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Abstract: We introduce QAPI (quantified ATL with probabilism and incomplete information), which extends epistemic
and probabilistic ATL with a flexible mechanism to reason about strategies in the object language, allowing
very flexible treatment of the behavior of the “counter-coalition”. QAPI can express complex strategic proper-
ties such as equilibria. We show how related logics can be expressed in QAPI, provide bisimulation relations,
and study the issues arising from the interplay between quantifiers and both epistemic and temporal operators.

1 INTRODUCTION often useful, and is e.g., hard-coded into the strategy
definition in (Schobbens, 2004). In addition, QAPI

ATL (Alternating-time temporal logic) (Alur et al., features probabilistic reasoning, i.e., can express that

2002) is a logic to reason about strategic properties of events occur with a certain probability bound.

games. Its strategy operatgA)) ¢ expresses “there We illustrate QAPI's advantages with an impor-

is a strategy for coalitiorA to achieved.” We in- tant example. When evaluatingA)) ¢ in ATL, the

troduce QAPI (quantified ATL with probabilism and behavior of players not iA (we denote this “counter-

incomplete information), a powerful epistemic and coalition” with A) is universally quantifiedA must

probabilistic extension of ATL with quantification of ~succeed for every possible behaviorAf HenceA

and explicit reasoning about strategies. QAPI's key has a strategy fap only if such a strategy works even

features are: in the worst-case setting where
o Strategy Variablesllow explicit reasoning about ~ ® A's only goal is to stopA from reaching the goal,
strategies in the object language, o the players imA knowA's goal,
e A generalized Strategy Operatdiexibly binds e A's actions may depend on unknown information.

the behavior of some coalitions to strategies,  Thege issues are particularly relevant when play-
while the remaining players exhibit standard ATL o1 have incomplete information about the game.

“worst-case” behavior, Variants of ATL for this case were suggested in
¢ Quantificationof strategy variables expresses de- e.g., (Jamroga, 2004; Schobbens, 2004; Jamroga and
pendence between strategies. van der Hoek, 2004; Herzig and Troquard, 2006;

Schnoor, 2010b). These logics restrict agents to
strategies that can be implemented with the available
information, but still require them to be successful
for every possible behavior of the counter-coalition.
Hence the above limitations still apply—for example,
“A can achieve against every strategy éfthat uses
only information available té&\’ cannot be expressed.

Existential quantification of strategies already ap-
pears as part of thé.))-operator of ATL, however
QAPI makes this more explicit and allows separat-
ing thequantificationof a strategy and theeasoning
about it in the formulas. To this end, the logic can
reason directly about the effect of a coalition follow-

ing a strategy and express statements as “if coalition L : ; .
A follows strategys, thend is true.” QAPI's direct reasoning about strategies provides

QAPI properly includes e.g., ATL strategy a flexible way to specify the behavior of all play-

logic (Chatterjee et al., 2007), ATLES (Walther et al ers, and in particular addresses the above-mentioned
2007), (M)IATL (Agotﬁés ot aI’ 2007), ATEL-Rand "' shortcomings with a fine-grained specification of the
ATOL,(Jamroga and van der Hoek 2’004) QAPI can behavior of the “counter-coalitionA. For example,
reason about equilibria and express that a coalitiontheiOIIOWIng behaviors oA can be specified: _
knowsa strategy to be successful. This requirementis e A continues a strategy for their own goal—i.A.,
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is unaware of (or not interested in) whatoes, pects and quantification reveals some surprising sub-
A follows a strategy tailor-made to counteract the tleties, which we discuss in Section 4, and to the best
goald, but that can be implemented with informa- of our knowledge, there are no results on bisimula-

tion available toA—hereA reacts toA with “real- tions for strategy logic. . o
istic” capabilities, i.e., strategies based on infor- ~ Relaxations of ATLs universal quantification
mation actually available té, over the counter-coalition’s behavior were studied

A plays an arbitrary sequence of actions, which N (Agotnes et al., 2007; Walther et al., 2007) for
does not have to correspond to an implementable the complete-information case. In (Schnoor, 2012),
strategy—this is the pessimistic view of the logics QAP! IS used to specify strategic and epistemic prop-

mentioned aboveA must be successful against erties of cryptographic protocols, the bisimulation re-

every possible behavior of the playersAn sults from the present paper are used to obtain a pro-
] ) ] tocol verification algorithm.
As we will show, detailed reasoning about the All proofs can be found in the technical re-

counter-coalition is only one advantage of QAPI. Our port (Schnoor, 20104a).
results are as follows:

1. We prove that QAPI has a natural notion of bisim-
ulation which is more widely applicable than the i
one in (Schnoor, 2010b), even though QAPI is 2 Syntax and Sefantics of QAPI
considerably more expressive. In particular, our
definition can establish strategic and epistemic 2-1 Concurrent Game Structures
equivalence between finite and infinite structures. N .

