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Abstract: In this paper, a novel texture classification method from two-dimensional electrophoresis gel images is 
presented. Such a method makes use of textural features that are reduced to a more compact and efficient 
subset of characteristics by means of a Genetic Algorithm-based feature selection technique. Then, the 
selected features are used as inputs for a classifier, in this case a Support Vector Machine. The accuracy of 
the proposed method is around 94%, and has shown to yield statistically better performances than the 
classification based on the entire feature set. We found that the most decisive and representative features for 
the textural classification of proteins are those related to the second order co-occurrence matrix. This 
classification step can be very useful in order to discard over-segmented areas after a protein segmentation 
or identification process. 

1 INTRODUCTION 

Proteomics is the study of protein properties in a 
cell, tissue or serum aimed at obtaining a global 
integrated view of disease, physiological and 
biochemical processes of cells and regulatory 
networks. One of the most powerful techniques, 
widely used to analyze complex protein mixtures 
extracted from cells, tissues, or other biological 
samples, is two-dimensional polyacrylamide gel 
electrophoresis (2D-PAGE). In this method, proteins 
are classified by molecular weight (MWt) and iso-
electric point (pI) using a controlled laboratory 
process and digital imaging equipment. 

Since the beginning of proteomic research, 2D-
PAGE has been the main protein separation 
technique, even before proteomics became a reality 
itself. The main advantages of this approach are its 
robustness, its parallelism and its unique ability to 
analyse complete proteins at high resolution, 
keeping them intact and being able to isolate them 
entirely (Rabilloud, Chevallet et al. 2010). However, 
this method has also several drawbacks as its very 
low effectiveness in the analysis of hydrophobic 
proteins, as well as its high sensitivity to dynamic 

range (i.e. quantitative ratio between the rarest 
protein expressed in a sample and the most abundant 
one) and quantitative distribution issues (Lu, Vogel 
et al. 2007). The outcome of the process is an image 
like the one showed in Figure 1. 
 

 

Figure 1: Example image used to detect potential serum 
protein biomarkers in children with fetal alcohol 
syndrome. 512x512 pixels. 8 bit. 340 microns/pixel. 
Taken from Lemkin public use dataset. 

Dealing with this kind of images is a difficult 
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task because there is not a commonly accepted 
ground truth (Lemkin ; Marten). Another aspect that 
makes the work difficult from a computer vision 
point of view, is that both protein images and 
background noise seem to follow a Gaussian 
distribution (Tsakanikas and Manolakos 2009). The 
inter- and intra-operator variability in manual 
analysis of these images is also a big drawback 
(Millioni et al., 2010). 

The aim of this paper is to demonstrate that there 
is enough texture information in 2D-electrophoresis 
images to discriminate proteins from noise or 
background. In this work the most representative 
group of textural features are selected using Genetic 
Algorithms. 

2 THEORETICAL 
BACKGROUND AND RELATED 
WORK 

The method proposed in this work intends to assist 
in 2D-PAGE image analysis by studying the textural 
information present within them. To do so, a novel 
combination of Genetic Algorithms (Holland, 1975) 
and Support Vector Machines (Vapnik, 1979) is 
presented. In this section, the main techniques used 
are briefly introduced and explained. 

One of the most important characteristics used 
for identifying objects or regions of interest in an 
image is texture, related with the spatial (statistical) 
distribution of the grey levels within an image 
(Haralick et al., 1973). Texture is a surface’s 
property and can be regarded as the almost regular 
spatial organization of complex patterns, always 
present even if they could exist as a non-dominant 
feature. Other approaches (i.e. Structural which 
represents texture by well-defined primitives and a 
hierarchy of spatial arrangements. Model based 
which using fractal and stochastic models, attempt to 
interpret and image texture. Transform method such 
as Fourier, Gabor or Wavelet transforms), within a 
texture analysis, have been applied and a good 
review can be found in (Materka and Strzelecki, 
1998); (Tuceryan and Jain, 1999). 

