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Abstract: In a recent paper (de Uña-Álvarez, 2012, Statistical Applications in Genetics and Molecular Biology Vol. 
11, Iss. 3, Article 14) a correction of SGoF multitesting method for possibly dependent tests was introduced. 
This correction enhanced the field of applications of SGoF methodology, initially restricted to the 
independent setting, to make decisions on which genes are differently expressed in group comparison when 
the gene expression levels are correlated. In this work we investigate through an intensive Monte Carlo 
simulation study the performance of that correction, called BB-SGoF (from Beta-Binomial), in practical 
settings. In the simulations, gene expression levels are correlated inside a number of blocks, while the 
blocks are independent. Different number of blocks, within-block correlation values, proportion of true 
effects, and effect levels are considered. The allocation of the true effects is taken to be random. False 
discovery rate, power, and conservativeness of the method with respect to the number of existing effects 
with p-values below the given significance threshold are computed along the Monte Carlo trials. 
Comparison to the classical Benjamini-Hochberg adjustment is provided. Conclusions from the simulation 
study and practical recommendations are reported. 

1 INTRODUCTION 

Multiple-testing problems have received much 
attention since the advent of the –omic technologies: 
genomics, transcriptomics, proteomics, etc. They 
often involve the simultaneous testing of hundreds 
or thousands of hypotheses, or nulls, producing as a 
result a number of significant p-values or effects 
(that is, an increase in gene expression, or 
RNA/protein levels). In this setup, the family-wise 
error rate (FWER) and the false discovery rate 
(FDR) have been proposed as suitable significance 
criteria to perform the multiple testing. See 
Benjamini and Hochberg (1995), Nichols and 
Hayasaka (2003) or Dudoit and Laan (2008) for 
basic definitions and reviews of existing literature. 

As a drawback of FWER-based and FDR-based 
methods, their power may be small when the number 
of tests is large, or when the proportion of true nulls 
is large and the effect in the non-true nulls is weak 
relative to the sample size (Carvajal-Rodríguez et 

al., 2009); (de Uña-Álvarez, 2011). Carvajal-
Rodríguez et al., (2009) introduced a new 
multitesting strategy, SGoF (from Sequential 
Goodness-of-Fit), which focuses on the difference 
between the observed proportion of p-values below a 
given significance threshold (the γ parameter) and 
the expected one under the complete null of no 
effects (γ); therefore, a binomial test for a proportion 
is performed. SGoF approach provides a reasonable 
compromise between false discoveries and power 
(Carvajal-Rodríguez et al., 2009); the theoretical 
statistical properties of SGoF were investigated in 
detail in de Uña-Álvarez (2011). It was illustrated 
that, with a large number of tests, the critical region 
provided by SGoF is wider than that of FDR-based 
methods in most practical scenarios. SGoF original 
method provides reliable inference when the 
multiple tests are independent. 

However, in real world applications, 
dependences among the tests will appear. This 
dependence may be provoked by the existence of 
several blocks of tests which share the same within-
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block probability of reporting a significant p-value. 
While FDR-based strategies are robust in 
dependence scenarios, the same is not true for SGoF, 
which crucially depends on the correct estimation of 
the variance associated to the number of discoveries. 
In most practical situations with dependent tests, the 
final number of discoveries reported by SGoF will 
be too liberal, because it will be based on an 
underestimated variance (Owen, 2005). To solve this 
issue, de Uña-Álvarez (2012) introduced a 
correction of SGoF method to deal with dependent 
tests. This correction is based on the beta-binomial 
extension of the binomial model, which arises when 
the number of successes S among the n trials is 
conditionally distributed as a binomial given the 
probability of success π, which is a random variate 
following a beta distribution. The beta-binomial 
model has three parameters: the number of trials n, 
the mean probability of success p=E(π), and the 
pairwise correlation between the outcomes 
τ=Var(π)/p(1-p). The mean and the variance of the 
beta-binomial model are given respectively by 
E(S)=np and Var(S)=np(1-p)(1+(n-1)τ); this shows 
that, by putting τ>0, the beta-binomial model allows 
for a variance larger than binomial. See Johnson and 
Kotz (1970) for further details and illustrations of 
the model. 

