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Abstract: A reverse direction supported particle swarm optimization (RDS-PSO) method was proposed in this paper. 
The main idea to create such a method relies that on benefiting from global worst particle in reverse 
direction. It offers avoiding from local optimal solutions and providing diversity thanks to its flexible 
velocity update equation. Various experimental studies have been done in order to evaluate the effect of 
variable inertia weight parameter on RDS-PSO by using of Rosenbrock, Rastrigin, Griewangk and Ackley 
test functions. Experimental results showed that RDS-PSO, executed with increasing inertia weight, offered 
relatively better performance than RDS-PSO with decreasing one. RDS-PSO executed with increasing 
inertia weight produced remarkable improvements except on Rastrigin function when it is compared with 
original PSO. 

1 INTRODUCTION 

With increasing demand for optimization algorithms 
which employ at lower time costs and at less 
computational burden, a number of methods have 
been introduced. Particle Swarm Optimization is one 
of the most effective swarm intelligence methods 
theorized by (Kennedy and Eberhart, 1995). 

PSO can be adapted for different problems in a 
simple way, it is less likely to get trapped at local 
optimal solutions, it can approximate to optimal 
points quickly and it has the advantage of 
cooperation between particles. These are superior 
features of PSO in comparison with mathematical 
algorithms. Therefore; it has been implemented in 
many optimization applications (W. L. Du and B. Li, 
2008; K. Tang and X. Yao, 2008). 

Unlike these benefits, PSO has some 
deficiencies. According to (Angeline, 1998), PSO 
does not have a skill to perform a quality grain 
search as the iteration index of generations  
increases. Since velocity update equation of PSO 
depends on only global best and personal best 
positions, diversity of population in PSO decreases. 
Thus; PSO may get trapped at local optimum. (P. N. 
Suganthan, 1999) proposed a particle swarm 
optimizer with neighborhood operator in order to 

avoid this challenge. Moreover, a number of studies 
have been suggested to improve general PSO 
performance. (Chen and Zhao, 2009) proposed a 
PSO with adaptive population size to build a new 
PSO structure which has improved performance and 
offered less computational cost. (Kennedy and 
Mendes, 2002) investigated effects of population 
topologies on performance of PSO. They assert that 
some topologies employ well for a group of 
functions and others for a different group. (Alatas et 
al., 2009 and Coelho LdS, 2008) adopted chaotic 
solutions to PSO in order to improve overall 
performance of original PSO. 

Global and local searching ability should be 
adjusted in all optimization methods including PSO. 
Some evolutionary algorithms regulate the trade-off 
between global and local searching ability via 
variance of Gaussian random function (Shi and 
Eberhart, 2001). Inertia weight parameter was added 
into PSO in order to overcome such a trade-off. 
Setting the inertia weight to a large value increases 
global searching ability, whereas smaller values 
increase local one. 

All approaches proposed in literature need some 
extra computations in addition to regular PSO 
computations. This paper proposes that adding 
global worst particle to velocity update equation 
may increase the diversity of PSO. Based on the 
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results of this study, a new regulation procedure will 
be improved to increase the performance of this new 
PSO. This proposal does not add extra 
computational cost to PSO algorithm. Because it 
only computes global worst particle in addition to 
global best particle at all iterations. All other 
computations are the same with traditional PSO. 
Effects of inertia weight on new velocity update 
equation have been investigated as well. 

Rest of the paper is organized as follows. 
Detailed description of PSO takes place in section 2. 
Section 3 introduces reverse direction support 
particle swarm optimization (RDS-PSO) run in 4 
modes (1000 and 2000 maximal iterations with 
increasing and decreasing inertia weights). 
Simulation results of the proposed method on 
benchmark problems are assessed in section 4. 
Finally, section 5 is the discussion and the 
conclusion part of the paper. 