Genetic Algorithms (GAs) are search techniques 
inspired by Darwinian Evolution and developed by 
Holland in the 1970s (Holland, 1975). In a GA, an 
initial population of individuals, i.e. possible 
solutions defined within the domain of a fitness 
function to be optimized, is evolved by means of 
genetic operators: selection, crossover and mutation. 
The selection operator ensures the survival of the 

fittest, while the crossover represents the mating 
between individuals, and the mutation operator 
introduces random modifications. GAs possesses 
effective exploration and exploitation capabilities to 
explore the search space in parallel, exploiting the 
information about the quality of the individuals 
evaluated so far (Goldberg, 1989). Using the 
crossover operator, GA combines the features of 
parents to produce new and better solutions, which 
preserve the parents’ best characteristics. By making 
use of the mutation operator, new information is 
introduced in the population in order to explore new 
and promising areas of the search space. Another 
strategy known as elitism, which is a variant of the 
general process of constructing a new population, is 
to allow better organisms from the current 
generation to carry over the next, remaining 
untalterd. At the end of the process, it is expected 
that the population of solutions converges to the 
global optimum. 

Vapnik introduces Support Vector Machines 
(SVMs) in the late 1970s on the foundation of 
statistical learning theory (Vapnik, 1979). The basic 
implementation deals with two-class problems in 
which data are separated by a hyperplane defined by 
a number of support vectors. This hyperplane 
separates the positive from the negative examples, to 
orient it such that the distance between the boundary 
and the nearest data point in each class is maximal; 
the nearest data points are used to define the 
margins, known as support vectors (Burges, 1998). 
These classifiers have also proven to be 
exceptionally efficient in classification problems of 
higher dimensionality (Chapelle et al., 1999); 
(Moulin et al., 2004), because of their ability to 
generalize in high-dimensional spaces, such as the 
ones spanned by texture patterns. SVM uses 
different non-linear kernel functions, like 
polynomial, sigmoid and radial basis function, 
where the nonlinear SVM maps the training samples 
from the input spaces into a higher-dimensional 
feature space via a mapping function (Burges, 1998). 

With respect to related work, the authors were 
not able to find any other work in the literature 
handling with evolutionary computation in 
combination with texture analysis in 2D-
electrophoresis images; however, one article 
describes a discriminant partial least squares 
regression (PLSR) method for spot filtering in 2D-
electrophoresis (Rye and Alsberg, 2008). They use a 
set of parameters to build a model based on texture, 
shape and intensity measurements using image 
segments from gel segmentation. As regards texture 
information, they have focused on descriptors 
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related to the noisy surface texture of unwanted 
artefacts and concluded that their textural features 
allow them to distinguish noisy features from protein 
spots. In this work, five out of the eleven second-
order textural features, from the Grey Level Co-
Ocurrence Matrix (GLCM) firstly proposed by 
Haralick, are used, and five new textural features 
accounting for intensity relationships among sets of 
three pixels. They distinguish proteins in the image 
by using shape information, since cracks and 
artefacts in gel surface deviate from a circular shape. 
Besides that, a degree of Gaussian fit is calculated as 
an indication of whether the image segment 
corresponds to a protein or an artefact. Thereby 
textural features are used for noise and crack 
detection and as a complement for spot 
segmentation. Finally, the 17 initial variables are 
reduced to five PLSR components to account for 
85% of the total variation with respect to the 
response factor, and 82% of the total variation in the 
data matrix. 

3 MATERIALS 

In order to generate the dataset, ten 2D-PAGE 
images enough representative of different types of 
tissues and different experimental conditions were 
used. These images are similar to the ones used by 
G.-Z. Yang (Imperial College of Science, 
Technology and Medicine, London). It is important 
to notice that Hunt et al. (Hunt et al., 2005) 
determined that 7-8 is the minimum acceptable 
number of samples for a proteomic study. 

For each image, 50 regions of interest (ROIs) 
representing proteins and 50 representing no-
proteins (noise, black non-protein regions, and 
background) were selected to build a training set 
with 1000 samples in a double-blind process in the 
way that two clinicians select as many ROIs as they 
considered and after that, within the common ROIs 
clinicians selected proteins which are representatives 
(isolated, overlapped, big, small, darker, etc.). For 
each element, as will be seen later, 296 texture 
features are computed. 

The ROIs were selected taking into consideration 
that, for each manually selected protein, there is an 
area of influence surrounding it. It means that, once 
the clinician has selected a protein, the ROI is 
slightly bigger than the visible dark surface of such a 
protein. This assumption is made because texture 
could exist not only in the darkest grey levels but 
also in the grey levels closest to white. 

As said before, proteins seem to fit a Gaussian 
peak, and ideally the center of the protein is in the 
darkest zone of that peak. This approach prevents 
the loss of information caused by neglecting the 
lowest values of the inverted protein (grey levels 
closest to white) that also fit the Gaussian peak. This 
information could be useful to classify a protein or 
to discard it. 

