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Abstract: The present study affords emotional differentiation in speech from the behaviour of the biomechanical 
stiffness estimates in voice, regarding dispersion and cyclicality. The Glottal Cyclic Parameters are derived 
from the vibrato correlates found in the Glottal Source reconstructed from the phonated parts of speech and 
have been shown to be good indices to neurologic disease detection and monitoring. In this paper the 
application of these parameters to the characterization of the emotional states affecting a speaker when 
expressing truth opposite to when they believe not saying the truth is explored. The study is based on the 
reconstruction of the vocal fold stiffness parameters and in the detection of possible deviations induced by 
emotional tremor and stress from a baseline. The method is validated using results from the analysis of a 
gender-balanced speaker’s database. Normative values for the different parameters estimated are given and 
used in contrastive studies of some cases presented to discussion. 

1 INTRODUCTION 

A challenging research field is to create artificial 
machines capable to react to emotions and leave the 
science fiction films behind. Human affective 
behaviour is multimodal and complex (Lewis et al., 
2008). Emotion expression has its reflex on the 
body, gesture and speech. Speech emotion detection 
has many potential applications, as video and 
computer games, talking toys, text/speech 
converters, language translators, speech forensics, 
customer centres, etc. Speech emotion detection may 
be the key point to react in a fast and efficient 
manner in some situations, for instance, a phone call 
to the police station to report an emergency or an 
abuse, to a call centre to ask for some information or 
to put a complaint, or to an urgent medical care 
service asking for help, etc. The steps involved to 
detect emotions are estimating the basic parameters 
to characterize emotions and then find emotional 
patterns related. In the areas of body and gesture 
emotion expression to characterize the base neutral 
state is easy and to characterize other emotional 
states though the visible muscle tension changes 
associating muscle action patterns to emotion states 
may be straight forward. Speech production is a very 
complex action influenced by a combination of 

neurological, physiological, psychological, social 
and cultural aspects. The emotions must be inferred 
from the information contained in sound waves 
produced by phonatory and articulatory neuromotor 
actions. There are many characteristics that can be 
parameterized from the sound signal, but there is not 
an agreement among researchers nor proven 
evidence about which of them clearly define or 
profile emotions. This is the key point to determine a 
precise specification of speech based emotional state 
in natural, posed or induced vocal expressions. The 
presence of vocal expression patterns in particular 
emotional situations should also be taken into 
consideration. Besides, oral communication in 
natural language is rather imprecise, which adds 
more difficulties to systematically associate 
emotional states to speech. Classical literature 
focuses research on the analysis  of  phonetic and 
prosodic features of speech. Some of those 
characteristics are: fundamental frequency or pitch 
(F0) which represents the vibration rate of the vocal 
folds or the duration of the glottal cycles, first (F1) 
and second (F2) formant frequencies, and amplitude 
or intensity, as the amount of vibration in a sound 
pressure wave, roughly used as synonymous with 
the degree of softness or loudness, volume or vocal 
power, linear predition coefficientes (LPC), Mel-
Frequency Cepstral coefficents (MFCC), zero 
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crossing rate, duration of a sentence, speech rate, 
silence duration, etc (Hasrul et al., 2012). More 
recently features related with voice quality have 
been also taken in consideration (Airas et al., 2006), 
(Moore et al., 2008). The present approach is based 
on the idea that emotional states and neurologic 
diseases alter or difficult the precise action of 
neuromotor activity induced by the brain and 
produce correlates in voice and speech. It is known 
that voice could help in monitoring the neurologic 
disease (Gómez et al., 2011), and this fact could also 
help in the characterization of emotional states. An 
early work was that of Gamboa et al. (1997) using 
distortion parameters as jitter, shimmer, and HNR to 
monitor dopaminergic drug dosing in Parkinson 
Disease treatment. For a review of other interesting 
approaches see Tsanas et al. (2009). Through the 
present paper a method to track emotional correlates 
in voice is introduced. The main idea is to obtain 
biomechanical marks from the glottal source as 
vocal fold stiffness (on body and cover) to estimate 
dispersion and cyclicality patterns (non-voluntary 
tremor). Through the present paper the main 
assumptions are introduced, an inverse model is 
presented and estimates from a validation database 
are given. Example study cases are compared 
against results from the validation database. 