2 PARTICLE SWARM 
OPTIMIZATION (PSO) 

PSO is a searching and optimization method based 
on sociologically and biologically inspired 
procedures simulating bird flocking (Kennedy and 
Eberhart, 1995). Each potential solution is 
represented as a particle. A group of particles are 
used to reach global optimal solution in PSO. Let N 
and D be the population size and dimension of 
search space, respectively. Then, the swarm can be 
described by N particles which are represented by D 
dimensional vector. Actual position of ith particle is 
represented by  iDiii xxxx ,...,, 21  and the velocity of it 

is represented by  iDiii vvvv ,...,, 21 . The vector, 

 iDiii pppp ,...,, 21 , reflects the best visited position of 

the particle i until the time of t. Iteration number 
controls these running times. 
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Where i = 1, 2, … , N and d = 1, 2, … , D. 
Parameters c1 and c2 are positive constants denoting 
cognitive and social impacts in PSO. The functions 
of rand1 and rand2 generate random numbers in 
interval [0, 1] uniformly. Positive parameter, w is 
the inertia weight. As mentioned in introduction, w 
regulates the trade-off between global and local 

searching ability. Variables pid, pgd and xid represents 
personal best, global best and present position, 
respectively. 

At each iteration, equations (1) and (2) are 
computed repeatedly in original PSO. Some 
strategies such as iteration number, improvement or 
stability extent were proposed as various termination 
criteria in literature. Since there is no unit to control 
the velocities of particles in velocity update 
equations, particles may pass over the borders of 
search space. So, maximal velocity value, Vmax was 
determined to avoid this situation. Velocities 
exceeding the maximal velocity, Vmax, are set to 
Vmax.  

3 REVERSE DIRECTION 
SUPPORTED PSO (RDS-PSO) 

A more flexible and more general PSO, RDS-PSO, 
is introduced in this part of the paper. In other 
words, original PSO method is only a specific case 
of RDS-PSO method. The single difference between 
RDS-PSO and PSO relies on velocity update 
equation. 

 
   

   
     gwdid

idgd

idididid

pxrandcalpha

xprandcalpha

xprandcvwv






21...

...2...

...1

2

2

1

 
(3)

 
RDS-PSO uses equation (3) instead of equation 

(1). As a different variable from original PSO, pgwd 
represents the global worst position. The variable 
pgwd is determined by the max operator in 
minimization problems and by the min operator in 
maximization ones. Unlike pgd, pgwd affects the 
velocity update equation in reverse direction. 
Another different parameter, alpha, provides a trade-
off between effects of global best and global worst 
positions on next position of particle. It belongs to a 
real number set and is defined in [0, 1]. When alpha 
is selected with 1 value, the original PSO method 
occurs. By selecting different alpha values, PSO can 
be generalized. Thus; RDS-PSO provides a 
flexibility to control passing from original PSO to 
pure RDS-PSO. Regulating of alpha value properly 
plays a very important role in success of RDS-PSO. 
Figure 1 depicts original PSO velocity update and 
figure 2 depicts RDS-PSO velocity update idea for 
alpha = 0.5 value. In the case of alpha = 0.5, the 
global best and the global worst particles have equal 
effect on population. As the value of alpha closes to 
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zero, diversity may increase. However, the 
performance of RDS-PSO deteriorates. 

Evaluation function has already been run as in 
PSO. RDS-PSO keeps only the worst position in 
addition to the best position. Thus, computational 
burden of RDS-PSO is almost same with PSO. 

In the paper, relationship between inertia weight 
and alpha parameter is evaluated by benchmark test 
functions. This paper tries to find a response to the 
question, “what is the best alpha value for RDS-PSO 
with linearly increasing and linearly decreasing 
inertia weight order?”. In addition, the paper 
researches whether RDS-PSO increases the overall 
performance of PSO or not. How can a regulation 
approach be proposed for a better RDS-PSO 
performance? 

 

 

Figure 1: Velocity update for PSO. 

 

Figure 2: Velocity update for RDS-PSO. 

 

4 BENCHMARK PROBLEMS 
AND EXPERIMENTAL 
RESULTS 

Section 4 explains mathematical background of 
benchmark functions superficially and evaluates 
experimental results. 

4.1 Benchmark Functions 

Four most commonly used benchmark functions 
(Griewangk, Rastrigin, Rosenbrock and Ackley) are 
used to test the performance of RDS-PSO against 
PSO with linearly increasing and decreasing inertia 
weight. As described in detailed in table 1, one of 
them is unimodal (has only one optimum) and the 
others are multimodal (have lots of optimum). 
Where lb is abbreviated of lower bound, ub is 
abbreviated of upper bound for space coordinates. 
Effectiveness of proposed algorithms can be 
evaluated via such 3 benchmark functions.  

Table 1: Properties of benchmark functions. 

