
designed to overcome the lack of translation 
invariance of the DWT (Nason and Silverman 
1995). Translation invariance is achieved by 
removing the down-samplers and up-samplers 
present in the DWT. 

2.2.1.1 Detection of OA’s with DWT 

Krishnaveni et al. applied a wavelet-based 
thresholding algorithm to identify zones of OA’s 
(Krishnaveni et al. 2006). They based their method 
on (Venkataramanan et al. 2004), i.e. they used the 
Haar wavelet to precisely detect the moment when 
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the state of the eye changes from open to closed and 
vice versa. 

The technique is based on the difference in 
frequency contents between the EEG recording ([0-
20] Hz) and the OA signals ([0-16] Hz). The raw 
EEG signal is decomposed with the Haar DWT. The 
detail wavelet coefficients (WCf’s) are then 
cancelled and this results in a step function with a 
falling edge indicating a change from open to closed 
eyes, or with a rising edge indicating a change from 
closed to open eyes.  

The edges of the approximation are classified 
into artifact or non-artifact edges according to their 
relative amplitude. 

2.2.1.2 Correction of OA’s with SWT 

Krishnaveni et al. consider the OA’s as a noise part 
of the EEG recording, and they apply a wavelet-
based thresholding algorithm to remove them 
(Krishnaveni et al. 2006). Soft-thresholding is the 
most popular thresholding technique, and it has been 
theoretically justified by Donoho and Johnstone. 
These last authors suggest to choose optimal 
thresholds by minimizing the Stein Unbiased Risk 
Estimator (SURE) at each decomposition level 
(Donoho and Johnstone 1995). 

Soft-thresholding functions are continuous with 
discontinuous derivatives. However, continuous 
derivatives of first and higher orders are often 
desired for optimization problems. A new class of 
soft-like-thresholding functions with continuous 
derivatives was proposed (Xiao-Ping and Desai 
1998). The method consists in applying the SWT 
with Coiflet3 as mother wavelet for levels 3 to 6, 
selecting the optimal threshold for each level by 
minimizing the SURE, applying soft-like-
thresholding, and applying the inverse SWT. 

Since OA’s occupy the lower frequency band 
([0-16] Hz) of the typical EEG, the threshold 
selection and the thresholding are only performed on 
the decomposition levels 3 to 6. Coiflet3 is chosen 
as the mother wavelet since it resembles the shape of 
an eye-blink OA. This implies that large WCf’s be 
generated in OA zones and that small WCf’s be 
generated in areas corresponding to non-OA zones. 
Reducing the amplitude range of the large 
coefficients should then result in the removal or 
reduction of the OA’s. 

2.2.2 Adaptive Filtering (AF) Tools 

Adaptive filters (AF’s) belong to the category of 
optimal filters (Klados et al. 2009; Correa and Leber 
2011): they adapt their coefficients to the 

disturbance in the input signal, and subtract the 
result from the input signal. The adaptive process 
involves an optimization controlled by the error 
signal between the input signal and the filter-output 
signal. We tested three AF algorithms: (1) the least 
mean square (LMS) algorithm, which minimizes the 
mean squared error, (2) the recursive least squares 
(RLS) algorithm, which minimizes a cost function 
that is a linear combination of squared errors, and 
(3) the H∞ Time-Varying (H∞-TV) algorithm, which 
minimizes the infinite norm of a linear combination 
of squared errors (Puthusserypady and Ratnarajah 
2006). 

We implemented these three AF’s as presented 
in Tables 1-3 of (Klados et al. 2009). 

The application of AF’s can be combined with 
the use of the SWT (Kumar et al. 2008). The 
procedure consists in applying the SWT with the 
Symlet3 mother wavelet up to eight levels, applying 
the AF to the WCf’s, and applying the inverse SWT 
to the error signal. 

2.2.3 Blind Source Separation (BSS) Tools 

Blind source separation (BSS) techniques are based 
on a linear decomposition of the measured signals 
into sources, also called components. Applied to 
EEG and EOG recordings, these methods segregate 
the artifactual activities into separate sources. 
Therefore, the reconstruction of the recorded EEG 
with these sources removed leads to a reduction of 
OA’s. These techniques can be used with several 
EEG channels. 