2. We discuss the effects of combining quantifica- /& use the definition of concurrent game_struc-
tion, epistemic, and temporal operators in detail. Ureés from (Schnoor, 2010Db), ‘which extends the
The combination of these operators can lead to ©"€ from (Alur et al., 2002) with .prObf.ibIhStIC (see
unnatural situations, which motivate the restric- /S0 (Chen and Lu, 2007)) and epistemic aspects (see
tion of QAPI to infix quantification. also (Jamroga and van der Hoek, 2004)):

3. We prove complexity and decidability results for Definition 1. A concurrent game structure (CGSh
model checking QAPI. In the memoryless case tuplec = (Z,Q,P,LA,d,eq), where

QAPI's added expressiveness compared to ATL o 5 andP are finite sets oplayersandpropositional
comes without significant cost: The complexity variables Q is a (finite or infinite) set otates
ranges from PSPACE to 3EXPTIME for games ¢ - p s Qs apropositional assignment

that are deterministic or probabilistic. Hence the ¢ A is a move functionsuch thatA(g,a) is the set
deterministic case matches the known PSPACE- 4 movesavailable at state & Qto ,player acs.

completeness for ATLwith memoryless strate- For AC % and ge Q, an(A, g)-moveis a function
gies (Schobbens, 2004). As expected, the prob- . g ch that () € A(g,a) fér allacA.

lem is undecidable in the perfect-recall case. e 3 is a probabilistic transition functiomvhich for

Related Work We only mention the most closely each state g an(Z, q)-move c, returns a discrete
related work (in addition to the papers mentioned probability distributiond(q,c) on Q (the state ob-
above) from the rich literature. QAPI is an exten- tained when in g, all players perform their move
sion of the ATL*-semantics introduced in (Schnoor, as specified by c),

2010b), and utilizes the notion of a strategy choice e eq is an information functioneq: {1,...,n} x
introduced there. In this paper, we extend the seman- X — ?2(Qx Q), where ne N and for each ie
tics and the results of (Schnoor, 2010b) by the use of  {1,...,n} and a€ %, eq(i,a) is an equivalence
strategy variables, quantification, and explicit strategy relation on Q. We also call eachd {1,...,n} a
assignment, which lead to a much richer language.  degree of information

In particular, the §emantics in (Schnoor, 201Qb) does Moves are merely “names for actions” and only
not handle negation of the strategy operator in a sat-paye meaning in combination with the transition func-
isfactory way in the incomplete-information setting. 44 5. A subsetA C 5 is a coalition of c. We
Further, our notion of a bisimulafcion is much more leave out “of c” when ¢ is clear from the context,
general than the one suggested in (Schnoor, 2010b), it set brackets for singletons, etc. The coalition
QAPI's approach of allowing first-order like quan- 5\ Ais denoted witfA. We write PK(8(q,c) = ) for
tification of strategies is very similar to the treat- ’

ment of strategies in strategy logic (Chatterjee et al., 1A probability distribution Pr orQ is discrete, if there is
2007). However, the combination of epistemic as- a countable sef C Q such thaty ;o Pr(q) = 1.
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(8(g,c)) (d'), i.e., conside®(q,c) as a random vari-
able onQ. The functioneq expresses incomplete in-
formation: It specifies pairs of states that a player
cannot distinguish. By specifying several relations
eq(1,a),...,eq(n,a) for each player, we can specify
how much information a player may use to reach a
certain goal. This is useful e.g., in security defini-
tions (Cortier et al., 2007; Schnoor, 2012).

¢ is deterministidf all distributionsd(q, ) assign
1 to one state and 0 to all others,hascomplete in-
formationif eq(i,a) is always the equality relation.

2.2 Strategies, Strategy Choices,
and Formulas

The core operator of QAPI is thetrategy operatar
((A:S1, B: S))7% ¢ expresses “if coalitiomA fol-
lows S andB follows S, where both coalitions base
their decisions only on information available to them
in information degree, the run of the game satisfies
¢ with probability > a, no matter what players from
AUB do.” Here, S and S are variables fostrat-
egy choicesvhich generalize strategies (see below).
While similar to the ATL-operatof(.)), the strategy
operator is much more powerful: It allows to flexibly
find a strategy to a coalition. This allows, for exam-
ple, to model that a coalitiocommitgo a strategy (in
ATL*, a strategy is revoked when tg))-operator is
nested) and much more (see examples below).

Definition 2. Let ¢ be a CGS with n degrees of in-
formation. Then the set aftrategy formulas for is
defined as follows:

e A propositional variable ot is a state formula,

e conjunctions and negations of state (path) formu-
las are state (path) formulas,

e every state formula is a path formula,

o if A1, ..., Apare coalitions,1<i<n,0<a<
1, and « is one of<,<,>,>, and Y is a path
formula, andS is an A-strategy choice variable
for each i, then((A;: Sy,..., An:Sm) *“wis a
state formula,

e if Ais a coalition,1 <i < n, | is a state formula,
and ke {D,E,C} thenKA‘fqu is a state formula,

o If 1 and ¢, are path formulas, theiXd1, Po1,
X101, andd; U, are path formulas.