Function lb ub Optimum point Modality 

Griewangk -600 600 0 multimodal 

Rastrigin -5.12 5.12 0 multimodal 

Rosenbrock -2.048 2.048 0 unimodal 

Ackley -32.786 32.786 0 multimodal 

4.1.1 Griewangk Function 

Griewangk function has lots of local optima. Due to 
this reason, finding the global optimum point is a 
very difficult task (Griewangk, 1981). This function 
is described as in equation (4). 
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Where  600,600ix , global optimum point of 

the function is at x = (0, 0,…,0) and f(x) = 0. 

4.1.2 Rastrigin Function 

Rastrigin function is obtained by adding cosine 
modulation to De Jong’s function. Such a 
modulation makes this function highly multimodal 
(Rastrigin, 1974) and it is defined as an equation (5).  
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Where  12.5,12.5ix , global optimum point of 

the function is at x = (0, 0,…,0) and f(x) = 0. 

4.1.3 Rosenbrock Function 

Rosenbrock function is also known as banana 
function because of its shape. Due to difficulty in 
finding global optimal of it, Rosenbrock function is 
repeatedly used in testing of many optimization 
algorithms (De Jong, 1975). This function is 
described as in equation (6). 
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Where  048.2,048.2ix , global optimum point 

of the function is at x = (1, 1,…,1) and f(x) = 0. 

4.1.4 Ackley Function 

Ackley is widely used as a multimodal test function 
in most optimization problems (D. H. Ackley, 1987). 
Its description is given as following. 
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It is recommended that a = 20, b = 0.2, c = 2п. 
 768.32,768.32ix , global optimum point of the 

function is at x = (0, 0,…,0) and f(x) = 0. 

4.2 Experimental Results 

Overall performance of RDS-PSO method is 
evaluated according to 3 benchmark functions. The 
method were executed in 4 different modes so that, 
RDS-PSO and PSO could be compared in a more 
detailed way. These 4 modes include linearly 
decreasing inertia weight with 1000 / 2000 iterations 
and linearly increasing inertia weight with 1000 / 
2000 iterations. All modes were executed with 
variable alpha values changing from 0.05 to 1.0 with 
0.05 step size. Thus, the most suitable alpha value 
was searched in all modes. Matlab software was 
used for programming. 

50 different initial populations were set 
randomly. The performance of RDS-PSO was tested 
through average and standard deviation values of all 
population results. Moreover, the number of 
populations having better scores than PSO is 
computed as well. 

As it is indicated in table 2, population and 
dimension sizes were defined as 25 and 10 
respectively while maximal iteration index was 
determined as 1000 in some experiments and as 
2000 in others. The parameters of c1 and c2 are 
cognitive and social constants, respectively. To be 
increased of c1 enhances exploration while to be 
increased of c2 enhances exploitation. According to 
the most related studies, determining, c1 = c2 = 2, 
provides the best performance for PSO 
implementations. Inertia weight changes linearly 
within the range [0.1, 1.2]. When error between 
target and system output is smaller than 1*10-6, 
process is stopped. 

Table 2: Configuration of used PSO method. 

Parameter Value 

Population size 25 

Maximal iteration 1000 / 2000 

Maximal weight value 1.2 

Minimal weight value 0.1 

C1 2.0 

C2 2.0 

Dimension 10 

Error goal 1*10-6 

 
By using of PSO configuration in table 2, three 

types of result were obtained. First of them reflects 
average best fitness results of 50 different situations. 
These populations have different and independent 
initial populations. Figure 3, 6, 9 and 12 depict such 
results of 4 modes for Rosenbrock, Rastrigin, 
Griewangk and Ackley test functions respectively. 
The second type reflects average of standard 
deviation results. Figure 4, 7, 10 and 13 depict such 
results of 4 modes for the same four test functions 
respectively. Finally the third type consists of 
numbers of being better than original PSO. For 
instance, at 9 situations among 50 RDS-PSO (with 
decreasing inertia weight and 1000 maximal 
iteration) has smaller best fitness value than PSO as 
it is presented in figure 5(a). Such numbers are 
depicted in figure 5, 8, 11 and 14 for the same test 
functions respectively. 

In all modes, average best fitness results of 
original PSO are lower than RDS-PSO versions for 
Rosenbrock, Rastrigin and Ackley functions as 
depicted in figure 3, 6 and 9. In 2 modes (decreasing 
inertia weight with 1000 / 2000 maximal iterations), 
original PSO results are lower than RDS-PSO for 
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Griewangk function too. However; in the other 2 
modes (increasing inertia weight with 1000 / 2000 
maximal iterations), original PSO results are higher 
than RDS-PSO ones (having 0.7 alpha value) for 
Griewangk function as depicted in figure 9.  
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Figure 3: Average best fitness results of RDS-PSO for 4 
modes using Rosenbrock function. 
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Figure 4: Average standard deviation results of RDS-PSO 
for 4 modes using Rosenbrock function. 