The most common BSS methods are the 
independent component analysis (ICA) and the 
second-order blind identification (SOBI). 

ICA is a statistical technique in which measured 
signals are linearly transformed into sources that are 
maximally independent from each other (Hyvärinen 
and Oja 2000). 

Numerous ICA algorithms exist. FastICA and 
Infomax are the most popular ones. Infomax (Bell 
and Sejnowski 1995) is effective in separating 
sources that have super-Gaussian probability density 
functions, but it fails to separate sources that have 
negative Kurtosis. Unless explicitly stated otherwise, 
we have used FastICA. 

SOBI (Belouchrani et al. 2002) divides a set of 
measured signals into sources by exploiting the 
possible time coherence between the sources. It 
minimizes the cross-correlations between each 
component and other components shifted in time, 
across a set of time delays. 
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2.2.3.1 Correction of OA’s by Combining a BSS 
Tool with High-order Statistics 

The two methods we describe here are based on the 
same scheme. The first one is that of (Ghandeharion 
and Erfanian 2010) where the BSS tool is ICA. The 
second one uses SOBI instead of ICA. 

The methods first decompose the EEG and EOG 
recordings (two channels) into sources, by applying 
either of the BSS transforms. They then identify the 
artifactual source (in the way described below) and 
remove it. They finally produce the output signal by 
applying the appropriate inverse transform to the 
remaining (non-artifactual) sources. 

The artifactual source is identified as follows. 
For each of the above sources, one computes seven 
statistical measures, with four directly on the sources 
and one on each set of SWT coefficients for levels 3 
to 5. The four measures on each source are (1) the 
mutual information, (2) the projection strength, (3) 
the correlation, and (4) the kurtosis. The measure on 
the selected SWT coefficients is the kurtosis. One 
then flags for each measure the couple 
source/measure with maximum measure values. Any 
source with four flags is deemed to be artifactual. 

2.2.3.2 Correction of OA’s by Simultaneously 
using ICA and DWT 

The main drawback of ICA is that the number of 
measured signals must be larger than the number of 
sources for correctly decomposing the different 
types of artifacts. Therefore, ICA has difficulty in 
separating the OA sources from the true PSG 
sources. Moreover, the spectrum of some OA’s is 
located in a narrow frequency band. Since ICA 
works in the time domain and since DWT has a 
good frequency resolution, the combination of ICA 
and DWT is particularly well adapted. 

Automatic wavelet independent component 
analysis (AWICA) (Mammone et al. 2012) 
combines DWT and ICA on multichannel PSG 
recordings to improve the performance of source 
separation. This method consists in the six following 
phases executed on each epoch: 
 Each recorded PSG channel is decomposed by 

DWT with the Daubechies4 mother wavelet. 
The four frequency bands characterizing the 
brain activity are represented by the wavelet 
components (WC’s). 

 An automatic procedure is applied to measure 
the level of “artifactuality” of the WC’s. Two 
measures are used to this end: the kurtosis 
(Kt) and the Renyi’s entropy (ReE). This last 
measure allows one to quantify the 
randomness. The Kt and the ReE of the WC’s 

are computed and then normalized to zero 
mean and unit variance with respect to every 
WC. If one of these normalized measures 
exceeds a fixed threshold, the WC is marked 
as being a critical wavelet component (CWC). 

 ICA is applied to all CWC’s. The critical 
wavelet independent components (CWIC’s) 
are so extracted. 

 The set of CWIC’s is partitioned into non-
overlapping windows. If the Kt or the ReE of 
one CWIC exceeds a fixed threshold in more 
than 20% of the non-overlapping windows, it 
is marked and rejected. 

 An inverse ICA is applied so that artifact-free 
WC’s are recovered. 

 The inverse DWT is applied to reconstruct the 
cleaned EEG signals (channels). 

2.2.3.3 Correction of OA’s by Combining ICA 
and Wavelet Denoising in a Robust Way 

The method called Robust Artifact Removal (RAR) 
is presented in (Zima et al. 2012) as a method for 
removing short-duration, high-amplitude artifacts 
from long-term neonatal EEG recordings. 

It consists in three major phases: (1) partitioning 
the EEG recording (one channel) into contiguous 
epochs in three different ways; (2) independent 
processing (as described below) of each partition; 
(3) combining the three artifact-free reconstructions 
for obtaining a reconstruction that is freer of 
artifacts. 