The valued, E, andC indicate different notions
of knowledge, namelylistributed knowledgeevery-
body knowsandcommon knowledgeWe use stan-
dard abbreviations liké vV P = —(=$p A =), O¢ =
trueUp, andOp = -0-0. A ({.))-formula is one

ok

ok

Figure 1: Strategy choices.

istic CGS we omit the probability bound a (and
understand it to be read as1). Quantified strategy
formulas are strategy formulas in which the appearing
strategy choice variables are quantified:

Definition 3. Let ¢ be a CGS, leth be a strategy
formula for ¢ such that every strategy choice variable
appearing ing is one ofS, ...,S,. Then

VS$13ASVSs. .. AShd
is aquantified strategy formula far.

Requiring a strict/3. . . -alternation is without loss
of generality and can be obtained via dummy vari-
ables. On the other hand, allowing quantification only
in the prefix is a deliberate restriction of QAPI, the
reasons for which we discuss in detail in Section 4.

Definition 4. For a player a, an astrategyin a CGS
¢ =(Z,Q,P, A, eq) is a function g with s,(q) €
A(q,a) for each ge Q. For an information degree i,
Sa is i-uniformif g ~eq;(a) g2 implies $(01) = Sa(q2)-
For A C %, an Astrategyis a family (Sa)aca, Where
each g is an a-strategy.

Our strategies armemorylessA move only de-
pends on the current state, not on the history of the
game. With incomplete information, the question
how players caidentifysuitable strategies is relevant.
Consider the CGS in Figure 1. The players aesnd
b, the game starts igg. The first move by controls
whether the next state & or g}. Forx € {0,1}, o
is always followed byo. In o, the move0 leads to
a state satisfyingk iff x = 0; movel is successful iff
x = 1. Playera cannot distinguisig andg3. We ask
whether he has a strategy leadingotothat is suc-
cessful started in both? andg}. If a can only use
strategies, he must play the same movqgrand in
3, and thus fails in one of them. However,aifcan

whose outmost operator is the strategy operator. Indecideon a strategy and remember this decision, the

a CGS with only one degree of information, we omit
thei subscript of the strategy operator; in a determin-

16
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Strategy choices (Schnoor, 2010b) formalize how a (A, q)-move for eacht € N and eachg € Q. This
a player chooses a strategy, and distinguish betweermodels an arbitrary reaction to the outcomes ofan
states where a strategyigentifiedand where it igx- strategy: In thd-th step of a gameA performs the
ecuted In statqu orgi, playera uses his information  mover (i,q), if the current state ig.
to choose the strategy that he follows from then on. When a coalitiorA follows the strategga, and the
When using only strategies, the knowledge has to be behavior ofA is defined by the responsethe moves
present at the time gferforminga move. Hence strat-  of all players are fixed; the game is a Markov pro-
egy choices give players additional capabilities over cess. This leads to the following definition of “suc-
the pure memoryless setting, by allowing to remem- cess probability.” Apathin a CGSc is a sequence
ber decisions In contrast to theperfect recallcase, A =A[O]A[1]... of states ofc.
where players remember the entire run of a game
there is no significant computational price, whereas
perfect recall makes the model checking problem un-
decidable (cp. Section 6).

' Definition 6. Let ¢ be a CGS, letgbe an A-strategy,
let r be a response to A. For a set M of paths oger
and a state ¢ Q, Pr(q— M | sp+r) is the proba-
bility that in the Markov process resulting from sa,

Definition 5. A strategy choicéor a coalition A in a and r with initial state q, the resulting path is in M.

%?Sz;c:ziezAQ’P;gAég&eﬁgz ;?i;t:gﬁ:gf ;th tg?t A key feature of QAPI is the flexible binding of
e x o &G, strategies to coalitions, which is done using the strat-

Itf] ::SI(_:EIOK)“ j_ss(te;a(;jgg)lm and if g ~eq(a) G2, egy operator. As a technical tool to resolve possi-
T ingi' 8 ble ambiguities, we introduce a “join” operation on

In the definition of a strategy choice, syntax and strategy choices: If the coalitionfs, ..., A, follow

semantics meet, since one input to a strategy choicestrategy choiceSy, ..., Sn, the resulting “joint strat-

is the goal a coalition is supposed to achieve—such aegy choice” forAL U+ UAniSS10---0S,. Thisis a

goalis best specified with a formula. The formulaalso “union” of the S; with a tie-breaking rule for players

specifies the coalition working together to achieve the appearing in several of the coalitions: These always

goal. For a coalitior, and a strategy choicefor A, follow the “left-most” applicable strategy choice. We

the strategy chosen férby S in a stateq to reach the  define the (associative) operatoas follows:

goal ¢ is the A-strategy(sa),.a With sa = S(a,q,9)

for eacha. We denote this strategy with(A,q,¢).