2 VOCAL FOLD PARAMETERS 

The vibration of the Vocal Folds is driven by 
transglottal pressure and modulated by the 
interaction with resulting glottal flow (deVries et al., 
2002). In a phonation cycle the neuromotor stimulus 
of the trans and oblique cricoarytenoidal muscles 
brings both Vocal Folds together producing a 
closure of the Larynx. Pressure build-up forces the 
Vocal Folds to come apart against viscoelastic 
muscular forces. The interaction between the glottal 
flow and the Vocal Folds is a fluid-structure 
problem, which requires solutions in 3D and time 
domain. Nevertheless for the purpose of obtaining 
first-order estimates simpler models may be used 
reducing the computational complexity of the 
problem. In this sense the Vocal Folds may be 
modelled as biomechanical second-order multiple-
mass systems as far as small signal vibration is 
concerned (Berry, 2001) as the one presented in 
Figure 1, explaining the response to external driving 
forces (Švec et al., 2000). The behavior of such a 
system show resonance peaks resulting from body-
cover mass-spring interactions (Rbl,r, Mbl,r, Kbl,r, Rcl,r, 
Mcl,r, Kcl,r, b: body, c: cover, l: left, r: right) and in-

between valleys induced by inter-elasticity Kbcl,r. 

 

Figure 1: Electromechanical equivalent of the small signal 
two-mass vocal fold model (body and cover). 

The estimation of the electromechanical 
equivalents requires the solution of an inverse 
problem given the power spectral density of the 
glottal source. This signal cannot be considered a 
small-signal vibration, but assuming that the 
Average Acoustic Wave sa(n) (Titze, 1994) is 
removed from the glottal source sg(n), the residual 
sr(t) could be seen as a correlate of the Vocal Fold 
small-signal vibration 
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Defining its power spectral density as 
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and relating it mainly with the Vocal Fold Cover 
vibration, a cost function could be introduced to 
express the difference between the power spectral 
density and the transfer function of the 
electromechanical equivalent of the upper and lower 
branches of 0, given as T(ω) 
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where μ, σ and ξ stand for the estimates of each 
respective massive, viscous and elastic parameter of 
the body and cover biomechanics (Rbl,r, Mbl,r, Kbl,r, 
Rcl,r, Mcl,r, Kcl,r)  Different matching functionals may 
be proposed for spectral fitting in 0. For instance 
assuming a single second-order functional as 
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relating the cover mass velocity Vc with the applied 
force Fc in the frequency domain where Yc is a 
mechanical trans-admittance, the process of 
optimization would imply the simultaneous fulfilling 
of the following conditions for the cover parameters 
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Solutions for these conditions may be found either 
by forcing the derivatives of the functional L to zero 
deriving expressions for the three fitting parameters, 
or by adaptive gradient methods. The solution 
adopted in the present approach is based on fitting 
the glottal source power spectral density in Figure 2 
(full line) by the transfer function (circles) given by 
(4) against the Average Acoustic Wave (triangles, 
see Gómez et al., 2005). 

3 CYCLICALITY ESTIMATION 

The working hypothesis would then be that 
pathology-induced tremor may leave correlates in 
different biomechanical parameters. Specifically, it 
is hypothesized that the influence of the neurological 
disease has to leave a mark in the tension ξc on the 
vocal folds as a cyclic pattern. 

 

Figure 2: Matching the glottal source power spectral 
density (thin blue line) shown against the Average 
Acoustic Wave power spectral density (triangles) and the 
approximation function (circles). 

The burning question now is how to estimate 
cyclic behaviour on the observed tension. A possible 
approach could be AR modelling by adaptive 
inverse filtering (Deller et al., 1993) as shown in 
Figure 3. The Average Acoustic Wave may be seen 
as a long-range first order vibration giving the 
average movement of a single spring-mass system 
with the same fundamental period. The stiffness 
estimate at phonation cycle m being ξcm its AR 
model would be described as 
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where a={ai} are the model coefficients. The 
estimation of these coefficients is carried out by an 

adaptive lattice filter (Deller et al., 1993) defined as 
an operator Φkn{·} producing an output error εK(m) 
minimized in terms of LMS on a sliding time 
window WK, along the phonation cycle m, rendering 
a set of sub-optimal models from a non-stationary 
input series ξcm with an adaptation factor β 
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Either the pivoting coefficients cKm or those of the 
equivalent transversal model aKm may be used as 
cyclicality descriptors. Both sets of coefficients are 
related by the Levinson-Durbin iteration 
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where ã is the order-reversal operation on vector a 
(Deller et al., 1993). In the present study pivoting 
coefficients will be preferred, as they are pre-
normalized to (-1, 1), which allows easier result 
contrasting. In the present case the three lowest-
order pivoting coefficients {c1m, c2m, c3m} will be 
used as descriptors of the stiffness cyclic pattern. 
Examples of the estimation of these parameters from 
0.2 s of vowel /e/ are given in Figure 6 to Figure 9. 
 