4 PROPOSED METHOD 

This paper goes further than related work in the 
texture analysis of 2D-electrophoresis images, 
studying the ability of textural features to 
discriminate not only cracks from proteins but 
background and no-protein dark spots as well. 

The first step in texture analysis is texture feature 
extraction from the ROIs. With a specialized 
software called Mazda (Szczypinski et al., 2007), 
296 texture features are computed for each element 
in the training set. Various approaches have 
demonstrated the effectiveness of this software 
extracting textural features in different types of 
medical images (Bonilha et al., 2003); (Létal et al., 
2003); (Mayerhoefer et al., 2005); (Harrison et al., 
2008); (Szymanski et al., 2012). 

These features (Szczypiski et al., 2009), reported 
in Table 1, are based on: 

 Image histogram 
 Co-ocurrence matrix: information about the grey 

level value distribution of pairs of pixels with a 
preset angle and distance between each other. 

 Run-length matrix: information about sequences 
of pixels with the same grey level values in a 
given direction. 

 Image gradients: spatial variation of grey level 
values. 

 Autoregressive models: description of texture 
based on statistical correlation between 
neighbouring pixels. 

 Wavelet analysis: information about the image 
frequency content at different scales. 

 

Thus, from each ROI, texture information was 
analyzed by extracting first and second-order 
statistics, spatial frequencies, co-occurrence matrices 
and two other statistical methods as autoregressive 
model and wavelet based analysis, preserving the 
original gray-level and spatial resolution on all runs. 
Histogram-related measures conform the first-order 
statistics proposed by Haralick (Haralick et al., 
1973) but second-order statistics are those derived 
from the Spatial Distribution Grey-Level Matrices 
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(SDGM). First-order statistics depend only on 
individual pixel values and can be computed from 
the histogram of pixel intensities in the image. 
Second-order statistics depend on pairs of grey 
values and on their spatial resolution. Additionally a 
group of features derived from the textural ones is 
also calculated, but cannot be used for texture 
characterization such as the area of the ROI. 

Table 1: Textural features extracted and used in this work. 

Group Features 

Histogram 
Mean, variance, skewness, kurtosis, 
percentiles 1%, 10%, 50%, 90% and 

99% 

Absolute 
Gradient 

Mean, variance, skewness, kurtosis and 
percentage of pixels with nonzero 

gradient 

Run-length 
Matrix 

Run-length nonuniformity, grey-level 
nonuniformity, long-run emphasis, 
short-run emphasis and fraction of 

image in runs 

Co-ocurrence 
Matrix 

Angular second moment, contrast, 
correlation, sum of squares, inverse 

difference moment, sum average, sum 
variance, sum entropy, entropy, 

difference variance and difference 
entropy 

Autoregressive 
Model 

Theta: model parameter vector, four 
parameters; Sigma: standard deviation 

of the driving noise 

Wavelet 
Energy of wavelet coefficients in 

subbands at successive scales; max 
four scales, each with four parameters 

 
All these feature sets were included in the 

dataset. The normalization method applied was the 
one set by default in Mazda: image intensities were 
normalized in the range from 1 to Ng=2k, where k is 
the number of bits per pixel used to encode the 
image under analysis. 

Two solutions are available for decreasing 
dimensionality: extraction of new features derived 
from the existing ones and selection of relevant 
features to build robust models. In order to extract a 
feature set from the problem data, principal 
component analysis (PCA) has been commonly 
used. In this work, GA is aimed at finding the 
smallest feature subset able to yield a fitness value 
above a threshold. Besides optimizing the 
complexity of the classifier, feature selection may 
also improve the classifiers’ quality. In fact, 
classification accuracy could even improve if noisy 
or dependent features are removed. 

GAs for feature selection were first proposed by 
Siedlecki and Skalansky (Siedlecki and Sklansky, 
1989). Many studies have been done on GA for 

feature selection since then (Kudo and Sklansky, 
1998), concluding that GA is suitable for finding 
optimal solutions to large problems with more than 
40 features to select from. 

GA for feature selection could be used in 
combination with a classifier such SVM, k-nearest 
neighbor (KNN) or artificial neural network (ANN), 
optimizing it. In terms of classification accuracy 
with imaging problems, SVMs have shown good 
performance with textural features (Kim et al., 
2002); (Li et al., 2003); (Buciu et al., 2006), but also 
KNN (Jain 1997) and hybrid approaches, which use 
a combination of both classifiers (Zhang et al., 
2006), have obtained good results. Other techniques 
use GA to optimize both the feature selection and 
classifier parameters (Huang and Wang, 2006); 
(Manimala et al., 2011). 