Strategy choices model thkecisionof a single player $1055(a,0,0) = Si(a,q,¢), ifaehA,

to use a certain strategy. For coalitions, they model ~~*">2 4 S2(a,0,9), ifacAx\A;

strategies agreed upon before the game for possible

goals. This allows their members to predict the each  This definition ensures that if a coalitidq U- - - U

other’s behavior without in-game communication. As A, is instructed to follow the strategy choiSgo---o

mentioned above, the crucial point is that strategy S, then evenify NA; # 0, for each agent the strategy

choices distinguish between states where a strategychoice to follow is well-defined.

is identifiedand where it iexecutedIn stateq? or g}

of the above example, playguses his informationto 2.3 Evaluating Formulas

choose a strategy which he then follows. When using

only strategies, the knowledge has to be presentat the, the same manner as the syntax, we also define

time of playinga move. A strategy choice hence al- - apys semantics in two stages: We first handle strat-

lows players to “remember” previous decisions. For oy tormulas, where instantiations for the appearing

coalitions, it models prior agreement helpful in €.9., gyateqy choice variables are given. This naturally

coordination games. _ , leads to the semantics definition for quantified for-
The strategy operatoibinds the behavior of the 135 Our semantics is very natural: Propositional

players in the appearing coalitions to the strategies  ariaples and operators are handled as usual, tempo-

specified by the assigned strategy choices (see below) | gperators behave as in linear-time temporal logic,

The remaining players (the “counter-coalition”) are and (A1 Su,..., An: Sn)) "% W expresses that when

treated as “free agents” in QAPI: Every possible be- coalitionsA1: ___’, A follow the strategy choices;S

havior of these players is taken into account. Such a ., S with information degreé available, the for-

behavior may not even follow any strategy, for exam- | js satisfied with probability> a. The know-

ple they may perform different moves when encoun- edge operatox models group knowledge, see below.

tering the same state twice during the game. Thisis ~

formalized as aesponsecp. (Schnoor, 2010b)) to a  Definition 7. Letc = (Z,Q,P, 1A, ,eq) be a CGS,

coalition A, which is a functiorr such thatr(t,q) is let S =(S1,...,Sn) be asequence of strategy choices

17
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instantiating the strategy choice variableS,, ..., in ¢ atq, writtenc,q = W, if for each i€ {2,4,...n},
Sh. Letd be a state formula, leys, Y2 be path for- there is a functionjssuch that for all strategy choices
mulas, let\ be a path over Q, let& N. We define S1, S3, ..., Sn_1, If S is defined as;$S4,...,Si—1)

for even i, therc,(S1,...,Sn), 0 = ¢.

Constantstrategy choices (which only depend on
the player, not on the state or the formula) are essen-

C,§> g piffge n(p) for pe P,
conjunctlon and negaﬂon are handled as usual,

* (A, )’i Foiffc,S,Alt = ¢ tially strategies. We introduce quantifiefs and V.
° (At ),i = Xy iff (\t+1),'S = g, quantifying over constant strategy choices.
o (A, ), S E Py iff there is some’t<t and
(At ,§> =y, 2.4 MQAPI
= T -
* l(lJ 0,5 EXTifft > 1and(At-1),S = MQAPI (Memory-enabled QAPI), is QAPI wither-
Lo fect recall The semantics can be defined in the
()\,t),g = WUy iffthereis some -t suchthat  gyraight-forward way by encoding history in the states
(A0), S Egz2and(A, J)7§ ':Eil forallt <j<i, of a system, see, e.g.,(Schnoor, 2010b).
e If k € {D,E,C}, then ¢,S,q %0 iff
5 :
¢, S, for all g’ € Q with g~X . ¢/ (see be-
i ),q =0 q qai 9 ( 3 Examples
= :
o ¢, S.afF (AL 1Sy, Aig: Si))* W iff for

3.1 Restricted Adversaries

1
SV EERPUET B LAMNID) WTTEEC The following expressesA‘can achievep against ev-

Pr (q — {7\ |(A0),S llJl} | ery uniform strategy oA:”
Siy 0+ ++0 Sip (A U+~ UAIR, G, 01) +1) <. ISV ((A:S1, A1 Sp)), 0.
The relatlonsva,, ,E,, and ~§; referenced in This is weaker thadS; ((A: S1)); ¢: Inthe latter,

Definition 7 represent different possibilities to model A is not restricted to any strategy at all, while in the
group knowledge. For a coalitiohand an informa-  former,A has to follow a uniform strategy.
tion degrea, they are defined as follows:

o ~Ri=Nacaeq(i,a) expressedlistributed knowl- 3.2 Sub-coalitions Changing Strategy

edge K,Eiq) is true if  can be deduced from the
combined knowledge of every memberf{with
respect to information degrée

Often, when a coalitio®' C A changes the strategy,
they rely onA\ A’ to continue the current one. As-
sume thatA works together to reach a state where
o ~%i= Uacaeq(i,a) models everybody knows A’ C Ahas strategies fay andds, if players in A\ A
K50 is true if every agent irA on his own has  continue their earlier strategyWe express this as
enough information to deduce thfatholds (with FeSaTSy ((A:SA))1 0 ( ((A:Sw, A:Sa)); 001

respect to information degrée A (AN Sy, A:Sa)), 0b2).
o ~%; is the reflexive, transitive closure off;. This expresses tha uses afixed strategyand

This modelsommon knowledgex ¢ expresses ~ does not change behavior depending on vyheﬂkﬁer
that (inA, with information degreé), everybody  attempts to achiev: or ¢». In particularA\ A’ does

knows thatq) is true, and everybody knows that not need to know which of these goaﬂéattempts to
everybody knows that is true, .. ., etc. achieve. We use the same strategy choicepfoand

¢ to requireA’ to identify the correct strategy with
These concepts have proven useful to express theha available information.

knowledge of a group. See (Halpern and Moses,

1990) for detailed discussion. 3.3 Knowing whether a Strategy is
For quantified formulas, we define: Successful

Definition 8. Let ¢ be a CGS, lety =

V§13SVS;... IS¢ be a quantified strategy for-  The following expresses “there is @astrategy such

mula forc, let q be a state of . Theny is satisfied  that there is n@-strategy such that the coaliti@can
2le., if S is an A-strategy choice variable for some know that its application successfully achieges

coalitionA, thenS; is a strategy choice fok. 3eSAVeSe—% © ((A:Sa, B:Sg))1 0.