 

Figure 3: Cyclic parameter estimation chain. Glottal 
source sg(n) is derived from voiced speech sv(n). The 
power spectral density of the residual Sr(ω) after removing 
the Average Acoustic Wave is matched to obtain the fold 
tension ξcm at each phonation cycle m. Results from some 
hundred millisecond intervals may be used to estimate the 
cyclic parameters {ckm}. 

4 RESULTS AND DISCUSSION 

4.1 Database Validation 

The strategy followed in this study for validation 
purposes assumes that a priori knowledge on the 
distribution of the cyclic parameters is not available. 

A more controversial hypothesis would be the 
extension of this same assumption to dysphonic 
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speakers affected by organic pathologies with 
negative neurological etiology. To create the 
reference baseline a database of recordings from 
normal and organic-dysphonic speakers was 
recruited with the following distribution: 50 normal 
males, 50 normal females, 50 organic-dysphonic 
males, and 50 organic-dysphonic females. The 
records consisted in sustained utterances of vowel /a/ 
longer than 2 s long. Glottal Source correlates were 
obtained from the voice segments, and 
biomechanical stiffness was used to estimate the 
cyclic coefficients c1, c2 and c3 as explained before. 
The histograms of these three parameters are given 
in Figure 4 (males) and Figure 5 (females). 
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Figure 4: Distributions of the first three cyclicality 
parameters for male subjects. 

The overlapping between the normophonic and 
dysphonic distributions for males and females shows 
that hypothesizing a similar behaviour for these two 

distributions regarding emotion and neural 
pathology neutral conditions  is well founded. 
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Figure 5: Distributions of the first three cyclicality 
parameters for female subjects. 

4.2 Study Cases 

To exemplify the capabilities of this methodology to 
characterize non-neutral emotional states several 
phenomenological study cases are presented. These 
correspond to cyclicality parameters estimated on a 
male and a female speaker who are being recorded 
under subtle emotional conditions. These are 
aroused by asking specific opinions to the speaker 
on sensitive social issues regarding economy, cost of 
living, unemployment, etc. Once a first set of 
statements is produced the speaker is asked to 
convince the interviewer that his/her opinion is just 
the opposite of the one expressed before, without 
any other requirement. The first set of statements 
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shows more spontaneity, whereas the second set of 
statements is produced under notorious hesitation, 
and the speaker introduces more pauses and larger 
number of fillers, as this second opinion has to be 
somehow "fabricated". The fillers consist in the 
emission of long vowels, mainly /ah/, /uh/, /eh/, 
which have been found very useful for the analysis 
of the stress manifested in the stiffness of the body 
fold and cover. The frequency with which fillers as 
/eh/ are to be found in Spanish is larger than /ah/. 
Therefore the analysis is concentrated on /eh/ rather 
than /ah/. The database has been validated with /ah/, 
but as the articulation patterns are removed during 
vocal tract inversion both types of emissions may be 
considered compatible as far as stiffness estimates 
are concerned. Therefore the four study cases 
presented shown comparisons of emissions of /eh/ as 
given in figure 6 to Figure 9.  They show the 
analysis of a filler /eh/ from a male and female 
speaker expressing spontaneous (MSS/FSS) and 
opposite-to-spontaneous (MSO/FSO) opinions. The 
evolution of vocal fold body stiffness in a 0.2 s 
segment (red) and the same trace low pass filtered 
and unbiased (blue) are given in the left column 
(top). The statistical distribution box plot of the 
unbiased vocal fold body stiffness is given in the 
upper right. The evolution of the three cyclicality 
estimates and their statistical distributions (medians 
given in figures) are in the bottom left and right 
templates, respectively. 