In our method, based on both GA and SVM, 
there are not a fixed number of variables. As the GA 
continuously reduces the number of variables that 
characterize the samples, a pruned search is 
implemented. Each individual in the genetic 
population is described by p genes (using binary 
encoding). The fitness function (1) considers not 
only the classification results but also the number of 
variables used for such a classification, so it is 
defined as the sum of two factors, one related to the 
classification results and another to the number of 
variables selected. In (1) the number of genes with a 
true binary value (feature selected) is represented by 
numberActiveFeatures. Regarding classification 
results, it apparently gives better results taking into 
account the F-measure than only using the accuracy 
obtained with image features (Müller et al., 2008); 
(Tamboli and Shah, 2011). F-measure (2) is a 
function made up of the recall (true positives rate or 
sensitivity: proportion of actual positives which are 
correctly identified as such) and precision (or 
positive predictive value: proportion of positive test 
results that are true positives) measurements. 

 

ݏݏ݁݊ݐ݅ܨ ൌ ሺ1 െ ሻܨ 
ݏ݁ݎݑݐܽ݁ܨ݁ݒ݅ݐܿܣݎܾ݁݉ݑ݊
ݏ݁ݎݑݐܽ݁ܨ݈ܽݐܶݎܾ݁݉ݑ݊

 (1)

ܨ ൌ 2.
.	݊݅ݏ݅ܿ݁ݎ ݈݈ܽܿ݁ݎ
݊݅ݏ݅ܿ݁ݎ  ݈݈ܽܿ݁ݎ

 (2)

Therefore individuals with less active genes are 
favored. Once the reduced feature dataset is 
generated, a parametric test is made to evaluate the 
adequacy of the feature selection process. 

5 EXPERIMENTAL RESULTS 

The test set is composed of ten representative 
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images for the different types of proteomic available 
images, and for each one of them, 50 protein and 50 
non-protein ROIs have been extracted to generate a 
dataset with 1000 elements, that was divided 
randomly in 800 elements, of which 600 elements 
are used for training and 200 elements are used for 
validation (inside the GA feature selection process) 
and finally, 200 elements for test. Once the GA 
finishes, the best individual found (the one with 
lowest fitness value) is tested, using a 10-fold cross 
validation (10-fold CV), to calculate the error of the 
proposed model using the full and reduced datasets.  
Then, a test set is used in order to evaluate the 
adequacy of the reduction process. 

Parameters domains of the feature selection 
method are set as given in Table 2. These parameters 
were initially adjusted based on the literature. 

Table 2: Domain of GA tested parameters and operators. 

Item Domain 
Population Size From 100 to 250 

Elitism From 0 to 2 % 
Crossover probability From 80 to 98 % 
Mutation probability From 1 to 5 % 

Crossover operators 
One-point crossover, two-point 
crossover, scattered, arithmetic, 

heuristic 

Selection function 
Uniform, roulette and 

tournament 
Mutation function Uniform, Gaussian 

 

Different experiments have been performed and 
the final combination set the population size to 250 
individuals, with no elite, a 95% crossover 
probability, a 2% mutation probability, with 
crossover scattered, tournament selection and 
mutation uniform. 

SVM parameters domains are set as given in 
Table 3. The best results are shown in Table 4 in the 
Appendix section. In the last column of this Table, 
the final reduced textural features selected by the 
GA-SVM combination is presented for each 
configuration. 

To evaluate the performance of this method, 
there are several number of well-known accuracy 
measures for a two-class classifier in the literature 
such as: classification rate (accuracy), precision, 
sensitivity, specificity, F-score, Area Under an ROC 
Curve (AUC), Youden’s index, Cohen’s kappa, 
likelihoods, discriminant power, etc. An 
experimental comparison of performance measures 
for classification could be found in (Ferri et al., 
2009). In (Huang and Ling, 2005), the authors 
proposed that AUC is a better measure in general 
than accuracy when comparing classifiers and in 

general. The most common measures used for their 
simplicity and successful application are the 
classification rate and Cohen’s kappa measures. 
Table 5 shows the results for classification rate 
(accuracy), AUC, F-measure, Youden’s and 
unweighted Cohen’s Kappa for each kernel. For this 
problem, all the measures consider the same ranking, 
and the best kernel function is the linear one. For 
each kernel, Table 5 in the Appendix section shows 
each feature in their textural membership group. 

Table 3: SVM parameters domain. 