18



This is very different from expressing thathas
a strategy preventing, i.e.,3Sa ((A: Sa)); ¢, since
(i) There may be a successful strategy Byrbut not
enough information fo€ to determine that it is suc-
cessful, (ii) the goap may still be reachable B does
not follow a (uniform) strategy.

3.4 Winning Secure Equilibria (WSE)

If player a (b) has goalp, (¢p), @ WSE (Chatterjee
et al., 2006) is a pair of strategi¢s,,S) such that
both goals are achieved wharandb play s; ands,
and ifb plays such thap, is not reached anymore, but
a still follows s,, thenb's goaly, is also not satisfied
anymore (same for playet). QAPI can express this
as follows: Both goals are reachedsf, &) is played,

and neither player can reach his goal without reaching

that of the other player as well, if the latter follows the
WSE strategy.

JcSaTcS
A
7A\

((a:Sa, b:Sg)); (dai db)
((a:Sa))1 (0 — da)
((b:Sg))1 (da—9p).

3.5 Expressing ATEL-R" and ATOL

ATOL (Jamroga and van der Hoek, 2004) requires
identifying strategies with the agent's knowledge.
ATOL's key operator is defined as follows (right-hand
side in our notation)—in the followind\ is the coali-
tion playing andrl” the onedentifyingthe strategy:

C.a = ((A) « () ¢ iff there is a constant strat-

egy choiceSa such that for allg € ¢ with

g ~r g, we have that',d = ((A:Sa))1 0.

The above can be translated into QAPI by writing

c,d Fx" ((A:Sa)19,
where Q’s quantification depends on the par-

Quantified Epistemic and Probabilistic ATL

Figure 2: Infix quantification example.

of QAPI’s ability to directly reason about strategy

choices. Strategy logic (Chatterjee et al., 2007),
ATLES (Walther et al., 2007), and (M)IATLA(gotnes
etal., 2007) can be expressed similarly.

4 QUANTIFICATION AND
EPISTEMIC/TEMPORAL
OPERATORS

We now study the interplay between quantifiers and
temporal or epistemic operators: Applying quantifiers
in the scope of epistemic or temporal operators often
leads to highly counter-intuitive behavior. This be-
havior is the reason why QAPI only allows quantifi-
cation in a quantifier block prefixing the formula. The
issues we demonstrate here are not specific to QAPI
or the concept of strategy choices, but are general ef-
fects that arise in any formalism combining the oper-
ators we discuss here with some mechanism of forc-
ing agents to “know” which strategy to apply. The

ity of negation and is restricted to constant strategy core issue is that an unrestrict8efjuantifier adds a

choices® In (Jamroga and van der Hoek, 2004), it is
stated that requiringl™ knows thatA has a strategy
to achieved” is insufficient to expres$<A)>X(r> ¢. It
suffices in QAPI since we quantifyy beforethe % -
operator, henc& knows that thdixed Astrategy is
successful. ATEL-Rwould quantify the strategsf-
ter the % -operator in a formula likex - ((A)) ¢: A
could choose differentstrategy in each state. ATEL-
R* (ATOL with recall) can be expressed in MQAPI

high degree of non-uniformity to the agent’s choices,
which is incompatible with the epistemic setting.

To demonstrate these issues, in this section, we
consider QAPIX which is QAPI with arbitrary nest-
ing of quantifiers and other operators. The semantics
is defined by applying quantification in every state in
the obvious way. Clearly, quantification can always
be pulled outside of the scope of propositional and
¢-operators. The remaining temporal and epistemic

analogously. The above highlights the usefulness operators cannot be handled so easily.

3|t is not sufficient to rely on the uniformity of strat-
egy choices (the same strategy must be choser-in
indistinguishable states), since there must be a singié str
egy that is successful in dll-indistinguishable states, and
I might have less information thak
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4.1 Quantification in the Scope of
Temporal Operators

Consider the following QAPI™-formula:

ACASA ((A: Sa)) T .
The quantifierA abbreviatesiSy ((0: Sp));* and

If we follow the above suggestion and always
combine existential quantification with requiring the
knowledge that the introduced strategy choice accom-
plishes its goal, the behavior is much more natural—
however, as we now demonstrate, these are exactly
the cases which already can be expressed in QAPI.