Phase (2) consists of five processing steps: (1) 
ICA, (2) artifact detection, (3) wavelet denoising of 
artifact sources by using DWT and soft-
thresholding, (4) replacement of the artifact sources 
by their noise part, estimated in previous step, (5) 
inverse ICA. 

For ICA, we use the implementation of 
(Tichavský and Yeredor 2009) of the algorithm 
BGSEP (Pham and Cardoso 2001). This algorithm is 
based on second-order statistics as in the SOBI 
algorithm, but uses the non-stationarity of the 
measured signals. 

The identification of high-amplitude artifact 
sources is based on their duration, which is short in 
comparison to the partition length. The authors call 
such sources “sparse” in the time domain. They 
define the sparsity of a signal as a value proportional 
to its maximum amplitude and logarithmically 
proportional to the inverse of its median. A source 
with sparsity exceeding a fixed threshold is marked 
as an artifact. 

The specific combination of the three 
reconstructions, called “adaptive folding”, allows 
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one to reduce the possible remaining artifacts by 
averaging, epoch-by-epoch, the reconstructions 
containing the fewest artifacts. The presence, or not, 
of artifacts is decided based upon the differences and 
the maximum absolute values of the reconstructions. 

2.3 Method of Performance Evaluation 

For memory, Method 1 is a detection method, and 
all others are correction methods. No obvious 
evaluation method is available for estimating the 
performance of a correction method. Indeed, we do 
not have an accurate means of measuring the true 
EEG signal. For this reason and for the purpose of 
evaluating the performance of the methods, we 
decided to “turn” the 11 correction methods into 
detection methods. This transformation is done by 
subtracting the corrected EEG signal from the raw 
EEG signal and thresholding the result. 

To quantify the detection performance of the 12 
methods, we defined the ground truth by manually 
segmenting many 2s epochs of 1024 samples each 
into true OA zones and true non-OA zones. For this, 
we used a tool included in the Matlab toolbox 
Fieldtrip (Oostenveld et al. 2011). 

The top part of Fig. 1 illustrates the “true” 
segmentation of, say, one epoch performed manually 
by an observer into OA zones and non-OA (OAതതതത) 
zones. The bottom part illustrates the corresponding 
“computed” segmentation performed automatically 
by some method. The boundaries of the true and 
computed zones define intervals that can each be 
labeled as true positive (tp), true negative (tn), false 
positive (fp), and false negative (fn). We transform 
this labeling into the customary tp, tn, fp, and fn 
numbers by simply adding the lengths of the 
intervals that have the same, corresponding label. 

These four numbers define a confusion matrix. 
However, the fundamental measures of performance 
that we use to compare the 12 methods are: 
 The tp rate, which is the ratio between tp and 

the number of positives, i.e. tp + fp; 
 The fp rate, which is the ratio between fp and 

the number of negatives, i.e. tn + fn. 
The tp rate is also called the sensitivity and “1- the 
fp rate” the specificity. We use the common receiver 
operating characteristic (ROC) curves for 
representing these measures. 

 

Figure 1: Evaluation: segmentations into true (top) and 
computed (bottom) OA zones and non-OA (OAതതതത) zones.  

3 RESULTS 

Figure 2 shows the results of the 12 methods on one 
epoch of 1024 samples from one EEG recording. 

 

Figure 2: Results of the 12 methods on one epoch of 1024 
samples from one EEG recording. The thin (thick) lines 
show the raw (cleaned) EEG signals. 

Method 1 detects correctly the OA zone.  
Method 2 is not capable of correcting EEG 

signals for OA’s. This observation is in 
contradiction with the results presented in 
(Krishnaveni et al. 2006). Our conclusion is that this 
method should not be expected to work because the 
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method is one of denoising, and therefore applicable 
only to white noise. However, OA’s cannot be 
considered to be white noise! Therefore, we decided 
to ignore this method in our performance evaluation. 
The results of the LMS and RLS methods (Methods 
3 and 6) are very similar: the spike due to the OA is 
weakened. In the results of H∞-TV (Methods 7 and 
8), the OA spike is clearly reduced, but useful data is 
also perturbed. The results of the BSS methods 
(Methods 9 to 12) are quite similar: the OA peak has 
disappeared. 