Item Domain 

Kernel function 
Linear, quadratic, 
polynomial and 

Gaussian radial basis. 
Gaussian radial basis sigma From 0.1 to 10 

Gaussian radial basis C From 1 to 100 
Polynomial order From 3 to 10 

Method to find the hyperplane Quadratic programming 
 

Among others, Mazda computes the area for 
each ROI. This feature merely indicates the number 
of pixels used for parameters computation. Being 
strictly with a texture analysis process, it cannot be 
used for texture characterization. With linear, 
polynomial (order 3), and RBF (C=100 and 
sigma=10) kernels, no textural features are selected 
in order to select the most representative ones for 
solving the classification problem. The presented 
results seem to indicate that the textural group with 
more representatives in 2D-PAGE images is the Co-
ocurrence matrix Group (second-order statistics). 

As the proposed work intends to evaluate the 
textural information present in a 2D-PAGE image, 
the RBF(2) kernel function is selected as the most 
accurate for solving this problem, since this kernel 
has only textural features and the best rate in the 
accuracy evaluation. After 45 generations, the GA 
stopped because the stall condition was reached as 
the best individual fitness value had not improved in 
10 consecutive generations. Figure 2 reports the 
number of features selected in each generation. 
Figure 3 shows the evolution of the total number of 
features, grouped by membership and selected 
during GA generation. 

We evaluate the reduced textural feature dataset 
with the 200 elements reserved from the original 
training set with the RBF (2) kernel, by calculating 
the areas under the receiver operating characteristic 
curves (AUC-ROCs) and a 10-fold CV for 
separating the elements, using the Libsvm classifier 
implementation (Chang and Lin, 2011) in Weka 
(Hall et al., 2009) and comparing the results with the 
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same classifier using the full dataset. Thus, we have 
obtained samples composed by 10 AUC-ROC 
measures. AUC-ROC area can be seen as the 
capacity to be sensitive and specific at the same 
time, in the sense that the bigger is the AUC-ROC, 
the more accurate is the model. The ROC curve is a 
graphical plot of the sensitivity against 1-specificity 
as the detector threshold, or a parameter which 
modifies the balance between sensitivity and 
specificity. 

 

Figure 2: Number of variables used in each GA 
generation. 

We use the RBF kernel with different gamma 
values to check if there is a significant improvement 
when the reduced dataset is used. 
 

 

Figure 3: Evolution of feature number by group 
membership during generations. 

In order to use a parametric test, it is necessary to 
check the independence, normality and 
heteroscedasdicity (Sheskin, 2011). In statistics, two 
events are independent when the fact that one occurs 
does not modify the probability of the other one. An 
observation is normal when its behaviour follows a 
normal or Gaussian distribution with a certain value 
of mean and variance. The heteroscedasticity 
indicates the existence of a violation of the 
hypothesis of equality of variances (García et al., 
2009). 

With respect to the independence condition, we 
separate the data using 10-fold CV. We perform a 
normality analysis using the Shapiro-Wilk test 
(Shapiro and Wilk, 1965) with a level of confidence 
alpha=0.05, for the Null Hypothesis that the data 
come from a normally distributed population. Null 
hypothesis was rejected. The observed data fulfill 
the normality condition, a Bartlett test (Bartlett, 
1937) is performed in order to evaluate the 
heteroscedasticity with a level of confidence 
alpha=0.05. 

A corrected paired Student’s t-test could be 
performed in Weka (Hall et al., 2009), with a level 
of confidence alpha=0.05, for the Null Hypothesis 
that there are no differences between the average 
values obtained by both methods. Results in average, 
with standard deviation in brackets for AUC-ROC 
are 0.94 (0.07) for the reduced dataset, and 0.55 
(0.34) for the full dataset and the corrected paired 
Student’s t-test determines that there is a significant 
improvement in using the reduced dataset. The 
reduced dataset has better accuracy result than the 
full dataset. Even more, the corrected paired 
Student’s t-test evaluates this improvement as 
significant with an alpha=0.05. 

Finally, the reduced textural features are the 
following: 

 Perc. (1)% 

 S(2,-2)DifEntrp 

 S(5,0) Correlat and InvDfMom 

 S(0,5) DifVarnc 

 S(5,5) SumEntrp 
 

The 1% histogram percentile is a first order textural 
feature calculated from the original image, taking 
into account the intensity value and the frequency of 
every pixel. Difference entropy, correlation, inverse 
difference moment, difference variance and sum 
entropy are second-order textural features. These 
features evaluate the co-occurrence relationship 
between pixels of the original image at a given 
distance and angle. Hence, there is a relationship in 
the co-occurrence matrix that allows the 
discrimination of a protein in 2D-PAGE images. 