To do this, we need to decide on a suitable no-
tion of group knowledge to apply in formulas of the

expresses quantification over all reachable paths (esabove structure. If we usiistributedknowledge, we

sentially A is CTL's A-operator). The formula ex-

essentially allow coordination inside the coalitién

presses that in all reachable states, there is a strategps part of the existential quantifier. This is similar to

choice forA that accomplisheg. There are no uni-
formity or epistemic constraints on thequantifier:
Even in states that look identical for all memberg\pf
completely different strategy choices can be applied.
This is problematic in an epistemic setting: Consider
the CGS with two playera andb in Figure 2. We
only indicate the moves of playar The game is turn-
based, where it ib’s turn in the statejp anda’s turn

in the remaining states. The first actiontoghooses
whether the next state ég or qp, these two states are
indistinguishable foa. In gy, playera must play 0 to
reach a state wheggholds, in state},, a must play 1

to achieve this. Now consider the following formula
(we consider the coalitioA = {a}):

AX3SA ((A: ST p.
This formula s true irgp: In both possible follow-

the behavior of ATL/ATL:, where the((.))-operator
also allows coordination. Hendagistributed knowl-
edgedoes not achieve the desired effect. However,
everyone knowandcommon knowledgeo not suf-

fer from these issues: In both cases, each agent on
his own can determine whether the current strategy
“works.” We now show that this intuition is supported
by formal arguments: In the case @feryone knows
or common knowledgehe existential quantifier can
indeed be exchanged with the operator, the same
does not hold fodistributed knowledge

Proposition 9. Let¢ be a formula in which the vari-
ableS, does not appear, and which does not use past-
time operators, and let k {E,C}. Then

O3SA%A; (A1 Sa))7" & = ISAOKK; (A1 Sa))7" ¢
We require thath does not contain & since the
idea of the above discussion is the direct coupling

up states, there is a strategy choice that allows playerof the existential quantification ofsSand the group

ato enforce thap is true in the next state: lgy (q2),
we choose a strategy choife that for every possi-

knowledge about the effects of its application. Re-
quiring that¢ does not have past-time operators is

ble goal and in every state always plays the move O clearly crucial for memoryless strategies: ¢if e.g.,

(2). Individually, these strategy choices satisfy every
imaginable uniformity condition, since they fix one
move forever. However, intuitively im;, playera
cannot achiev&Xp, sincea cannot identify the cor-
rect strategy choice to apply. This shows that having
an existential quantifier in the scope of a temporal op-
erator yields counter-intuitive results.

A natural way to address this problem is to re-
strict quantification to be “uniform” and demand that

requires to play a specific move if and only if that
move has been played previously, then the strategy
choice clearly must depend on the history and the
above equivalence does not hold. Proposition 9 does
not hold for distributed knowledge instead:

Example 10. Consider a CGS with playersa and
b and two Boolean variablesandy, where playea
(b) only sees the value of variable(y) and the val-
ues of the variables change randomly in every tran-

the quantifier chooses the same strategy choice in thesjtion. Each player always has the moves 0 and 1

states indistinguishable fok. We can express this
in QAPIMX by requiring that the strategy choice “re-
turned” by the quantifier is successful in all indistin-
guishable states—in other words, requirtp know

available. Consider the coalitioh= {a,b} and the
formula¢ expressing & moves according tg andb
moves according ta”# Since the distributed knowl-
edge ofA allows to identify the values of botk

that the Strategy choice is successful. In this case, theandy, in each state there is a Strategy choice achiev-
same strategy choice can be used in all indistinguish-ing ¢, however clearly there is no single strategy
able states as intended. In the above example, Wechoice which works in all states. Hence, the formula
therefore would consider the following formula (for (3Sax 2, ((A: SA>>f1¢ is always true inc, while
singleton-coalitions, all notions of knowledge coin- 28,00 D A SN Ld s al fal

cide, we useommon knowledge the example): A% a1 ((A1Sa))1 ¢ is always false.

4To express this as a variable, the CGS needs to record

AXESA?(AC,1 (A:Sa)Ttp. the last move of each player in the state in the obvious way.
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Proposition 9 can be generalized in several di- quantification again is not necessary, as here, the ex-
rections. For ease of presentation we only presentistential and the epistemic operators commute:
the above simple form of Proposition 9 which sup-
ports the main argument of this section: “Intuitively
sensible” applications of quantifications inside
operators can be eliminated. C,0FE x,ifiasAq) ifand only ifc,q = EISAKXJQ).

Lemma 13. If ¢ is k-i-simple and has a single free
strategy variable, then for all CG8 and states q,

4.2 uantification in the Scope This class of formulas is maximal—as soon as we
Qf . . P have a formula that depends on the variablgs&d
of Epistemic Operators of which A’s knowledge does not suffice to determine

S . the truth, we cannot swap the above operators.
We now show that quantification in the scope of epis-

temic operators leads to similar issues as the case of TOPOSition 14. Let¢ be a formula such thafi is not
temporal operators considered above. We again con-K-i=Simple inSx and the coallEon A |skbound B in
sider the CGS in Figure 2. lay, the formula the entire formula, theBSA%K ;¢ # Ka;FSad.
d _ -1 The prerequisite thah is bound to & in the en-
AXKa13SA (A Sn)1 7 Xp tire formula is necessary to e.g., preclude cases where

is true; Agenta (who alone forms the coalition) Sa is only used in a non-meaningful way. It is not

knows that there is a successful strategy choice, since? Strong requirement, as (with infix quantification)

there is one in botlg, and ings. However, as seen usuglly the sqbformula directly succgedlng the exis-

above, he does not know this strategy choice. tent|al_ quantlfler will be_ the one “tal_klng about” the
We now present a similar result to Proposition 9, quant|f|_e_d strategy choice. It_|s poss_|ble to strengthe_n

for quantification in the scope of epistemic operators, Proposition 14, however again the simple form here is

and identify cases in which these operators Commute__suf'flces to show that m_the cases where q.uantlflcaupn