More specifically, given the set of n p-values 
u1,…,un coming from the n nulls being tested, BB-
SGoF (from beta-binomial SGoF) correction starts 
by computing the binary sequence Xi=I(ui≤γ), 
i=1,…,n. Then, by assuming that there are k 
independent blocks of p-values of sizes n1,…,nk 
(with n1+…+nk=n), the number of successes sj 
within each block j is computed. Here, Xi=1 is called 
‘success’. Each sj is assumed to be a realization of a 
beta-binomial variable with parameters (nj,p,τ). In 
this setting, p represents the average proportion of p-
values falling below γ, which under the complete 
null is just γ, and τ is the within-block correlation 
between two outcomes Xi and Xj. Estimation of p 
and τ is performed by maximum-likelihood, and the 
lower bound of a 100(1-α)% interval for the excess 
of significant cases n(p-γ) is reported; this bound is 
the number of effects declared by BB-SGoF (which 
weakly controls FWER at level α in this manner). 
Therefore, BB-SGoF follows the same spirit of 
SGoF method, but some preliminary estimation of 
the p-values’ dependence structure is performed to 
correct for it. This correction may have a big impact 
in the researcher’s decision; for example, de Uña-
Álvarez (2012) illustrates for two real datasets that 
ordinary SGoF rejects 10% (Hedenfalk data) or 
about 4% (Diz data) nulls more than BB-SGoF, and 

that BB-SGoF rather than SGoF should be applied 
due to significant correlation. 

Simulations in de Uña-Álvarez (2012) for n=500 
and n=1000 tests reported the mean and standard 
deviation of the number of rejections for SGoF-type 
methods, as well as the family-wise rejection rate 
(which reduces to the FWER and FDR under the 
complete null of no effects); these simulation results 
showed that BB-SGoF is able to control FWER at 
level α even when the number of blocks k is 
unknown (which is the usual situation in practice), 
provided that some conservative criterion in the 
estimation of k is used. Besides, this conservative 
criterion did not result in a great loss of power 
(compared to the ‘benchmark’ method based on the 
true value of k). Ordinary SGoF performed badly 
otherwise, being unable to control for dependences 
(as expected). However, the simulation study 
reported in the referred paper has some limitations. 
First, no computation of the FDR in the presence of 
effects was made, neither results on the methods’ 
power were reported. This was because of the 
employed simulation procedure, which does not 
allow for distinguishing between true and non-true 
nulls. Also because of this, comparison to the 
Benjamini-Hochberg (BH) FDR-controlling 
procedure was not possible. Second, the simulated 
model was a beta-binomial, and therefore the 
simulations are useless to know how the beta-
binomial approach will work in other scenarios with 
blocks of dependent tests. The simulation study in 
the present work aims to overcome these limitations. 

The rest of the paper is organized as follows. In 
Section 2 we describe the simulated setting. In 
Section 3 we report the results of our simulation 
study, and we summarized them in a number of 
relevant findings. A final discussion is reported in 
Section 4. 

2 SIMULATED SETTING 

Having in mind the study of Hedenfalk data (see e.g. 
de Uña-Álvarez, 2012), we simulated n=500 or 
n=1000 2-sample t-tests for comparison of normally 
distributed ‘gene expression levels’ in two groups A 
and B with sizes 7 and 8 respectively. The 
proportion of true nulls (i.e. genes equally 
expressed) Π0 was 1 (complete null), 0.9 (10% of 
effects), or 0.67 (33% of effects). Mean was always 
taken as zero in group A, while in group B it was μ 
for 1/3 of the effects and –μ for the other 2/3 of 
effects, with μ=1 (weak effects), μ=2 (intermediate 
effects), or μ=4 (strong effects). Random allocation 
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of the effects among the n tests (genes) was 
considered. Within-block correlation levels of ρ=0, 
0.1, 0.2 and 0.8 were taken. With regard to the 
number of blocks, we considered k=10 or k=20, so 
we had 50 or 25 tests per block when n=500, and 
100 or 50 tests per block when n=1000. For random 
generation, the function rmvnorm of the R software 
was used. 