Figure 4 depicts that average standard deviation 
results of original PSO are lower than RDS-PSO 
versions in all modes for Rosenbrock function, 
similarly as in average best fitness results. The same 
results are also obtained for Ackley function as in 
figure 13. Figure 7 states that original PSO has 
lower average standard deviation values than RDS-
PSO in only one mode (decreasing inertia weight 
with 1000 maximal iteration). In other modes 
original PSO has higher values than RDS-PSO for 
Rastrigin function. According to Griewangk 
function results, original PSO has lower values in 2 
modes (decreasing modes) yet higher values in other 
2 modes (increasing modes) than RDS-PSO as 
depicted in figure 10. At almost all modes except 
that Rosenbrock function is used, RDS-PSO has 
more stability than PSO. 
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Figure 5: Number of being better than PSO for 4 modes 
using Rosenbrock function. 

Additionally; figures 5, 8, 11 and 14 state the 
number of situations where original PSO has higher 
best fitness value than the RDS-PSO version. In 
increasing inertia weight modes, RDS-PSO has 
relatively better results against decreasing inertia 
weight modes. The most suitable contribution was 
surveyed in Griewangk function among 3 
benchmark functions. In 34 executions of 50, 
original PSO has higher fitness (worse) results than 
RDS-PSO (increasing inertia weight with 1000 
maximal iteration and value of alpha is 0.7). The 
worst situation was observed in figure 14 for Ackley 
function. 

At all test functions, RDS-PSO with increasing 
inertia weight performs relatively better results 
against ones running at decreasing modes. At the 
same time, standard deviation results are relatively 
better than decreasing ones when PSO is compared 
with RDS-PSO versions. 
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Figure 6: Average best fitness results of RDS-PSO for 4 
modes using Rastrigin function. 
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Figure 7: Average standard deviation results of RDS-PSO 
for 4 modes using Rastrigin function.  
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Figure 8: Number of being better than PSO for 4 modes 
using Rastrigin function. 
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Figure 9: Average best fitness results of RDS-PSO for 4 
modes using Griewangk function.  
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Figure 10: Average standard deviation results of RDS-
PSO for 4 modes using Griewangk function. 
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Figure 11: Number of being better than PSO for 4 modes 
using Griewangk function. 
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Figure 12: Average best fitness results of RDS-PSO for 4 
modes using Ackley function. 
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Figure 13: Average standard deviation results of RDS-
PSO for 4 modes using Ackley function. 
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Figure 14: Number of being better than PSO for 4 modes 
using Griewangk function. 

Generally the performance of RDS-PSO is not good 
as PSO but, its performance gets quality as the index 
of generation increases. 

5 DISCUSSION AND 
CONCLUSION 

In this paper, a variety of PSO, which is called RDS-
PSO, has been proposed. RDS-PSO tries to increase 
the diversity of PSO by using reverse direct 
information in velocity update equation. It does not 
add any additional burden for computation since it 
uses the same algorithm with original PSO. 

Alpha constant was added to RDS-PSO as a 
difference from PSO in order to provide a balance 
between impacts of global best and global worst 
particles. It plays an important role on overall 
performance of RDS-PSO. According to 
experimental results, alpha values in [0.65, 0.75] 
performs the best performance for RDS-PSO in 

increasing inertia weight modes while such values in 
[0.8, 0.9] performs its best in decreasing one. If a 
procedure which changes the alpha value during 
execution properly is adopted to current algorithm, 
overall performance of RDS-PSO will improve. As a 
future research topic, such procedure might be 
studied. Results of RDS-PSO with constant alpha 
value are not quality as some studies manage, but an 
RDS-PSO with adaptively changing alpha value 
might be much more quality than constant one. 

Selection of neighbourhood strategy affects the 
performance of RDS-PSO as well. Such strategies 
may be updated according to velocity equation of 
RDS-PSO. Some topologies may be used for global 
best neighbourhood while other topologies for 
global worst one. Thus, both some best particles and 
some worst particles in the neighbourhood can affect 
the next position of particles in swarm in much 
suitable way. 
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