For this, we exhibit a “maximal” class of formulas for N the scope of an epistemic operator gives a satis-

which knowledge and quantification can always be factory semantics, the quantifier can be moyed out of

exchanged. When discussing whether quantification SCoPe of that operator, and hence QAP suffices.

of a variable Scommutes with an operator (epistemic i ]

or otherwise), clearly we are only interested in formu- 4.3  Discussion

las in which the variable;&ctually plays a non-trivial

role. To formalize this, we extend the concept of a Nesting of quantification and epistemic or temporal

“relevant” variable which is well-known in proposi- operators leads to counter-intuitive behavior, since

tional logic, to the class of strategy variables: quantification introduces a degree of non-uniformity,

Definition 11. Let ¢ be a formula with free strat- ~ Whereas a core issue in the epistemic setting is to en-
egy variables among(Sy,...,S,}. We say that force sufficient un|form|ty_to ensure that agents have
the variable S is relevantfor ¢ if there exists enough knowle.dge.to decide on the “correct" move to
a CGS, a state q ofc, and strategy choices play in every situation. Although we dlq not give a

S1,....Sn,S! such thatc,(S....,Sn).q & ¢ and complet(_a cha_racterlzatmn of the cases in which tem-
C.(S1,...,Si-1,5,Sis1,-..,5n),0 £ b. poral/epistemic operators and quantifiers commute

, . o _and it is notoriously difficult to give a good defini-
This means that there exists a situation where it o of o “natural” semantics, our results give strong

matters which strategy choice is used to instantiate the oigence for our claim: In the cases where infix quan-
variable $. Examples for anirrelevantvariabl@ &re iication leads to a natural semantics, the quantifiers

((A:Sa)7H (0xvO-x) or ((A:Sa)7 % 0x. can be swapped with the temporal/epistemic opera-
Definition 12. For a coalition A and a degree of in-  tors, hence infix quantification is unneeded.
formation i, ke {D,E,C}, a formulag is k-i-simple Another reason why QAPI only allows quantifiers
in Sa, if one of the following conditions is true: in the prefix of a formula is that in the presence of

« Sais an irrelevant variable o, or strategy qhoices, infix guantifiqqtion does not. seem
) i K to be particularly useful: Quantification efrategies

e ¢ is equivalent to a formula of the form; . that may be different in any state can be handled by
Formulas that ar&-i-simple give a “natural” se-  strategy choices in a way that is compatible with the

mantics when prefixed with an existential quantifier, epistemic setting, since strategy choices may return

since in the same way as there, the non-uniformity different strategies in states that are distinguishable
of the existential quantifier is reduced using the epis- for an agent. On the other hand, infix quantification
temic operator. We now show that in these cases, infix of strategy choiceis very unnatural: Strategy choices
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express “global behavior” of coalitions allowing prior
agreement, but during the game only rely on commu-
nication that is part of the game itself. Quantification
inside formulas would express “prior agreemetit-
ing the gamewhich defeats its purpose.

There may be interesting properties that can only
be expressed using QAP but usuallyz QAPI is
sufficient and avoids the above problems.

5 SIMULATIONS

Bisimulations relate structures in a truth-preserving
way. They allow to obtain decidability results for
game structures with infinite state spaces (if a bisimi-

lar finite structure exists), or can reduce the state space

of a finite system. In (Schnoor, 2012), our bisimula-
tion results are used to obtain a model-checking al-
gorithm on an infinite structure by utilizing a bisim-

ulation between this structure and a finite one. We
give the following definition, which is significantly

less strict than the one in (Schnoor, 2010b): For ex-
ample, our definition can establish bisimulations be-

tween structures with different numbers of states (see

example below). This is not possible in the defini-
tion from (Schnoor, 2010b), since there a bisimula-
tion is essentially a relatiod which is a simulation
in both directions simultaneouslgince a simulation
in the sense of (Schnoor, 2010b) is a function be-
tween state spaces, this implies tFamust contain,
for every state in one CG®xactlyone related state
in the other. Hence suchainduces a bijection be-

tween state spaces, and is essentially an isomorphism.

The following definition is somewhat simplified to in-

crease readability, it only treats game structures that

have a single degree of information, which is there-
fore omitted here.

Definition 15. Let ¢, and ¢, be CGSs with state sets

Q1 and @, the same set of players, and the same set

of propositional variables. Arobabilistic bisimula-
tion betweernc; and ¢ is a pair of functiongZ;, Z»)
where 4: Q; — Q2 and %: Q, — Q1 such that there
are move transfer functiond; and A, such that for
{i,i} ={1,2} and all g € Q;, o= Z(q;), and all
coalitions A:
¢ (i and g-satisfy the same propositional variables,
e if ¢ is a (Aqg) move, the (A g)-move
c(a) = Ai(a,qi,ci(a)) for all a € A satis-
fies that for {j,j} = {1,2} and all (A qj)-
moves £, there is a(A qj)-move t%such that

for all qf € Q, Pr(Z(3(cU)) =)
Pr(é(qi,ciucf):q{).