Figure 3 shows the ROC curves of the 11 
retained methods on the same EEG recording (i.e. 
with Method 2 ignored). The four best ROC curves 
are given by the LMS and RLS methods (Methods 3 
to 6). 

 

Figure 3: ROC curves for the 11 retained methods. 

The sensitivity and the specificity have 
antagonistic behaviors. Therefore, another way of 
comparing the performances of the methods is to 
consider the sum of the sensitivity and the 
specificity. Then, the larger the sum is, the better the 
performance is. Table 2 lists the sensitivity, the 
specificity, and their sum. The rows of the four best 
methods are shown in gray with the performance 
increasing from light to dark gray. 

4 DISCUSSION 

Method 1, which is a detection method based on a 
thresholding of wavelet approximation coefficients, 
does not seem to correctly identify all OA zones in 
the considered EEG recording (in comparison to the 
reference). Indeed, Method 1 has one of the lowest-
positioned ROC curve in Figure 3. In addition, we 
see from Table 2 that the sensitivity barely reaches 
0.275. This means that only 27.5% of OA’s are 
correctly detected. However, the method has a high 
specificity.  

Figure 2 shows that all other methods – which 
are correction methods –, except for Method 2, are 
able to remove a substantial amount of OA from the 
EEG recording. In each graph of this figure (except 
for that of Method 2), one can observe that the spike 
due to the OA is clearly reduced. However, as 
indicated earlier, it is difficult to evaluate the 
performance of the correction methods because we 
cannot measure directly the activity of the brain and 
of the eyes separately. We will thus discuss the 
results of these methods of correction in terms of 
their ability to identify correctly the OA zones in the 
EEG recording.  

In general, methods based on adaptive filtering 
show better results than those based on BSS 
methods. Indeed, Table 2 indicates that the sum of 
the values of sensitivity and specificity is higher for 
Methods 3 to 8 than for Methods 9 to 12. This is 
confirmed by the ROC curves shown in Figure 3, 
where one can observe that the curves for Methods 3 
to 8 are located closer to the upper-left corner than 
those for Methods 9 to 12. Table 2 and Figure 3 
indicate that Methods 7 and 8 can correctly identify 
the OA zones. However, visual inspection of the 
corresponding graphs of Figure 2 reveals that these 
methods also remove a lot of useful data. Methods 3 
to 6 (LMS- and RLS-based algorithms) are thus the 
four best methods to successfully identify OA zones 
in the EEG recording. 

From Table 2 and Figure 3, one can also 
conclude that combining the LMS and RLS 
algorithms with the SWT does not improve the 
results as compared to using LMS and RLS alone. 

Table 2: Best compromise in sensitivity and specificity for 
the 11 retained methods. 

Methods Sensitivit Specificity Sens.+ spec.
Method 1 0.275 0.985 1.260
Method 3 0.791 0.768 1.559
Method 4 0.717 0.813 1.530
Method 5 0.642 0.858 1.500
Method 6 0.647 0.847 1.494
Method 7 0.587 0.882 1.469
Method 8 0.578 0.882 1.460
Method 9 0.639 0.775 1.414
Method 10 0.641 0.828 1.469
Method 11 0.123 0.956 1.079
Method 12 0.501 0.779 1.280

5 CONCLUSIONS 

Ocular artifacts (OA’s) are often present in EEG 
recordings. They mask the true, underlying EEG 
signal. As a result, the OA’s make the analysis of 
EEG recordings more difficult and, more 
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importantly, they can lead to incorrect analysis and 
wrong conclusions. To avoid losing valuable data, it 
is critical to develop robust methods for cleaning out 
EEG recordings from OA’s. For the purpose of 
evaluating the state of the art in the detection and 
elimination/reduction of OA’s, we implemented 12 
promising methods found in the literature. We 
evaluated the performance of all the methods in 
terms of their ability to correctly detect OA zones in 
EEG recordings, as compared to a ground truth 
established visually. Results suggest that methods 
based on adaptive filtering such as LMS and RLS, as 
well as their combination with the SWT are the best 
methods to successfully detect OA zones in EEG 
recordings. These methods have higher values of 
sensitivity and specificity, and better ROC curves, 
than the other correction methods.  
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