BB-SGoF method with γ=α=0.05 was applied 
under perfect knowledge on the true value of k but 
also when underestimating (k/2) or overestimating 
(2k) the true number of blocks. The blocks were 
always constructed homogeneous in size. We also 
applied an automatic (data-driven) choice of k by 
minimizing the number of effects declared by BB-
SGoF along the grid k=2,…,61. For γ=0.05, 5% of 
the p-values are expected to fall below γ under the 
complete null, while this amount rises to about 
17.8%, 34.9% and 36.7% when e.g. there is a 33% 
of weak, intermediate, or strong effects respectively. 
The estimated values of the within-block correlation 
τ between indicators Xi=I(ui≤γ) and Xj=I(uj≤γ) in the 
simulations were much smaller than the within-
block correlation ρ between the ‘gene expression 
levels’, ranging from about 0.002 to 0.232 
depending on ρ. 

1000 Monte Carlo simulations were performed. 
For each situation, we computed the FDR, the power 
(both averaged along the 1000 trials), and the 
proportion of trials for which the number of declared 
effects was not larger than the number of effects 
with p-value below γ (this is just 1-FDR under the 
complete null); as indicated in de Uña-Álvarez 
(2012), BB-SGoF guarantees that this proportion 
(labeled as Cov from ‘coverage’ in Tables below) is 
asymptotically (i.e. n→∞) larger than or equal to 1-
α, a property which is not shared by other 
multitesting methods. Computation of these 
quantities for the original SGoF method for 
independent tests and for the BH method (with a 
nominal FDR of 5%) was also included to compare. 

3 SIMULATION RESULTS 

Tables 1 to 6 reported in this section are a sample of 
the full set of results of our simulations. They are 
restricted to case k=10, n=1000, no effects or 33% 
of effects, weak or strong effects (μ=1 or μ=4), and 
within-block correlation ρ=0 (independent setting), 
ρ=0.2 (moderate correlation), and ρ=0.8 (strong 
correlation). Other cases reported similar results (not 
shown). 

Starting with the case of no effects, we see from 

Tables 1, 3 and 5 that all the methods respect the 
nominal FWER (FDR) of 5% fairly well in the 
independent setting. The automatic BB-SGoF 
reports an FDR below nominal, something expected 
due to its conservativeness. As correlation grows, 
original SGoF for independent tests loses control of 
FWER; when ρ=0.8, it is almost 7 times the 
nominal. On the other hand, BB-SGoF methods 
adapt well to the correlated settings (particularly true 
for the benchmark method which uses the true k, and 
for the automatic method), while BH method 
respects the nominal FDR (expected, due to its 
robustness for dependences) but it is very 
conservative in the case ρ=0.8. The FWER of BB-
SGoF is above the nominal when the researcher 
overestimates the number of blocks; this is because 
BB-SGoF decision becomes more liberal as the 
assumed dependence structure gets weaker. 
Summarizing, the results for BB-SGoF are relevant 
since they suggest FWER control even when the 
simulated model is not beta-binomial. 

Table 1: n=1000, ρ=0, k=10, μ =1 (see text). 