22

if gi ~a g, thenli(a,qi,c) = Ai(a,qf,c) forall c
if 0i ~a qf, then Z(qi) ~a Zi(qf)

if g7~ o there is gwith Z (qf) = g-and q ~a G-
Zy0Zp and % o Z; are idempotent.

or

b:1
(o)—

b:1

b:0

b:1 —
*

Figure 3: Game Structureg and¢;

Theorem 16. Let ¢1 and ¢2 be concurrent game
structures, le{Z;,Z5) be a probabilistic bisimulation
betweenc; and ¢, let o and @ be states of; and
C2 with Zi(op) = q1 and (1) = gp. Let¢ be a
quantified strategy state formula. Themn,q; = ¢ if
and only ifc2,q2 = ¢.

Consider the games; and ¢z in Figure 3. In
both, playera starts, he has a single choice in
and 4 choices ir2. The move by then determines
whetherok holds in the final state. In statesof ¢1
andqs, gz, andqgz of ¢2, a must playl to makeok
true, in statays of ¢2, he must play. Statesy, and
gs are indistinguishable far in ¢2. CGSscy and ¢z



with state set€); andQ, are bisimilar via(Z;,2Z5),
whereZ;: Q2 — Qg is defined as follows:

(do) = ro,

(01) = Z2(d2) = Z2(0) = Z2(0a) =1,

Z2(0s) = Z2(d7) = Z2(Qo) = Z2(th1) =r2,

Z5(G6) = Z2(ds) = Z2(tho) = Z2(012) =3

The move transfer function swaps moweand1
when transferring from to g4. Z1: Q1 — Q2 maps
rotoqo, r1 to gz, rz to gs andrs to gg, the move trans-
fer functions map all ok’s possible moves i to
the movel, the moves ob are mapped to themselves
(note thaiy, is not used in this direction). Itis easy to
check tha{(Z;,Zy) is a bisimulation.

Theorem 16 states that state related via bfith
and Z; satisfy the same formulas. This applies to
(ro,90), (r1,0n), (r2,0s), and(rs,ge). The example
shows a bisimulation between structures with com-
plete and incomplete information, and with different
cardinalities.

Z;
Z

6 MODEL CHECKING
COMPLEXITY

Model checking is the problem to determine, for a
CGSc, a quantified strategy formula and a state,
whetherc,q = ¢. We state the following results for
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Chatterjee, K., Henzinger, T. A., and Piterman, N. (2007).
Strategy logic. In Caires, L. and Vasconcelos, V. T.,
editors, CONCUR volume 4703 ofLecture Notes in
Computer Sciencgages 59-73. Springer.

Chen, T. and Lu, J. (2007). Probabilistic alternating-time
temporal logic and model checking algorithm. In Lei,
J., editorFSKD (2) pages 35-39. IEEE Computer So-
ciety.

Cortier, V., Kusters, R., and Warinschi, B. (2007). A cigypt
graphic model for branching time security properties
- the case of contract signing protocols. In Biskup,
J. and Lopez, J., editor§ SORICSvolume 4734 of
Lecture Notes in Computer Sciengemges 422-437.
Springer.

Halpern, J. Y. and Moses, Y. (1990). Knowledge and com-
mon knowledge in a distributed environmedournal
of the ACM 37:549-587.

Herzig, A. and Troquard, N. (2006). Knowing how to play:
uniform choices in logics of agency. In Nakashima,
H., Wellman, M. P., Weiss, G., and Stone, P., editors,
AAMAS pages 209-216. ACM.

Jamroga, W. (2004). Some remarks on alternating tem-
poral epistemic logic. IfProceedings of Formal Ap-
proaches to Multi-Agent Systems (FAMAS 2@28)es
133-140.

Jamroga, W. and van der Hoek, W. (2004). Agents that
know how to play. Fundamenta Informaticae63(2-
3):185-219.

Samet, D., editor (2007)Proceedings of the 11th Confer-
ence on Theoretical Aspects of Rationality and Knowl-
edge (TARK-2007), Brussels, Belgium, June 25-27,
2007

completeness, the proofs are straight-forward using Schnoor, H. (2010a). Explicit strategies and quantificatio

results and techniques from the literature (Alur et al.,
2002; Brazdil et al., 2006; Chatterjee et al., 2007,

Schnoor, 2010b). We note that the model-checking

for ATL with incomplete information and probabilis-
tic games. Technical Report 1008, Institut fir Infor-
matik, Christian-Albrechts-Universitat zu Kiel.

problem for MQAPI is undecidable except for restric- Schnoor, H. (2010b). Strategic planning for probabilistic

tions that reduce QAPI to strategy logic.
Theorem 17. The QAPI model-checking problem is

1. PSPACEcomplete for deterministic CGSs,
2. solvable iBEXPTIME and2EXPTIME-hard for
probabilistic structures.
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