6 SUMMARY AND 
CONCLUSIONS 

To the best of our knowledge, this is the first work 
in which the classification of proteins texture in two-
dimensional electrophoresis gel images is tackled 
using Evolutionary Computation, Support Vector 
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Machines and Textural Analysis. In fact, this paper 
demonstrates the existence of enough textural 
information to discriminate proteins from noise and 
background, as well as to show the potential of 
SVMs in proteomic classification problems.  

A new dataset with six features, starting from the 
296 original ones, is created without loss of 
accuracy, and the most representative textural group 
is the Co-ocurrence matrix Group (second-order 
statistics). In our experiments, the GLCM has 
appeared as the best approximation for a good 
classification of proteins in two-dimensional gel 
electrophoresis. According to SVM, the 1% 
histogram percentile, difference entropy, correlation, 
inverse difference moment, difference variance and 
sum entropy, are the most representative features for 
solving this problem. A proper statistical test has 
determined that there is a significant improvement in 
using this reduced feature set with respect to the full 
feature set. 
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APPENDIX 

Table 4: Results with different SVM kernel types. 

TP FN FFP TN Acc AUC F-Meas Y’s Kapp Nvar Texture features 

RBF(1) 90 10 18 82 0.86 0.86 0.8653 0.72 0.72 8 

S(2,0)InvDfMom 
S(0,3)SumAverg 
S(0,3)DifVarnc 
S(4,-4)Contrast 
S(0,5)SumEntrp 
S(0,5)DifEntrp 

S(5,5)SumEntrp 
S(5,-5)Entropy 

RBF(2) 94 6 17 83 
0.88

5 
0.88 0.8909 0.77 0.77 6 

Perc.01% 
S(2,-2)DifEntrp 
S(5,0)Correlat 

S(5,0)InvDfMom 
S(0,5)DifVarnc 
S(5,5)SumEntrp 

Linear 95 5 11 89 0.92 0.92 0.9268 0.85 0.85 6 

Skewness 
S(2,2)Correlat 

S(4,0)InvDfMom 
_Area_S(0,4) 
S(5,0)Contrast 
_Area_S(5,-5) 

Poli(3) 87 13 19 81 0.84 0.84 0.844 0.68 0.68 16 

Kurtosis 
S(1,-1)Contrast 
S(1,-1)DifEntrp 
S(0,2)DifEntrp 

S(0,4)SumAverg 
S(4,-4)Correlat 

S(4,-4)SumVarnc 
S(5,0)InvDfMom 
S(0,5)SumOfSqs 
S(0,5)InvDfMom 
S(0,5)SumEntrp 

45dgr_GLevNoU 
_AreaGr 

GrKurtosis 
WavEnLH_s-2 
WavEnLH_s-4 

RBF(100;10) 94 6 18 82 0.88 0.88 0.8867 0.76 0.76 8 

_Area_S(0,1) 
S(2,0)InvDfMom 

_Area_S(5,0) 
S(5,0)InvDfMom 
S(0,5)InvDfMom 
S(5,-5)DifEntrp 

Horzl_GLevNonU 
WavEnLH_s-4 
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Table 5: Study of texture parameters between best SVM kernels in accuracy. 
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S(0,3)SumAverg 
S(0,3)DifVarnc 
S(4,-4)Contrast 
S(0,5)SumEntrp 
S(0,5)DifEntrp 
S(5,5)SumEntrp 
S(5,-5)Entropy 

   

RBF(2) Perc.01% 
  

S(2,-2)DifEntrp 
S(5,0)Correlat 

S(5,0)InvDfMom 
S(0,5)DifVarnc 
S(5,5)SumEntrp 

  
 
 

Linear Skewness 
  

S(2,2)Correlat 
S(4,0)InvDfMom 

S(5,0)Contrast 
  

_Area_S(0,4) 
_Area_S(5,-5) 

Poli(3) Kurtosis GrKurtosis 45dgr_GLevNonU

S(1,-1)Contrast 
S(1,-1)DifEntrp 
S(0,2)DifEntrp 

S(0,4)SumAverg 
S(4,-4)Correlat 

S(4,-4)SumVarnc 
S(5,0)InvDfMom 
S(0,5)SumOfSqs 
S(0,5)InvDfMom 
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_AreaGr 

RBF(100;10) 
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