 Π0=1 Π0=0.67 
 FDR FDR Power Cov 

SGoF 0.048 0.1260 0.2852 1 
BH 0.057 0.0353 0.0301 1 
BB-SGoF (k) 0.047 0.1246 0.2808 1 
BB-SGoF (k/2) 0.044 0.1239 0.2790 1 
BB-SGoF (2k) 0.044 0.1250 0.2821 1 
Auto BB-SGoF 0.019 0.1193 0.2679 1 

 

The situation with 33% of weak effects (μ=1, 
Tables 1, 3 and 5) reveals that SGoF-type strategies 
are not controlling FDR at any given level. For 
example, in the independent setting, original SGoF 
and benchmark BB-SGoF report a FDR of 12.6% 
and 12.5% respectively, two times and a half the 
nominal FDR for BH procedure. Results for the 
dependent setting are of the same order, although for 
strong correlation (ρ=0.8) these FDRs go down to 
10.9% and 8.5% respectively. However, the 
proportion of true effects detected by SGoF-type 
methods is between 5 and 9 times that of BH, the 
relative performance of SGoF getting better as 
correlation decreases. At the same time, one may say 
that BB-SGoF is not detecting ‘too many effects’ in 
the sense that, in at least 98.1% of the trials (worst 
situation), the number of declared effects is below 
the number of true effects with p-value below γ. It is 
not strange that this proportion is just 100% for BH 
since this method is rejecting only between 3% and 
4% of the existing effects. Interestingly, automatic 
BB-SGoF does not lose much power to respect to its 

Performance�of�Beta-Binomial�SGoF�Multitesting�Method�for�Dependent�Gene�Expression�Levels�-�A�Simulation�Study

95



 

optimal version based on the true number of blocks: 
its power is 6.4% smaller in the worse situation 
(ρ=0.8). 

Table 2: n=1000, ρ=0, k=10, μ =4 (see text). 

 Π0=0.67 
 FDR Power Cov 

SGoF 0.0001 0.8779 1 
BH 0.0333 1.0000 0 
BB-SGoF (k) 0.0001 0.8693 1 
BB-SGoF (k/2) 0.0001 0.8662 1 
BB-SGoF (2k) 0.0001 0.8717 1 
Auto BB-SGoF 0.0001 0.8533 1 

The case with 33% of strong effects (μ=4, Tables 
2, 4 and 6) allows to see that, in some instances, the 
FDR of SGoF-type methods may be very small 
compared to γ (the p-value threshold) or α (the 
FWER-controlling parameter under the complete 
null). Tables indicate that, for the simulated settings, 
the average proportion of false discoveries of 
benchmark BB-SGoF lies between 0.07/1000 and 
0.4/1000, being even smaller for its automatic 
version. The reason for this is that, with such strong 
effects, the non-true nulls report very small p-values, 
which are clearly separated from those of the true 
nulls. Still, automatic BB-SGoF is able to detect 
more than 80% of the existing effects. The power of 
BH procedure is larger than that, according to its 
higher FDR; indeed, this power is almost 100%. 
This situation may be regarded as non-optimal 
however, in the sense of the coverage; for example, 
in the case ρ=0.8 (Table 6), only for 17% of the 
1000 Monte Carlo trials the number of effects 
declared by BH was below the true number of 
effects with p-value smaller than 0.05, showing an 
anticonservative performance in this sense (this 
percentage was even smaller for the other correlation 
levels). Also importantly, as for the case with weak 
effects, the automatic choice of the number of blocks 
results in a small loss of power (smaller than 2.5% in 
this case). 

The number of blocks of dependent tests 
detected by automatic BB-SGoF was not always 
close to the true k (k=10). For example, under the 
complete null it was 18.1 (independent setting), 10.4 
(ρ=0.2), or 6.9 (ρ=0.8) on average, therefore being 
decreasing with an increasing correlation. 
Corresponding standard deviations were 16.7, 12.4, 
and 10.5, showing a large variability of the selected 
number of blocks along replicates. The average 
number of blocks detected was decreasing for an 
increasing proportion of effects and also for more 
distant alternatives (stronger effects). Whatever the 

case, one should keep in mind that the role of 
automatic BB-SGoF is not to perfectly estimate the 
number of existing blocks but rather to allow for 
error control in the multitesting procedure when the 
value of k is unknown. 