The results given in the above four figures are 
also summarized in Table 1. Several facts have to be 
pinpointed from the figures corresponding to MSS 
and MSO. The first one is that the body stiffness 
seems to be less stable and shows a wider decay in 
the spontaneous utterance in the male case. This can 
also be confirmed by the standard deviation for this 
parameter (σKb) in Table 1. This could be 
associated with a less stressed phonation condition 
when the speaker is spontaneous than when has to 
"fabricate" a fictitious opinion, although the mean 
tension of the vocal fold (μKb) remains almost the 
same. The situation is not the same in the female 
case studied as far as the body stiffness is concerned, 
but if the cover stiffness is examined the larger 
dispersion in σKc for MSS and FSS (spontaneous) 
compared with the non-spontaneous MSO and FSO 
is evident for both genders. The comparison of the 
cyclic parameters in the spontaneous vs non-
spontaneous is that the first one (c1) shows a decay 
towards -1 that is almost twice larger in the female (-
0.8 to -0.92) than in the male case (-0.8 to -0.86), 
whereas c2 moves down as well in both cases (-0.01 
to -0.18 for the male speaker, and 0.1 to -0.2 for the 

female speaker). The third cyclicality parameter 
does not show such a clear orientation, although is 
supposed to be larger in both cases for the non-
spontaneous behaviour. It is interesting to comment 
that the first cyclicality coefficient tendency towards 
the lower limit is also present in speakers affected by 
certain neurological diseases when tremor is present 
(spasmodic dysphonia, Parkinson Disease, see 
Gomez et al. 2011). The fact that cover stiffness 
dispersion shows to be larger in spontaneous 
phonation could be interpreted as that the speaker 
leaves the vocal folds go looser under less stressed 
conditions (spontaneous phonation) than under self-
controlled and more stressed a situation (non-
spontaneous phonation). A second observation is 
that the average stiffness is not very much altered 
from one situation to the other, but its dispersion is 
clearly different (lower under non-spontaneous 
conditions), and that the first two cyclicality 
parameters show also a clear difference between 
both conditions. The reasons for these variations to 
be larger in the female case need not be necessarily 
related to gender, but possibly to the specific 
idiopathic behaviour of the speaker, although this 
issue is worth to be assessed with a larger database 
of spontaneous vs. non-spontaneous utterances 
produced by both gender speakers. 

5 CONCLUSIONS 

A first observation is that the chain model from 
voice to vocal fold tension estimation and to the 
cyclicality parameters of vocal fold stiffness 
normophonic and organic pathology-affected 
speakers on neutral emotional conditions seems to 
behave accordingly with the main assumptions 
formulated. The statistical distributions for male and 
female speakers not affected by neurological 
diseases show certain coherence, and are defined 
enough to allow contrastive studies to be carried out. 

From this observation it may be concluded also 
that the estimation methodology both for the glottal 
source, its biomechanical correlates, and the cyclical 
parameters seems to be robust enough to extend the 
study to larger databases of speakers showing 
emotionally distorted phonation. Coming to the 
detection of emotions in voice it seems that the 
contrastive study on spontaneous to non-
spontaneous speech may offer differential marks in 
the dispersion of body, and specially cover fold 
stiffness, and in the cyclicality parameters derived 
from body stiffness. Obviously the study is far from 
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Table 1: Vocal Fold Stiffness and Cyclicality Coefficients. From left to right: Start and End points of fillers, means of body 
and cover stiffness, standard deviations of body and cover stiffness, and three cyclicity parameters. 

Segment Start (s) End (s) μKb (g.s-1) μKc (g.s-1) σKb σKc c1 c2 c3 
MSS 15.21 15.41 10,916 8,230 941 1529 -0.80 -0.01 0.16 
MSO 3.40 3.60 10,599 7,267 213 321 -0.86 -0.18 0.18 
FSS 12.40 12.60 17,661 9,432 621 2096 -0.80 0.10 0.01 
FSO 7.80 8.00 17,473 9,917 758 997 -0.92 -0.20 0.22 

 

 
Figure 6: Analysis of a filler /eh/ from a male speaker expressing spontaneous opinion (MSS). 

 

Figure 7: Analysis of a filler /eh/ from a male speaker expressing opposite-to-spontaneous opinion (MSO). 
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Figure 8: Analysis of a filler /eh/ from a female speaker, spontaneous opinion (FSS). 

 

Figure 9: Analysis of a filler /eh/ from a female speaker, non-spontaneous opinion (FSO). 

being complete and needs to be extended from this 
type of emotion detection to other scenarios where a 
wider set of emotions is to be considered. These 
results foresee the applicability of the methodology 
to open new ways for emotional detection and 

monitoring. 
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