Table 3: n=1000, ρ=0.2, k=10, μ =1 (see text). 

 Π0=1 Π0=0.67 
 FDR FDR Power Cov 

SGoF 0.145 0.1277 0.2849 1 
BH 0.05 0.0302 0.0305 1 
BB-SGoF (k) 0.064 0.1238 0.2745 1 
BB-SGoF (k/2) 0.077 0.1238 0.2745 1 
BB-SGoF (2k) 0.092 0.1251 0.2785 1 
Auto BB-SGoF 0.042 0.1202 0.2634 1 

Table 4: n=1000, ρ=0.2, k=10, μ =4 (see text). 

 Π0=0.67 
 FDR Power Cov 

SGoF 0.0001 0.8783 1 
BH 0.0334 1 0 
BB-SGoF (k) 0.0001 0.8674 1 
BB-SGoF (k/2) 0.0001 0.8650 1 
BB-SGoF (2k) 0.0001 0.8707 1 
Auto BB-SGoF 0.0001 0.8503 1 

Table 5: n=1000, ρ=0.8, k=10, μ =1 (see text). 

 Π0=1 Π0=0.67 
 FDR FDR Power Cov 

SGoF 0.341 0.1088 0.2813 0.886 
BH 0.028 0.0263 0.0409 1 
BB-SGoF (k) 0.059 0.0847 0.2195 0.992 
BB-SGoF (k/2) 0.049 0.0857 0.2257 0.995 
BB-SGoF (2k) 0.118 0.0936 0.2434 0.981 
Auto BB-SGoF 0.024 0.0778 0.2054 0.999 

Table 6: n=1000, ρ=0.8, k=10, μ =4 (see text). 

 Π0=0.67 
 FDR Power Cov 

SGoF 0.0050 0.8708 0.91 
BH 0.0320 0.9999 0.17 
BB-SGoF (k) 0.0004 0.8258 0.995 
BB-SGoF (k/2) 0.0003 0.824 0.996 
BB-SGoF (2k) 0.0012 0.8458 0.982 
Auto BB-SGoF 0.0001 0.8053 1 

We end this section by mentioning that the 
simulations with n=500 tests or with k=20 blocks 
reported basically the same results as those provided 
in Tables 1 to 6. However, important differences 
were seen when considering a smaller number of 
effects (10% instead of 33%) or intermediate effects 
(μ=2) rather than weak (μ=1) or strong (μ=4) effects. 
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For example, with 10% of weak effects, the power 
of automatic BB-SGoF relative to BH was above 17 
under independence and above 15 with ρ=0.2, being 
also true that BB-SGoF showed a FDR more than 
twice its value with 33% of weak effects. On the 
other hand, with 33% of intermediate effects, BH 
and BB-SGoF procedures performed similarly in 
FDR and power. 

4 DISCUSSION 

In this work we have investigated through 
simulations the performance of BB-SGoF method. 
Rate of false discoveries (FDR), proportion of 
detected effects (power), and conservativeness with 
respect to the true number of effects with p-value 
smaller than the given threshold have been 
computed. One conclusion of our research is that 
BB-SGoF method may control for FWER in the 
weak sense even when the underlying model is not 
beta-binomial. BB-SGoF method is also robust with 
respect to miss-specification of the number of 
existing blocks, although it becomes too liberal 
when this parameter is overestimated. As a 
compromise, the automatic BB-SGoF procedure 
introduced in de Uña-Álvarez (2012) performs well, 
with only a small loss of power with respect to the 
benchmark version. Summaryzing, BB-SGoF is a 
correction of SGoF method with a suitable error 
control in the presence of dependent tests; its 
advantages over classical FDR-controlling strategies 
(e.g. the BH method) remain the same in the 
dependence scenario as for SGoF in the independent 
setting, these are: greater power in the case of large 
number of tests and small to moderate number of 
weak effects. In such cases application of BB-SGoF 
is recommended due to its compromise between 
FDR and power. 
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